blob: 8ea6daaf26dbff93680da8e646b64e8318547df8 [file] [log] [blame]
/* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/jiffies.h>
#include "sde_encoder_phys.h"
#include "sde_hw_interrupts.h"
#include "sde_core_irq.h"
#include "sde_formats.h"
#define SDE_DEBUG_VIDENC(e, fmt, ...) SDE_DEBUG("enc%d intf%d " fmt, \
(e) && (e)->base.parent ? \
(e)->base.parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define SDE_ERROR_VIDENC(e, fmt, ...) SDE_ERROR("enc%d intf%d " fmt, \
(e) && (e)->base.parent ? \
(e)->base.parent->base.id : -1, \
(e) && (e)->hw_intf ? \
(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)
#define VBLANK_TIMEOUT msecs_to_jiffies(100)
#define to_sde_encoder_phys_vid(x) \
container_of(x, struct sde_encoder_phys_vid, base)
#define DEV(phy_enc) (phy_enc->parent->dev)
#define WAIT_TIMEOUT_MSEC 100
static bool sde_encoder_phys_vid_is_master(
struct sde_encoder_phys *phys_enc)
{
bool ret = false;
if (phys_enc->split_role != ENC_ROLE_SLAVE)
ret = true;
return ret;
}
static void sde_encoder_phys_vid_wait_for_vblank(
struct sde_encoder_phys_vid *vid_enc)
{
int rc = 0;
if (!vid_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
rc = wait_for_completion_timeout(&vid_enc->vblank_completion,
VBLANK_TIMEOUT);
if (rc == 0)
SDE_ERROR_VIDENC(vid_enc, "timed out waiting for vblank irq\n");
}
static void drm_mode_to_intf_timing_params(
const struct sde_encoder_phys_vid *vid_enc,
const struct drm_display_mode *mode,
struct intf_timing_params *timing)
{
memset(timing, 0, sizeof(*timing));
/*
* https://www.kernel.org/doc/htmldocs/drm/ch02s05.html
* Active Region Front Porch Sync Back Porch
* <-----------------><------------><-----><----------->
* <- [hv]display --->
* <--------- [hv]sync_start ------>
* <----------------- [hv]sync_end ------->
* <---------------------------- [hv]total ------------->
*/
timing->width = mode->hdisplay; /* active width */
timing->height = mode->vdisplay; /* active height */
timing->xres = timing->width;
timing->yres = timing->height;
timing->h_back_porch = mode->htotal - mode->hsync_end;
timing->h_front_porch = mode->hsync_start - mode->hdisplay;
timing->v_back_porch = mode->vtotal - mode->vsync_end;
timing->v_front_porch = mode->vsync_start - mode->vdisplay;
timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start;
timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start;
timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0;
timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
timing->border_clr = 0;
timing->underflow_clr = 0xff;
timing->hsync_skew = mode->hskew;
/* DSI controller cannot handle active-low sync signals. */
if (vid_enc->hw_intf->cap->type == INTF_DSI) {
timing->hsync_polarity = 0;
timing->vsync_polarity = 0;
}
/*
* For edp only:
* DISPLAY_V_START = (VBP * HCYCLE) + HBP
* DISPLAY_V_END = (VBP + VACTIVE) * HCYCLE - 1 - HFP
*/
/*
* if (vid_enc->hw->cap->type == INTF_EDP) {
* display_v_start += mode->htotal - mode->hsync_start;
* display_v_end -= mode->hsync_start - mode->hdisplay;
* }
*/
}
static inline u32 get_horizontal_total(const struct intf_timing_params *timing)
{
u32 active = timing->xres;
u32 inactive =
timing->h_back_porch + timing->h_front_porch +
timing->hsync_pulse_width;
return active + inactive;
}
static inline u32 get_vertical_total(const struct intf_timing_params *timing)
{
u32 active = timing->yres;
u32 inactive =
timing->v_back_porch + timing->v_front_porch +
timing->vsync_pulse_width;
return active + inactive;
}
/*
* programmable_fetch_get_num_lines:
* Number of fetch lines in vertical front porch
* @timing: Pointer to the intf timing information for the requested mode
*
* Returns the number of fetch lines in vertical front porch at which mdp
* can start fetching the next frame.
