| /* |
| * davinci_nand.c - NAND Flash Driver for DaVinci family chips |
| * |
| * Copyright © 2006 Texas Instruments. |
| * |
| * Port to 2.6.23 Copyright © 2008 by: |
| * Sander Huijsen <Shuijsen@optelecom-nkf.com> |
| * Troy Kisky <troy.kisky@boundarydevices.com> |
| * Dirk Behme <Dirk.Behme@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/slab.h> |
| |
| #include <mach/nand.h> |
| |
| #include <asm/mach-types.h> |
| |
| |
| /* |
| * This is a device driver for the NAND flash controller found on the |
| * various DaVinci family chips. It handles up to four SoC chipselects, |
| * and some flavors of secondary chipselect (e.g. based on A12) as used |
| * with multichip packages. |
| * |
| * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC |
| * available on chips like the DM355 and OMAP-L137 and needed with the |
| * more error-prone MLC NAND chips. |
| * |
| * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY |
| * outputs in a "wire-AND" configuration, with no per-chip signals. |
| */ |
| struct davinci_nand_info { |
| struct mtd_info mtd; |
| struct nand_chip chip; |
| struct nand_ecclayout ecclayout; |
| |
| struct device *dev; |
| struct clk *clk; |
| bool partitioned; |
| |
| bool is_readmode; |
| |
| void __iomem *base; |
| void __iomem *vaddr; |
| |
| uint32_t ioaddr; |
| uint32_t current_cs; |
| |
| uint32_t mask_chipsel; |
| uint32_t mask_ale; |
| uint32_t mask_cle; |
| |
| uint32_t core_chipsel; |
| }; |
| |
| static DEFINE_SPINLOCK(davinci_nand_lock); |
| static bool ecc4_busy; |
| |
| #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd) |
| |
| |
| static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, |
| int offset) |
| { |
| return __raw_readl(info->base + offset); |
| } |
| |
| static inline void davinci_nand_writel(struct davinci_nand_info *info, |
| int offset, unsigned long value) |
| { |
| __raw_writel(value, info->base + offset); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * Access to hardware control lines: ALE, CLE, secondary chipselect. |
| */ |
| |
| static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| uint32_t addr = info->current_cs; |
| struct nand_chip *nand = mtd->priv; |
| |
| /* Did the control lines change? */ |
| if (ctrl & NAND_CTRL_CHANGE) { |
| if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) |
| addr |= info->mask_cle; |
| else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) |
| addr |= info->mask_ale; |
| |
| nand->IO_ADDR_W = (void __iomem __force *)addr; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| iowrite8(cmd, nand->IO_ADDR_W); |
| } |
| |
| static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| uint32_t addr = info->ioaddr; |
| |
| /* maybe kick in a second chipselect */ |
| if (chip > 0) |
| addr |= info->mask_chipsel; |
| info->current_cs = addr; |
| |
| info->chip.IO_ADDR_W = (void __iomem __force *)addr; |
| info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * 1-bit hardware ECC ... context maintained for each core chipselect |
| */ |
| |
| static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| |
| return davinci_nand_readl(info, NANDF1ECC_OFFSET |
| + 4 * info->core_chipsel); |
| } |
| |
| static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) |
| { |
| struct davinci_nand_info *info; |
| uint32_t nandcfr; |
| unsigned long flags; |
| |
| info = to_davinci_nand(mtd); |
| |
| /* Reset ECC hardware */ |
| nand_davinci_readecc_1bit(mtd); |
| |
| spin_lock_irqsave(&davinci_nand_lock, flags); |
| |
| /* Restart ECC hardware */ |
| nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); |
| nandcfr |= BIT(8 + info->core_chipsel); |
| davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); |
| |
| spin_unlock_irqrestore(&davinci_nand_lock, flags); |
| } |
| |
| /* |
| * Read hardware ECC value and pack into three bytes |
| */ |
