| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2008 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/socket.h> |
| #include <linux/in.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <net/ip.h> |
| #include <net/checksum.h> |
| #include "net_driver.h" |
| #include "rx.h" |
| #include "efx.h" |
| #include "falcon.h" |
| #include "selftest.h" |
| #include "workarounds.h" |
| |
| /* Number of RX descriptors pushed at once. */ |
| #define EFX_RX_BATCH 8 |
| |
| /* Size of buffer allocated for skb header area. */ |
| #define EFX_SKB_HEADERS 64u |
| |
| /* |
| * rx_alloc_method - RX buffer allocation method |
| * |
| * This driver supports two methods for allocating and using RX buffers: |
| * each RX buffer may be backed by an skb or by an order-n page. |
| * |
| * When LRO is in use then the second method has a lower overhead, |
| * since we don't have to allocate then free skbs on reassembled frames. |
| * |
| * Values: |
| * - RX_ALLOC_METHOD_AUTO = 0 |
| * - RX_ALLOC_METHOD_SKB = 1 |
| * - RX_ALLOC_METHOD_PAGE = 2 |
| * |
| * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count |
| * controlled by the parameters below. |
| * |
| * - Since pushing and popping descriptors are separated by the rx_queue |
| * size, so the watermarks should be ~rxd_size. |
| * - The performance win by using page-based allocation for LRO is less |
| * than the performance hit of using page-based allocation of non-LRO, |
| * so the watermarks should reflect this. |
| * |
| * Per channel we maintain a single variable, updated by each channel: |
| * |
| * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO : |
| * RX_ALLOC_FACTOR_SKB) |
| * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which |
| * limits the hysteresis), and update the allocation strategy: |
| * |
| * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ? |
| * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) |
| */ |
| static int rx_alloc_method = RX_ALLOC_METHOD_PAGE; |
| |
| #define RX_ALLOC_LEVEL_LRO 0x2000 |
| #define RX_ALLOC_LEVEL_MAX 0x3000 |
| #define RX_ALLOC_FACTOR_LRO 1 |
| #define RX_ALLOC_FACTOR_SKB (-2) |
| |
| /* This is the percentage fill level below which new RX descriptors |
| * will be added to the RX descriptor ring. |
| */ |
| static unsigned int rx_refill_threshold = 90; |
| |
| /* This is the percentage fill level to which an RX queue will be refilled |
| * when the "RX refill threshold" is reached. |
| */ |
| static unsigned int rx_refill_limit = 95; |
| |
| /* |
| * RX maximum head room required. |
| * |
| * This must be at least 1 to prevent overflow and at least 2 to allow |
| * pipelined receives. |
| */ |
| #define EFX_RXD_HEAD_ROOM 2 |
| |
| static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf) |
| { |
| /* Offset is always within one page, so we don't need to consider |
| * the page order. |
| */ |
| return (__force unsigned long) buf->data & (PAGE_SIZE - 1); |
| } |
| static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) |
| { |
| return PAGE_SIZE << efx->rx_buffer_order; |
| } |
| |
| |
| /** |
| * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation |
| * |
| * @rx_queue: Efx RX queue |
| * @rx_buf: RX buffer structure to populate |
| * |
| * This allocates memory for a new receive buffer, maps it for DMA, |
| * and populates a struct efx_rx_buffer with the relevant |
| * information. Return a negative error code or 0 on success. |
| */ |
| static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct net_device *net_dev = efx->net_dev; |
| int skb_len = efx->rx_buffer_len; |
| |
| rx_buf->skb = netdev_alloc_skb(net_dev, skb_len); |
| if (unlikely(!rx_buf->skb)) |
| return -ENOMEM; |
| |
| /* Adjust the SKB for padding and checksum */ |
| skb_reserve(rx_buf->skb, NET_IP_ALIGN); |
| rx_buf->len = skb_len - NET_IP_ALIGN; |
| rx_buf->data = (char *)rx_buf->skb->data; |
| rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| rx_buf->dma_addr = pci_map_single(efx->pci_dev, |
| rx_buf->data, rx_buf->len, |
| PCI_DMA_FROMDEVICE); |
| |
| if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) { |
| dev_kfree_skb_any(rx_buf->skb); |