*
* Number of needed prefetch lines is anything that cannot be absorbed in the
* start of frame time (back porch + vsync pulse width).
*
* Some panels have very large VFP, however we only need a total number of
* lines based on the chip worst case latencies.
*/
static u32 programmable_fetch_get_num_lines(
struct sde_encoder_phys_vid *vid_enc,
const struct intf_timing_params *timing)
{
u32 worst_case_needed_lines =
vid_enc->hw_intf->cap->prog_fetch_lines_worst_case;
u32 start_of_frame_lines =
timing->v_back_porch + timing->vsync_pulse_width;
u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines;
u32 actual_vfp_lines = 0;
/* Fetch must be outside active lines, otherwise undefined. */
if (start_of_frame_lines >= worst_case_needed_lines) {
SDE_DEBUG_VIDENC(vid_enc,
"prog fetch is not needed, large vbp+vsw\n");
actual_vfp_lines = 0;
} else if (timing->v_front_porch < needed_vfp_lines) {
/* Warn fetch needed, but not enough porch in panel config */
pr_warn_once
("low vbp+vfp may lead to perf issues in some cases\n");
SDE_DEBUG_VIDENC(vid_enc,
"less vfp than fetch req, using entire vfp\n");
actual_vfp_lines = timing->v_front_porch;
} else {
SDE_DEBUG_VIDENC(vid_enc, "room in vfp for needed prefetch\n");
actual_vfp_lines = needed_vfp_lines;
}
SDE_DEBUG_VIDENC(vid_enc,
"v_front_porch %u v_back_porch %u vsync_pulse_width %u\n",
timing->v_front_porch, timing->v_back_porch,
timing->vsync_pulse_width);
SDE_DEBUG_VIDENC(vid_enc,
"wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n",
worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines);
return actual_vfp_lines;
}
/*
* programmable_fetch_config: Programs HW to prefetch lines by offsetting
* the start of fetch into the vertical front porch for cases where the
* vsync pulse width and vertical back porch time is insufficient
*
* Gets # of lines to pre-fetch, then calculate VSYNC counter value.
* HW layer requires VSYNC counter of first pixel of tgt VFP line.
*
* @timing: Pointer to the intf timing information for the requested mode
*/
static void programmable_fetch_config(struct sde_encoder_phys *phys_enc,
const struct intf_timing_params *timing)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct intf_prog_fetch f = { 0 };
u32 vfp_fetch_lines = 0;
u32 horiz_total = 0;
u32 vert_total = 0;
u32 vfp_fetch_start_vsync_counter = 0;
unsigned long lock_flags;
if (WARN_ON_ONCE(!vid_enc->hw_intf->ops.setup_prg_fetch))
return;
vfp_fetch_lines = programmable_fetch_get_num_lines(vid_enc, timing);
if (vfp_fetch_lines) {
vert_total = get_vertical_total(timing);
horiz_total = get_horizontal_total(timing);
vfp_fetch_start_vsync_counter =
(vert_total - vfp_fetch_lines) * horiz_total + 1;
f.enable = 1;
f.fetch_start = vfp_fetch_start_vsync_counter;
}
SDE_DEBUG_VIDENC(vid_enc,
"vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n",
vfp_fetch_lines, vfp_fetch_start_vsync_counter);
spin_lock_irqsave(&phys_enc->spin_lock, lock_flags);
vid_enc->hw_intf->ops.setup_prg_fetch(vid_enc->hw_intf, &f);
spin_unlock_irqrestore(&phys_enc->spin_lock, lock_flags);
}
static bool sde_encoder_phys_vid_mode_fixup(
struct sde_encoder_phys *phys_enc,
const struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
if (phys_enc)
SDE_DEBUG_VIDENC(to_sde_encoder_phys_vid(phys_enc), "\n");
/*