| static int nand_davinci_calculate_1bit(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_code) |
| { |
| unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); |
| unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); |
| |
| /* invert so that erased block ecc is correct */ |
| ecc24 = ~ecc24; |
| ecc_code[0] = (u_char)(ecc24); |
| ecc_code[1] = (u_char)(ecc24 >> 8); |
| ecc_code[2] = (u_char)(ecc24 >> 16); |
| |
| return 0; |
| } |
| |
| static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *chip = mtd->priv; |
| uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | |
| (read_ecc[2] << 16); |
| uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | |
| (calc_ecc[2] << 16); |
| uint32_t diff = eccCalc ^ eccNand; |
| |
| if (diff) { |
| if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { |
| /* Correctable error */ |
| if ((diff >> (12 + 3)) < chip->ecc.size) { |
| dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); |
| return 1; |
| } else { |
| return -1; |
| } |
| } else if (!(diff & (diff - 1))) { |
| /* Single bit ECC error in the ECC itself, |
| * nothing to fix */ |
| return 1; |
| } else { |
| /* Uncorrectable error */ |
| return -1; |
| } |
| |
| } |
| return 0; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * 4-bit hardware ECC ... context maintained over entire AEMIF |
| * |
| * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME |
| * since that forces use of a problematic "infix OOB" layout. |
| * Among other things, it trashes manufacturer bad block markers. |
| * Also, and specific to this hardware, it ECC-protects the "prepad" |
| * in the OOB ... while having ECC protection for parts of OOB would |
| * seem useful, the current MTD stack sometimes wants to update the |
| * OOB without recomputing ECC. |
| */ |
| |
| static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| unsigned long flags; |
| u32 val; |
| |
| spin_lock_irqsave(&davinci_nand_lock, flags); |
| |
| /* Start 4-bit ECC calculation for read/write */ |
| val = davinci_nand_readl(info, NANDFCR_OFFSET); |
| val &= ~(0x03 << 4); |
| val |= (info->core_chipsel << 4) | BIT(12); |
| davinci_nand_writel(info, NANDFCR_OFFSET, val); |
| |
| info->is_readmode = (mode == NAND_ECC_READ); |
| |
| spin_unlock_irqrestore(&davinci_nand_lock, flags); |
| } |
| |
| /* Read raw ECC code after writing to NAND. */ |
| static void |
| nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) |
| { |
| const u32 mask = 0x03ff03ff; |
| |
| code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; |
| code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; |
| code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; |
| code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; |
| } |
| |
| /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ |
| static int nand_davinci_calculate_4bit(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_code) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| u32 raw_ecc[4], *p; |
| unsigned i; |
| |
| /* After a read, terminate ECC calculation by a dummy read |
| * of some 4-bit ECC register. ECC covers everything that |
| * was read; correct() just uses the hardware state, so |
| * ecc_code is not needed. |
| */ |
| if (info->is_readmode) { |
| davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); |
| return 0; |
| } |
| |
| /* Pack eight raw 10-bit ecc values into ten bytes, making |
| * two passes which each convert four values (in upper and |
| * lower halves of two 32-bit words) into five bytes. The |
| * ROM boot loader uses this same packing scheme. |
| */ |
| nand_davinci_readecc_4bit(info, raw_ecc); |
| for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { |
| *ecc_code++ = p[0] & 0xff; |
| *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); |
| *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); |