| rx_buf->skb = NULL; |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * efx_init_rx_buffer_page - create new RX buffer using page-based allocation |
| * |
| * @rx_queue: Efx RX queue |
| * @rx_buf: RX buffer structure to populate |
| * |
| * This allocates memory for a new receive buffer, maps it for DMA, |
| * and populates a struct efx_rx_buffer with the relevant |
| * information. Return a negative error code or 0 on success. |
| */ |
| static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| int bytes, space, offset; |
| |
| bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; |
| |
| /* If there is space left in the previously allocated page, |
| * then use it. Otherwise allocate a new one */ |
| rx_buf->page = rx_queue->buf_page; |
| if (rx_buf->page == NULL) { |
| dma_addr_t dma_addr; |
| |
| rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, |
| efx->rx_buffer_order); |
| if (unlikely(rx_buf->page == NULL)) |
| return -ENOMEM; |
| |
| dma_addr = pci_map_page(efx->pci_dev, rx_buf->page, |
| 0, efx_rx_buf_size(efx), |
| PCI_DMA_FROMDEVICE); |
| |
| if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { |
| __free_pages(rx_buf->page, efx->rx_buffer_order); |
| rx_buf->page = NULL; |
| return -EIO; |
| } |
| |
| rx_queue->buf_page = rx_buf->page; |
| rx_queue->buf_dma_addr = dma_addr; |
| rx_queue->buf_data = (page_address(rx_buf->page) + |
| EFX_PAGE_IP_ALIGN); |
| } |
| |
| rx_buf->len = bytes; |
| rx_buf->data = rx_queue->buf_data; |
| offset = efx_rx_buf_offset(rx_buf); |
| rx_buf->dma_addr = rx_queue->buf_dma_addr + offset; |
| |
| /* Try to pack multiple buffers per page */ |
| if (efx->rx_buffer_order == 0) { |
| /* The next buffer starts on the next 512 byte boundary */ |
| rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff); |
| offset += ((bytes + 0x1ff) & ~0x1ff); |
| |
| space = efx_rx_buf_size(efx) - offset; |
| if (space >= bytes) { |
| /* Refs dropped on kernel releasing each skb */ |
| get_page(rx_queue->buf_page); |
| goto out; |
| } |
| } |
| |
| /* This is the final RX buffer for this page, so mark it for |
| * unmapping */ |
| rx_queue->buf_page = NULL; |
| rx_buf->unmap_addr = rx_queue->buf_dma_addr; |
| |
| out: |
| return 0; |
| } |
| |
| /* This allocates memory for a new receive buffer, maps it for DMA, |
| * and populates a struct efx_rx_buffer with the relevant |
| * information. |
| */ |
| static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *new_rx_buf) |
| { |
| int rc = 0; |
| |
| if (rx_queue->channel->rx_alloc_push_pages) { |
| new_rx_buf->skb = NULL; |
| rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf); |
| rx_queue->alloc_page_count++; |
| } else { |
| new_rx_buf->page = NULL; |
| rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf); |
| rx_queue->alloc_skb_count++; |
| } |
| |
| if (unlikely(rc < 0)) |
| EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__, |
| rx_queue->queue, rc); |
| return rc; |
| } |
| |
| static void efx_unmap_rx_buffer(struct efx_nic *efx, |
| struct efx_rx_buffer *rx_buf) |
| { |
| if (rx_buf->page) { |
| EFX_BUG_ON_PARANOID(rx_buf->skb); |
| if (rx_buf->unmap_addr) { |
| pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr, |
| efx_rx_buf_size(efx), |
| PCI_DMA_FROMDEVICE); |
| rx_buf->unmap_addr = 0; |
| } |
| } else if (likely(rx_buf->skb)) { |
| pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, |
| rx_buf->len, PCI_DMA_FROMDEVICE); |
| } |
| } |
| |
| static void efx_free_rx_buffer(struct efx_nic *efx, |
| struct efx_rx_buffer *rx_buf) |
| { |
| if (rx_buf->page) { |
| __free_pages(rx_buf->page, efx->rx_buffer_order); |
| rx_buf->page = NULL; |
| } else if (likely(rx_buf->skb)) { |
| dev_kfree_skb_any(rx_buf->skb); |
| rx_buf->skb = NULL; |
| } |
| } |
| |
| static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf) |
| { |
| efx_unmap_rx_buffer(rx_queue->efx, rx_buf); |
| efx_free_rx_buffer(rx_queue->efx, rx_buf); |
| } |
| |
| /** |
| * efx_fast_push_rx_descriptors - push new RX descriptors quickly |
| * @rx_queue: RX descriptor queue |
| * @retry: Recheck the fill level |
| * This will aim to fill the RX descriptor queue up to |
| * @rx_queue->@fast_fill_limit. If there is insufficient atomic |
| * memory to do so, the caller should retry. |
| */ |