* Modifying mode has consequences when the mode comes back to us
*/
return true;
}
static void sde_encoder_phys_vid_setup_timing_engine(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct drm_display_mode mode = phys_enc->cached_mode;
struct intf_timing_params timing_params = { 0 };
const struct sde_format *fmt = NULL;
u32 fmt_fourcc = DRM_FORMAT_RGB888;
unsigned long lock_flags;
struct sde_hw_intf_cfg intf_cfg = { 0 };
if (!phys_enc ||
!vid_enc->hw_intf->ops.setup_timing_gen ||
!phys_enc->hw_ctl->ops.setup_intf_cfg) {
SDE_ERROR("invalid encoder %d\n", phys_enc != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "enabling mode:\n");
drm_mode_debug_printmodeline(&mode);
if (phys_enc->split_role != ENC_ROLE_SOLO) {
mode.hdisplay >>= 1;
mode.htotal >>= 1;
mode.hsync_start >>= 1;
mode.hsync_end >>= 1;
SDE_DEBUG_VIDENC(vid_enc,
"split_role %d, halve horizontal %d %d %d %d\n",
phys_enc->split_role,
mode.hdisplay, mode.htotal,
mode.hsync_start, mode.hsync_end);
}
drm_mode_to_intf_timing_params(vid_enc, &mode, &timing_params);
fmt = sde_get_sde_format(fmt_fourcc);
SDE_DEBUG_VIDENC(vid_enc, "fmt_fourcc 0x%X\n", fmt_fourcc);
intf_cfg.intf = vid_enc->hw_intf->idx;
intf_cfg.wb = SDE_NONE;
intf_cfg.mode_3d = phys_enc->mode_3d;
intf_cfg.intf_mode_sel = SDE_CTL_MODE_SEL_VID;
intf_cfg.stream_sel = 0; /* Don't care value for video mode */
spin_lock_irqsave(&phys_enc->spin_lock, lock_flags);
vid_enc->hw_intf->ops.setup_timing_gen(vid_enc->hw_intf,
&timing_params, fmt);
phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg);
spin_unlock_irqrestore(&phys_enc->spin_lock, lock_flags);
programmable_fetch_config(phys_enc, &timing_params);
}
static void sde_encoder_phys_vid_vblank_irq(void *arg, int irq_idx)
{
struct sde_encoder_phys_vid *vid_enc = arg;
struct sde_encoder_phys *phys_enc;
if (!vid_enc)
return;
phys_enc = &vid_enc->base;
phys_enc->parent_ops.handle_vblank_virt(phys_enc->parent);
/* signal VBLANK completion */
complete_all(&vid_enc->vblank_completion);
}
static bool sde_encoder_phys_vid_needs_split_flush(
struct sde_encoder_phys *phys_enc)
{
return phys_enc && phys_enc->split_role != ENC_ROLE_SOLO;
}
static void _sde_encoder_phys_vid_split_config(
struct sde_encoder_phys *phys_enc, bool enable)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct sde_hw_mdp *hw_mdptop = phys_enc->hw_mdptop;
struct split_pipe_cfg cfg = { 0 };
SDE_DEBUG_VIDENC(vid_enc, "enable %d\n", enable);
cfg.en = enable;
cfg.mode = INTF_MODE_VIDEO;
cfg.intf = vid_enc->hw_intf->idx;
cfg.split_flush_en = enable &&
sde_encoder_phys_vid_needs_split_flush(phys_enc);
/* Configure split pipe control to handle master/slave triggering */
if (hw_mdptop && hw_mdptop->ops.setup_split_pipe) {
unsigned long lock_flags;
spin_lock_irqsave(&phys_enc->spin_lock, lock_flags);
hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
spin_unlock_irqrestore(&phys_enc->spin_lock, lock_flags);
}
}
static int sde_encoder_phys_vid_register_irq(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct sde_irq_callback irq_cb;
int ret = 0;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
vid_enc->irq_idx = sde_core_irq_idx_lookup(phys_enc->sde_kms,
SDE_IRQ_TYPE_INTF_VSYNC, vid_enc->hw_intf->idx);
if (vid_enc->irq_idx < 0) {
SDE_ERROR_VIDENC(vid_enc,
"failed to lookup IRQ index for INTF_VSYNC\n");