| *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); |
| *ecc_code++ = (p[1] >> 18) & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| /* Correct up to 4 bits in data we just read, using state left in the |
| * hardware plus the ecc_code computed when it was first written. |
| */ |
| static int nand_davinci_correct_4bit(struct mtd_info *mtd, |
| u_char *data, u_char *ecc_code, u_char *null) |
| { |
| int i; |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| unsigned short ecc10[8]; |
| unsigned short *ecc16; |
| u32 syndrome[4]; |
| unsigned num_errors, corrected; |
| |
| /* All bytes 0xff? It's an erased page; ignore its ECC. */ |
| for (i = 0; i < 10; i++) { |
| if (ecc_code[i] != 0xff) |
| goto compare; |
| } |
| return 0; |
| |
| compare: |
| /* Unpack ten bytes into eight 10 bit values. We know we're |
| * little-endian, and use type punning for less shifting/masking. |
| */ |
| if (WARN_ON(0x01 & (unsigned) ecc_code)) |
| return -EINVAL; |
| ecc16 = (unsigned short *)ecc_code; |
| |
| ecc10[0] = (ecc16[0] >> 0) & 0x3ff; |
| ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); |
| ecc10[2] = (ecc16[1] >> 4) & 0x3ff; |
| ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); |
| ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); |
| ecc10[5] = (ecc16[3] >> 2) & 0x3ff; |
| ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); |
| ecc10[7] = (ecc16[4] >> 6) & 0x3ff; |
| |
| /* Tell ECC controller about the expected ECC codes. */ |
| for (i = 7; i >= 0; i--) |
| davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); |
| |
| /* Allow time for syndrome calculation ... then read it. |
| * A syndrome of all zeroes 0 means no detected errors. |
| */ |
| davinci_nand_readl(info, NANDFSR_OFFSET); |
| nand_davinci_readecc_4bit(info, syndrome); |
| if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) |
| return 0; |
| |
| /* |
| * Clear any previous address calculation by doing a dummy read of an |
| * error address register. |
| */ |
| davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); |
| |
| /* Start address calculation, and wait for it to complete. |
| * We _could_ start reading more data while this is working, |
| * to speed up the overall page read. |
| */ |
| davinci_nand_writel(info, NANDFCR_OFFSET, |
| davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); |
| for (;;) { |
| u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); |
| |
| switch ((fsr >> 8) & 0x0f) { |
| case 0: /* no error, should not happen */ |
| davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); |
| return 0; |
| case 1: /* five or more errors detected */ |
| davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); |
| return -EIO; |
| case 2: /* error addresses computed */ |
| case 3: |
| num_errors = 1 + ((fsr >> 16) & 0x03); |
| goto correct; |
| default: /* still working on it */ |
| cpu_relax(); |
| continue; |
| } |
| } |
| |
| correct: |
| /* correct each error */ |
| for (i = 0, corrected = 0; i < num_errors; i++) { |
| int error_address, error_value; |
| |
| if (i > 1) { |
| error_address = davinci_nand_readl(info, |
| NAND_ERR_ADD2_OFFSET); |
| error_value = davinci_nand_readl(info, |
| NAND_ERR_ERRVAL2_OFFSET); |
| } else { |
| error_address = davinci_nand_readl(info, |
| NAND_ERR_ADD1_OFFSET); |
| error_value = davinci_nand_readl(info, |
| NAND_ERR_ERRVAL1_OFFSET); |
| } |
| |
| if (i & 1) { |
| error_address >>= 16; |
| error_value >>= 16; |
| } |
| error_address &= 0x3ff; |
| error_address = (512 + 7) - error_address; |
| |
| if (error_address < 512) { |
| data[error_address] ^= error_value; |
| corrected++; |
| } |
| } |
| |
| return corrected; |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's |
| * how these chips are normally wired. This translates to both 8 and 16 |
| * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). |
| * |