| static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, |
| int retry) |
| { |
| struct efx_rx_buffer *rx_buf; |
| unsigned fill_level, index; |
| int i, space, rc = 0; |
| |
| /* Calculate current fill level. Do this outside the lock, |
| * because most of the time we'll end up not wanting to do the |
| * fill anyway. |
| */ |
| fill_level = (rx_queue->added_count - rx_queue->removed_count); |
| EFX_BUG_ON_PARANOID(fill_level > |
| rx_queue->efx->type->rxd_ring_mask + 1); |
| |
| /* Don't fill if we don't need to */ |
| if (fill_level >= rx_queue->fast_fill_trigger) |
| return 0; |
| |
| /* Record minimum fill level */ |
| if (unlikely(fill_level < rx_queue->min_fill)) { |
| if (fill_level) |
| rx_queue->min_fill = fill_level; |
| } |
| |
| /* Acquire RX add lock. If this lock is contended, then a fast |
| * fill must already be in progress (e.g. in the refill |
| * tasklet), so we don't need to do anything |
| */ |
| if (!spin_trylock_bh(&rx_queue->add_lock)) |
| return -1; |
| |
| retry: |
| /* Recalculate current fill level now that we have the lock */ |
| fill_level = (rx_queue->added_count - rx_queue->removed_count); |
| EFX_BUG_ON_PARANOID(fill_level > |
| rx_queue->efx->type->rxd_ring_mask + 1); |
| space = rx_queue->fast_fill_limit - fill_level; |
| if (space < EFX_RX_BATCH) |
| goto out_unlock; |
| |
| EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from" |
| " level %d to level %d using %s allocation\n", |
| rx_queue->queue, fill_level, rx_queue->fast_fill_limit, |
| rx_queue->channel->rx_alloc_push_pages ? "page" : "skb"); |
| |
| do { |
| for (i = 0; i < EFX_RX_BATCH; ++i) { |
| index = (rx_queue->added_count & |
| rx_queue->efx->type->rxd_ring_mask); |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| rc = efx_init_rx_buffer(rx_queue, rx_buf); |
| if (unlikely(rc)) |
| goto out; |
| ++rx_queue->added_count; |
| } |
| } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); |
| |
| EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring " |
| "to level %d\n", rx_queue->queue, |
| rx_queue->added_count - rx_queue->removed_count); |
| |
| out: |
| /* Send write pointer to card. */ |
| falcon_notify_rx_desc(rx_queue); |
| |
| /* If the fast fill is running inside from the refill tasklet, then |
| * for SMP systems it may be running on a different CPU to |
| * RX event processing, which means that the fill level may now be |
| * out of date. */ |
| if (unlikely(retry && (rc == 0))) |
| goto retry; |
| |
| out_unlock: |
| spin_unlock_bh(&rx_queue->add_lock); |
| |
| return rc; |
| } |
| |
| /** |
| * efx_fast_push_rx_descriptors - push new RX descriptors quickly |
| * @rx_queue: RX descriptor queue |
| * |
| * This will aim to fill the RX descriptor queue up to |
| * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so, |
| * it will schedule a work item to immediately continue the fast fill |
| */ |
| void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) |
| { |
| int rc; |
| |
| rc = __efx_fast_push_rx_descriptors(rx_queue, 0); |
| if (unlikely(rc)) { |
| /* Schedule the work item to run immediately. The hope is |
| * that work is immediately pending to free some memory |
| * (e.g. an RX event or TX completion) |
| */ |
| efx_schedule_slow_fill(rx_queue, 0); |
| } |
| } |
| |
| void efx_rx_work(struct work_struct *data) |
| { |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| rx_queue = container_of(data, struct efx_rx_queue, work.work); |
| |
| if (unlikely(!rx_queue->channel->enabled)) |
| return; |
| |
| EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU " |
| "%d\n", rx_queue->queue, raw_smp_processor_id()); |
| |
| ++rx_queue->slow_fill_count; |
| /* Push new RX descriptors, allowing at least 1 jiffy for |
| * the kernel to free some more memory. */ |
| rc = __efx_fast_push_rx_descriptors(rx_queue, 1); |
| if (rc) |
| efx_schedule_slow_fill(rx_queue, 1); |
| } |
| |
| static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf, |
| int len, bool *discard, |
| bool *leak_packet) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; |
| |
| if (likely(len <= max_len)) |
| return; |
| |
| /* The packet must be discarded, but this is only a fatal error |
| * if the caller indicated it was |