return -EINVAL;
}
irq_cb.func = sde_encoder_phys_vid_vblank_irq;
irq_cb.arg = vid_enc;
ret = sde_core_irq_register_callback(phys_enc->sde_kms,
vid_enc->irq_idx, &irq_cb);
if (ret) {
SDE_ERROR_VIDENC(vid_enc,
"failed to register IRQ callback INTF_VSYNC");
return ret;
}
ret = sde_core_irq_enable(phys_enc->sde_kms, &vid_enc->irq_idx, 1);
if (ret) {
SDE_ERROR_VIDENC(vid_enc,
"enable IRQ for INTF_VSYNC failed, irq_idx %d\n",
vid_enc->irq_idx);
vid_enc->irq_idx = -EINVAL;
/* Unregister callback on IRQ enable failure */
sde_core_irq_register_callback(phys_enc->sde_kms,
vid_enc->irq_idx, NULL);
return ret;
}
SDE_DEBUG_VIDENC(vid_enc, "registered %d\n", vid_enc->irq_idx);
return ret;
}
static int sde_encoder_phys_vid_unregister_irq(
struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
sde_core_irq_register_callback(phys_enc->sde_kms, vid_enc->irq_idx,
NULL);
sde_core_irq_disable(phys_enc->sde_kms, &vid_enc->irq_idx, 1);
SDE_DEBUG_VIDENC(vid_enc, "unregistered %d\n", vid_enc->irq_idx);
return 0;
}
static void sde_encoder_phys_vid_mode_set(
struct sde_encoder_phys *phys_enc,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct sde_rm *rm = &phys_enc->sde_kms->rm;
struct sde_rm_hw_iter iter;
int i, instance;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
phys_enc->cached_mode = *adj_mode;
SDE_DEBUG_VIDENC(vid_enc, "caching mode:\n");
drm_mode_debug_printmodeline(adj_mode);
instance = phys_enc->split_role == ENC_ROLE_SLAVE ? 1 : 0;
/* Retrieve previously allocated HW Resources. Shouldn't fail */
sde_rm_init_hw_iter(&iter, phys_enc->parent->base.id, SDE_HW_BLK_CTL);
for (i = 0; i <= instance; i++) {
sde_rm_get_hw(rm, &iter);
if (i == instance)
phys_enc->hw_ctl = (struct sde_hw_ctl *) iter.hw;
}
if (IS_ERR_OR_NULL(phys_enc->hw_ctl)) {
SDE_ERROR_VIDENC(vid_enc, "failed to init ctl, %ld\n",
PTR_ERR(phys_enc->hw_ctl));
phys_enc->hw_ctl = NULL;
return;
}
}
static int sde_encoder_phys_vid_control_vblank_irq(
struct sde_encoder_phys *phys_enc,
bool enable)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
int ret = 0;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return -EINVAL;
}
SDE_DEBUG_VIDENC(vid_enc, "enable %d\n", enable);
/* Slave encoders don't report vblank */
if (sde_encoder_phys_vid_is_master(phys_enc)) {
if (enable)
ret = sde_encoder_phys_vid_register_irq(phys_enc);
else
ret = sde_encoder_phys_vid_unregister_irq(phys_enc);
}
if (ret)
SDE_ERROR_VIDENC(vid_enc,
"control vblank irq error %d, enable %d\n",
ret, enable);
return ret;
}
static void sde_encoder_phys_vid_enable(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
struct sde_hw_intf *intf = vid_enc->hw_intf;
struct sde_hw_ctl *ctl = phys_enc->hw_ctl;
u32 flush_mask = 0;
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
} else if (!vid_enc->hw_intf || !phys_enc->hw_ctl) {
SDE_ERROR("invalid hw_intf %d hw_ctl %d\n",
vid_enc->hw_intf != 0, phys_enc->hw_ctl != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing))
return;
if (phys_enc->split_role == ENC_ROLE_MASTER)
_sde_encoder_phys_vid_split_config(phys_enc, true);
else if (phys_enc->split_role == ENC_ROLE_SOLO)
_sde_encoder_phys_vid_split_config(phys_enc, false);
sde_encoder_phys_vid_setup_timing_engine(phys_enc);
sde_encoder_phys_vid_control_vblank_irq(phys_enc, true);