| * For now we assume that configuration, or any other one which ignores |
| * the two LSBs for NAND access ... so we can issue 32-bit reads/writes |
| * and have that transparently morphed into multiple NAND operations. |
| */ |
| static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| |
| if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) |
| ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); |
| else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) |
| ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); |
| else |
| ioread8_rep(chip->IO_ADDR_R, buf, len); |
| } |
| |
| static void nand_davinci_write_buf(struct mtd_info *mtd, |
| const uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| |
| if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) |
| iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); |
| else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) |
| iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); |
| else |
| iowrite8_rep(chip->IO_ADDR_R, buf, len); |
| } |
| |
| /* |
| * Check hardware register for wait status. Returns 1 if device is ready, |
| * 0 if it is still busy. |
| */ |
| static int nand_davinci_dev_ready(struct mtd_info *mtd) |
| { |
| struct davinci_nand_info *info = to_davinci_nand(mtd); |
| |
| return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); |
| } |
| |
| static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info) |
| { |
| uint32_t regval, a1cr; |
| |
| /* |
| * NAND FLASH timings @ PLL1 == 459 MHz |
| * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz |
| * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns |
| */ |
| regval = 0 |
| | (0 << 31) /* selectStrobe */ |
| | (0 << 30) /* extWait (never with NAND) */ |
| | (1 << 26) /* writeSetup 10 ns */ |
| | (3 << 20) /* writeStrobe 40 ns */ |
| | (1 << 17) /* writeHold 10 ns */ |
| | (0 << 13) /* readSetup 10 ns */ |
| | (3 << 7) /* readStrobe 60 ns */ |
| | (0 << 4) /* readHold 10 ns */ |
| | (3 << 2) /* turnAround ?? ns */ |
| | (0 << 0) /* asyncSize 8-bit bus */ |
| ; |
| a1cr = davinci_nand_readl(info, A1CR_OFFSET); |
| if (a1cr != regval) { |
| dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \ |
| "reg to 0x%08x, was 0x%08x, should be done by " \ |
| "bootloader.\n", regval, a1cr); |
| davinci_nand_writel(info, A1CR_OFFSET, regval); |
| } |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* An ECC layout for using 4-bit ECC with small-page flash, storing |
| * ten ECC bytes plus the manufacturer's bad block marker byte, and |
| * and not overlapping the default BBT markers. |
| */ |
| static struct nand_ecclayout hwecc4_small __initconst = { |
| .eccbytes = 10, |
| .eccpos = { 0, 1, 2, 3, 4, |
| /* offset 5 holds the badblock marker */ |
| 6, 7, |
| 13, 14, 15, }, |
| .oobfree = { |
| {.offset = 8, .length = 5, }, |
| {.offset = 16, }, |
| }, |
| }; |
| |
| /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash, |
| * storing ten ECC bytes plus the manufacturer's bad block marker byte, |
| * and not overlapping the default BBT markers. |
| */ |
| static struct nand_ecclayout hwecc4_2048 __initconst = { |
| .eccbytes = 40, |
| .eccpos = { |
| /* at the end of spare sector */ |
| 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, |
| 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, |
| 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| }, |
| .oobfree = { |
| /* 2 bytes at offset 0 hold manufacturer badblock markers */ |
| {.offset = 2, .length = 22, }, |
| /* 5 bytes at offset 8 hold BBT markers */ |
| /* 8 bytes at offset 16 hold JFFS2 clean markers */ |
| }, |
| }; |
| |
| static int __init nand_davinci_probe(struct platform_device *pdev) |
| { |
| struct davinci_nand_pdata *pdata = pdev->dev.platform_data; |
| struct davinci_nand_info *info; |
| struct resource *res1; |
| struct resource *res2; |