| */ |
| *discard = true; |
| |
| if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { |
| EFX_ERR_RL(efx, " RX queue %d seriously overlength " |
| "RX event (0x%x > 0x%x+0x%x). Leaking\n", |
| rx_queue->queue, len, max_len, |
| efx->type->rx_buffer_padding); |
| /* If this buffer was skb-allocated, then the meta |
| * data at the end of the skb will be trashed. So |
| * we have no choice but to leak the fragment. |
| */ |
| *leak_packet = (rx_buf->skb != NULL); |
| efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); |
| } else { |
| EFX_ERR_RL(efx, " RX queue %d overlength RX event " |
| "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len); |
| } |
| |
| rx_queue->channel->n_rx_overlength++; |
| } |
| |
| /* Pass a received packet up through the generic LRO stack |
| * |
| * Handles driverlink veto, and passes the fragment up via |
| * the appropriate LRO method |
| */ |
| static void efx_rx_packet_lro(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct napi_struct *napi = &channel->napi_str; |
| |
| /* Pass the skb/page into the LRO engine */ |
| if (rx_buf->page) { |
| struct napi_gro_fraginfo info; |
| |
| info.frags[0].page = rx_buf->page; |
| info.frags[0].page_offset = efx_rx_buf_offset(rx_buf); |
| info.frags[0].size = rx_buf->len; |
| info.nr_frags = 1; |
| info.ip_summed = CHECKSUM_UNNECESSARY; |
| info.len = rx_buf->len; |
| |
| napi_gro_frags(napi, &info); |
| |
| EFX_BUG_ON_PARANOID(rx_buf->skb); |
| rx_buf->page = NULL; |
| } else { |
| EFX_BUG_ON_PARANOID(!rx_buf->skb); |
| |
| napi_gro_receive(napi, rx_buf->skb); |
| rx_buf->skb = NULL; |
| } |
| } |
| |
| void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, |
| unsigned int len, bool checksummed, bool discard) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_rx_buffer *rx_buf; |
| bool leak_packet = false; |
| |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| EFX_BUG_ON_PARANOID(!rx_buf->data); |
| EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page); |
| EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page)); |
| |
| /* This allows the refill path to post another buffer. |
| * EFX_RXD_HEAD_ROOM ensures that the slot we are using |
| * isn't overwritten yet. |
| */ |
| rx_queue->removed_count++; |
| |
| /* Validate the length encoded in the event vs the descriptor pushed */ |
| efx_rx_packet__check_len(rx_queue, rx_buf, len, |
| &discard, &leak_packet); |
| |
| EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n", |
| rx_queue->queue, index, |
| (unsigned long long)rx_buf->dma_addr, len, |
| (checksummed ? " [SUMMED]" : ""), |
| (discard ? " [DISCARD]" : "")); |
| |
| /* Discard packet, if instructed to do so */ |
| if (unlikely(discard)) { |
| if (unlikely(leak_packet)) |
| rx_queue->channel->n_skbuff_leaks++; |
| else |
| /* We haven't called efx_unmap_rx_buffer yet, |
| * so fini the entire rx_buffer here */ |
| efx_fini_rx_buffer(rx_queue, rx_buf); |
| return; |
| } |
| |
| /* Release card resources - assumes all RX buffers consumed in-order |
| * per RX queue |
| */ |
| efx_unmap_rx_buffer(efx, rx_buf); |
| |
| /* Prefetch nice and early so data will (hopefully) be in cache by |
| * the time we look at it. |
| */ |
| prefetch(rx_buf->data); |
| |
| /* Pipeline receives so that we give time for packet headers to be |
| * prefetched into cache. |
| */ |
| rx_buf->len = len; |
| if (rx_queue->channel->rx_pkt) |
| __efx_rx_packet(rx_queue->channel, |
| rx_queue->channel->rx_pkt, |
| rx_queue->channel->rx_pkt_csummed); |
| rx_queue->channel->rx_pkt = rx_buf; |
| rx_queue->channel->rx_pkt_csummed = checksummed; |
| } |
| |
| /* Handle a received packet. Second half: Touches packet payload. */ |
| void __efx_rx_packet(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, bool checksummed) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct sk_buff *skb; |
| |
| /* If we're in loopback test, then pass the packet directly to the |
| * loopback layer, and free the rx_buf here |
| */ |
| if (unlikely(efx->loopback_selftest)) { |
| efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len); |
| efx_free_rx_buffer(efx, rx_buf); |
| goto done; |
| } |
| |
| if (rx_buf->skb) { |
| prefetch(skb_shinfo(rx_buf->skb)); |