ctl->ops.get_bitmask_intf(ctl, &flush_mask, intf->idx);
ctl->ops.update_pending_flush(ctl, flush_mask);
SDE_DEBUG_VIDENC(vid_enc, "update pending flush ctl %d flush_mask %x\n",
ctl->idx - CTL_0, flush_mask);
/* ctl_flush & timing engine enable will be triggered by framework */
if (phys_enc->enable_state == SDE_ENC_DISABLED)
phys_enc->enable_state = SDE_ENC_ENABLING;
}
static void sde_encoder_phys_vid_disable(struct sde_encoder_phys *phys_enc)
{
unsigned long lock_flags;
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
} else if (!vid_enc->hw_intf || !phys_enc->hw_ctl) {
SDE_ERROR("invalid hw_intf %d hw_ctl %d\n",
vid_enc->hw_intf != 0, phys_enc->hw_ctl != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
if (WARN_ON(!vid_enc->hw_intf->ops.enable_timing))
return;
if (phys_enc->enable_state == SDE_ENC_DISABLED) {
SDE_ERROR("already disabled\n");
return;
}
spin_lock_irqsave(&phys_enc->spin_lock, lock_flags);
vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 0);
reinit_completion(&vid_enc->vblank_completion);
phys_enc->enable_state = SDE_ENC_DISABLED;
spin_unlock_irqrestore(&phys_enc->spin_lock, lock_flags);
/*
* Wait for a vsync so we know the ENABLE=0 latched before
* the (connector) source of the vsync's gets disabled,
* otherwise we end up in a funny state if we re-enable
* before the disable latches, which results that some of
* the settings changes for the new modeset (like new
* scanout buffer) don't latch properly..
*/
if (sde_encoder_phys_vid_is_master(phys_enc)) {
sde_encoder_phys_vid_wait_for_vblank(vid_enc);
sde_encoder_phys_vid_control_vblank_irq(phys_enc, false);
}
}
static void sde_encoder_phys_vid_destroy(struct sde_encoder_phys *phys_enc)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
kfree(vid_enc);
}
static void sde_encoder_phys_vid_get_hw_resources(
struct sde_encoder_phys *phys_enc,
struct sde_encoder_hw_resources *hw_res,
struct drm_connector_state *conn_state)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!phys_enc || !hw_res || !vid_enc->hw_intf) {
SDE_ERROR("invalid arg(s), enc %d hw_res %d conn_state %d\n",
phys_enc != 0, hw_res != 0, conn_state != 0);
return;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
hw_res->intfs[vid_enc->hw_intf->idx - INTF_0] = INTF_MODE_VIDEO;
}
static int sde_encoder_phys_vid_wait_for_commit_done(
struct sde_encoder_phys *phys_enc)
{
unsigned long ret;
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!sde_encoder_phys_vid_is_master(phys_enc))
return 0;
if (phys_enc->enable_state != SDE_ENC_ENABLED) {
SDE_ERROR("encoder not enabled\n");
return -EWOULDBLOCK;
}
MSM_EVTMSG(DEV(phys_enc), "waiting", 0, 0);
ret = wait_for_completion_timeout(&vid_enc->vblank_completion,
msecs_to_jiffies(WAIT_TIMEOUT_MSEC));
if (!ret) {
SDE_DEBUG_VIDENC(vid_enc, "wait %u ms timed out\n",
WAIT_TIMEOUT_MSEC);
MSM_EVTMSG(DEV(phys_enc), "wait_timeout", 0, 0);
return -ETIMEDOUT;
}
MSM_EVTMSG(DEV(phys_enc), "wait_done", 0, 0);
return 0;
}
static void sde_encoder_phys_vid_prepare_for_kickoff(
struct sde_encoder_phys *phys_enc,
bool *need_to_wait)
{
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
/* Vid encoder is simple, kickoff is immediate */
*need_to_wait = false;
/* Reset completion to wait for the next vblank */
reinit_completion(&vid_enc->vblank_completion);
}