| void __iomem *vaddr; |
| void __iomem *base; |
| int ret; |
| uint32_t val; |
| nand_ecc_modes_t ecc_mode; |
| |
| /* insist on board-specific configuration */ |
| if (!pdata) |
| return -ENODEV; |
| |
| /* which external chipselect will we be managing? */ |
| if (pdev->id < 0 || pdev->id > 3) |
| return -ENODEV; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) { |
| dev_err(&pdev->dev, "unable to allocate memory\n"); |
| ret = -ENOMEM; |
| goto err_nomem; |
| } |
| |
| platform_set_drvdata(pdev, info); |
| |
| res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res1 || !res2) { |
| dev_err(&pdev->dev, "resource missing\n"); |
| ret = -EINVAL; |
| goto err_nomem; |
| } |
| |
| vaddr = ioremap(res1->start, res1->end - res1->start); |
| base = ioremap(res2->start, res2->end - res2->start); |
| if (!vaddr || !base) { |
| dev_err(&pdev->dev, "ioremap failed\n"); |
| ret = -EINVAL; |
| goto err_ioremap; |
| } |
| |
| info->dev = &pdev->dev; |
| info->base = base; |
| info->vaddr = vaddr; |
| |
| info->mtd.priv = &info->chip; |
| info->mtd.name = dev_name(&pdev->dev); |
| info->mtd.owner = THIS_MODULE; |
| |
| info->mtd.dev.parent = &pdev->dev; |
| |
| info->chip.IO_ADDR_R = vaddr; |
| info->chip.IO_ADDR_W = vaddr; |
| info->chip.chip_delay = 0; |
| info->chip.select_chip = nand_davinci_select_chip; |
| |
| /* options such as NAND_USE_FLASH_BBT or 16-bit widths */ |
| info->chip.options = pdata->options; |
| info->chip.bbt_td = pdata->bbt_td; |
| info->chip.bbt_md = pdata->bbt_md; |
| |
| info->ioaddr = (uint32_t __force) vaddr; |
| |
| info->current_cs = info->ioaddr; |
| info->core_chipsel = pdev->id; |
| info->mask_chipsel = pdata->mask_chipsel; |
| |
| /* use nandboot-capable ALE/CLE masks by default */ |
| info->mask_ale = pdata->mask_ale ? : MASK_ALE; |
| info->mask_cle = pdata->mask_cle ? : MASK_CLE; |
| |
| /* Set address of hardware control function */ |
| info->chip.cmd_ctrl = nand_davinci_hwcontrol; |
| info->chip.dev_ready = nand_davinci_dev_ready; |
| |
| /* Speed up buffer I/O */ |
| info->chip.read_buf = nand_davinci_read_buf; |
| info->chip.write_buf = nand_davinci_write_buf; |
| |
| /* Use board-specific ECC config */ |
| ecc_mode = pdata->ecc_mode; |
| |
| ret = -EINVAL; |
| switch (ecc_mode) { |
| case NAND_ECC_NONE: |
| case NAND_ECC_SOFT: |
| pdata->ecc_bits = 0; |
| break; |
| case NAND_ECC_HW: |
| if (pdata->ecc_bits == 4) { |
| /* No sanity checks: CPUs must support this, |
| * and the chips may not use NAND_BUSWIDTH_16. |
| */ |
| |
| /* No sharing 4-bit hardware between chipselects yet */ |
| spin_lock_irq(&davinci_nand_lock); |
| if (ecc4_busy) |
| ret = -EBUSY; |
| else |
| ecc4_busy = true; |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| if (ret == -EBUSY) |
| goto err_ecc; |
| |
| info->chip.ecc.calculate = nand_davinci_calculate_4bit; |
| info->chip.ecc.correct = nand_davinci_correct_4bit; |
| info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; |
| info->chip.ecc.bytes = 10; |
| } else { |
| info->chip.ecc.calculate = nand_davinci_calculate_1bit; |
| info->chip.ecc.correct = nand_davinci_correct_1bit; |
| info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; |
| info->chip.ecc.bytes = 3; |
| } |
| info->chip.ecc.size = 512; |
| break; |
| default: |
| ret = -EINVAL; |
| goto err_ecc; |
| } |
| info->chip.ecc.mode = ecc_mode; |
| |
| info->clk = clk_get(&pdev->dev, "aemif"); |
| if (IS_ERR(info->clk)) { |
| ret = PTR_ERR(info->clk); |
| dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); |
| goto err_clk; |
| } |
| |
| ret = clk_enable(info->clk); |
| if (ret < 0) { |
| dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", |
| ret); |
| goto err_clk_enable; |
| } |
| |
| /* EMIF timings should normally be set by the boot loader, |
| * especially after boot-from-NAND. The *only* reason to |