| |
| skb_put(rx_buf->skb, rx_buf->len); |
| |
| /* Move past the ethernet header. rx_buf->data still points |
| * at the ethernet header */ |
| rx_buf->skb->protocol = eth_type_trans(rx_buf->skb, |
| efx->net_dev); |
| } |
| |
| if (likely(checksummed || rx_buf->page)) { |
| efx_rx_packet_lro(channel, rx_buf); |
| goto done; |
| } |
| |
| /* We now own the SKB */ |
| skb = rx_buf->skb; |
| rx_buf->skb = NULL; |
| |
| EFX_BUG_ON_PARANOID(rx_buf->page); |
| EFX_BUG_ON_PARANOID(rx_buf->skb); |
| EFX_BUG_ON_PARANOID(!skb); |
| |
| /* Set the SKB flags */ |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Pass the packet up */ |
| netif_receive_skb(skb); |
| |
| /* Update allocation strategy method */ |
| channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; |
| |
| done: |
| ; |
| } |
| |
| void efx_rx_strategy(struct efx_channel *channel) |
| { |
| enum efx_rx_alloc_method method = rx_alloc_method; |
| |
| /* Only makes sense to use page based allocation if LRO is enabled */ |
| if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { |
| method = RX_ALLOC_METHOD_SKB; |
| } else if (method == RX_ALLOC_METHOD_AUTO) { |
| /* Constrain the rx_alloc_level */ |
| if (channel->rx_alloc_level < 0) |
| channel->rx_alloc_level = 0; |
| else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) |
| channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; |
| |
| /* Decide on the allocation method */ |
| method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ? |
| RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); |
| } |
| |
| /* Push the option */ |
| channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); |
| } |
| |
| int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int rxq_size; |
| int rc; |
| |
| EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue); |
| |
| /* Allocate RX buffers */ |
| rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer); |
| rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL); |
| if (!rx_queue->buffer) |
| return -ENOMEM; |
| |
| rc = falcon_probe_rx(rx_queue); |
| if (rc) { |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| return rc; |
| } |
| |
| void efx_init_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int max_fill, trigger, limit; |
| |
| EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue); |
| |
| /* Initialise ptr fields */ |
| rx_queue->added_count = 0; |
| rx_queue->notified_count = 0; |
| rx_queue->removed_count = 0; |
| rx_queue->min_fill = -1U; |
| rx_queue->min_overfill = -1U; |
| |
| /* Initialise limit fields */ |
| max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM; |
| trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; |
| limit = max_fill * min(rx_refill_limit, 100U) / 100U; |
| |
| rx_queue->max_fill = max_fill; |
| rx_queue->fast_fill_trigger = trigger; |
| rx_queue->fast_fill_limit = limit; |
| |
| /* Set up RX descriptor ring */ |
| falcon_init_rx(rx_queue); |
| } |
| |
| void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| int i; |
| struct efx_rx_buffer *rx_buf; |
| |
| EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue); |
| |
| falcon_fini_rx(rx_queue); |
| |
| /* Release RX buffers NB start at index 0 not current HW ptr */ |
| if (rx_queue->buffer) { |
| for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) { |
| rx_buf = efx_rx_buffer(rx_queue, i); |
| efx_fini_rx_buffer(rx_queue, rx_buf); |
| } |
| } |
| |
| /* For a page that is part-way through splitting into RX buffers */ |
| if (rx_queue->buf_page != NULL) { |
| pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr, |
| efx_rx_buf_size(rx_queue->efx), |
| PCI_DMA_FROMDEVICE); |
| __free_pages(rx_queue->buf_page, |
| rx_queue->efx->rx_buffer_order); |
| rx_queue->buf_page = NULL; |
| } |
| } |
| |
| void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue); |
| |
| falcon_remove_rx(rx_queue); |
| |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| |
| |
| module_param(rx_alloc_method, int, 0644); |
| MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); |
| |
| module_param(rx_refill_threshold, uint, 0444); |
| MODULE_PARM_DESC(rx_refill_threshold, |
| "RX descriptor ring fast/slow fill threshold (%)"); |
| |