static void sde_encoder_phys_vid_handle_post_kickoff(
struct sde_encoder_phys *phys_enc)
{
unsigned long lock_flags;
struct sde_encoder_phys_vid *vid_enc =
to_sde_encoder_phys_vid(phys_enc);
if (!phys_enc) {
SDE_ERROR("invalid encoder\n");
return;
}
SDE_DEBUG_VIDENC(vid_enc, "enable_state %d\n", phys_enc->enable_state);
/*
* Video mode must flush CTL before enabling timing engine
* Video encoders need to turn on their interfaces now
*/
if (phys_enc->enable_state == SDE_ENC_ENABLING) {
MSM_EVT(DEV(phys_enc), 0, 0);
spin_lock_irqsave(&phys_enc->spin_lock, lock_flags);
vid_enc->hw_intf->ops.enable_timing(vid_enc->hw_intf, 1);
spin_unlock_irqrestore(&phys_enc->spin_lock, lock_flags);
phys_enc->enable_state = SDE_ENC_ENABLED;
}
}
static void sde_encoder_phys_vid_init_ops(struct sde_encoder_phys_ops *ops)
{
ops->is_master = sde_encoder_phys_vid_is_master;
ops->mode_set = sde_encoder_phys_vid_mode_set;
ops->mode_fixup = sde_encoder_phys_vid_mode_fixup;
ops->enable = sde_encoder_phys_vid_enable;
ops->disable = sde_encoder_phys_vid_disable;
ops->destroy = sde_encoder_phys_vid_destroy;
ops->get_hw_resources = sde_encoder_phys_vid_get_hw_resources;
ops->control_vblank_irq = sde_encoder_phys_vid_control_vblank_irq;
ops->wait_for_commit_done = sde_encoder_phys_vid_wait_for_commit_done;
ops->prepare_for_kickoff = sde_encoder_phys_vid_prepare_for_kickoff;
ops->handle_post_kickoff = sde_encoder_phys_vid_handle_post_kickoff;
ops->needs_split_flush = sde_encoder_phys_vid_needs_split_flush;
}
struct sde_encoder_phys *sde_encoder_phys_vid_init(
struct sde_enc_phys_init_params *p)
{
struct sde_encoder_phys *phys_enc = NULL;
struct sde_encoder_phys_vid *vid_enc = NULL;
struct sde_rm_hw_iter iter;
struct sde_hw_mdp *hw_mdp;
int ret = 0;
if (!p) {
ret = -EINVAL;
goto fail;
}
vid_enc = kzalloc(sizeof(*vid_enc), GFP_KERNEL);
if (!vid_enc) {
ret = -ENOMEM;
goto fail;
}
vid_enc->irq_idx = -EINVAL;
init_completion(&vid_enc->vblank_completion);
phys_enc = &vid_enc->base;
hw_mdp = sde_rm_get_mdp(&p->sde_kms->rm);
if (IS_ERR_OR_NULL(hw_mdp)) {
ret = PTR_ERR(hw_mdp);
SDE_ERROR("failed to get mdptop\n");
goto fail;
}
phys_enc->hw_mdptop = hw_mdp;
/**
* hw_intf resource permanently assigned to this encoder
* Other resources allocated at atomic commit time by use case
*/
sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_INTF);
while (sde_rm_get_hw(&p->sde_kms->rm, &iter)) {
struct sde_hw_intf *hw_intf = (struct sde_hw_intf *)iter.hw;
if (hw_intf->idx == p->intf_idx) {
vid_enc->hw_intf = hw_intf;
break;
}
}
if (!vid_enc->hw_intf) {
ret = -EINVAL;
SDE_ERROR("failed to get hw_intf\n");
goto fail;
}
SDE_DEBUG_VIDENC(vid_enc, "\n");
sde_encoder_phys_vid_init_ops(&phys_enc->ops);
phys_enc->parent = p->parent;
phys_enc->parent_ops = p->parent_ops;
phys_enc->sde_kms = p->sde_kms;
phys_enc->split_role = p->split_role;
phys_enc->intf_mode = INTF_MODE_VIDEO;
spin_lock_init(&phys_enc->spin_lock);
init_completion(&vid_enc->vblank_completion);
DRM_INFO_ONCE("intf %d: 3d blend modes not yet supported\n",
vid_enc->hw_intf->idx);
phys_enc->mode_3d = BLEND_3D_NONE;
phys_enc->enable_state = SDE_ENC_DISABLED;
SDE_DEBUG_VIDENC(vid_enc, "created\n");
return phys_enc;
fail:
SDE_ERROR("failed to create encoder\n");
if (vid_enc)
sde_encoder_phys_vid_destroy(phys_enc);
return ERR_PTR(ret);
}