| * have this special casing for the DM6446 EVM is to work |
| * with boot-from-NOR ... with CS0 manually re-jumpered |
| * (after startup) so it addresses the NAND flash, not NOR. |
| * Even for dev boards, that's unusually rude... |
| */ |
| if (machine_is_davinci_evm()) |
| nand_dm6446evm_flash_init(info); |
| |
| spin_lock_irq(&davinci_nand_lock); |
| |
| /* put CSxNAND into NAND mode */ |
| val = davinci_nand_readl(info, NANDFCR_OFFSET); |
| val |= BIT(info->core_chipsel); |
| davinci_nand_writel(info, NANDFCR_OFFSET, val); |
| |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| /* Scan to find existence of the device(s) */ |
| ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1); |
| if (ret < 0) { |
| dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); |
| goto err_scan; |
| } |
| |
| /* Update ECC layout if needed ... for 1-bit HW ECC, the default |
| * is OK, but it allocates 6 bytes when only 3 are needed (for |
| * each 512 bytes). For the 4-bit HW ECC, that default is not |
| * usable: 10 bytes are needed, not 6. |
| */ |
| if (pdata->ecc_bits == 4) { |
| int chunks = info->mtd.writesize / 512; |
| |
| if (!chunks || info->mtd.oobsize < 16) { |
| dev_dbg(&pdev->dev, "too small\n"); |
| ret = -EINVAL; |
| goto err_scan; |
| } |
| |
| /* For small page chips, preserve the manufacturer's |
| * badblock marking data ... and make sure a flash BBT |
| * table marker fits in the free bytes. |
| */ |
| if (chunks == 1) { |
| info->ecclayout = hwecc4_small; |
| info->ecclayout.oobfree[1].length = |
| info->mtd.oobsize - 16; |
| goto syndrome_done; |
| } |
| if (chunks == 4) { |
| info->ecclayout = hwecc4_2048; |
| info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; |
| goto syndrome_done; |
| } |
| |
| /* 4KiB page chips are not yet supported. The eccpos from |
| * nand_ecclayout cannot hold 80 bytes and change to eccpos[] |
| * breaks userspace ioctl interface with mtd-utils. Once we |
| * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used |
| * for the 4KiB page chips. |
| */ |
| dev_warn(&pdev->dev, "no 4-bit ECC support yet " |
| "for 4KiB-page NAND\n"); |
| ret = -EIO; |
| goto err_scan; |
| |
| syndrome_done: |
| info->chip.ecc.layout = &info->ecclayout; |
| } |
| |
| ret = nand_scan_tail(&info->mtd); |
| if (ret < 0) |
| goto err_scan; |
| |
| if (mtd_has_partitions()) { |
| struct mtd_partition *mtd_parts = NULL; |
| int mtd_parts_nb = 0; |
| |
| if (mtd_has_cmdlinepart()) { |
| static const char *probes[] __initconst = |
| { "cmdlinepart", NULL }; |
| |
| mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes, |
| &mtd_parts, 0); |
| } |
| |
| if (mtd_parts_nb <= 0) { |
| mtd_parts = pdata->parts; |
| mtd_parts_nb = pdata->nr_parts; |
| } |
| |
| /* Register any partitions */ |
| if (mtd_parts_nb > 0) { |
| ret = add_mtd_partitions(&info->mtd, |
| mtd_parts, mtd_parts_nb); |
| if (ret == 0) |
| info->partitioned = true; |
| } |
| |
| } else if (pdata->nr_parts) { |
| dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n", |
| pdata->nr_parts, info->mtd.name); |
| } |
| |
| /* If there's no partition info, just package the whole chip |
| * as a single MTD device. |
| */ |
| if (!info->partitioned) |
| ret = add_mtd_device(&info->mtd) ? -ENODEV : 0; |
| |
| if (ret < 0) |
| goto err_scan; |
| |
| val = davinci_nand_readl(info, NRCSR_OFFSET); |
| dev_info(&pdev->dev, "controller rev. %d.%d\n", |
| (val >> 8) & 0xff, val & 0xff); |
| |
| return 0; |
| |
| err_scan: |
| clk_disable(info->clk); |
| |
| err_clk_enable: |
| clk_put(info->clk); |
| |
| spin_lock_irq(&davinci_nand_lock); |
| if (ecc_mode == NAND_ECC_HW_SYNDROME) |
| ecc4_busy = false; |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| err_ecc: |
| err_clk: |
| err_ioremap: |
| if (base) |
| iounmap(base); |
| if (vaddr) |
| iounmap(vaddr); |
| |
| err_nomem: |
| kfree(info); |
| return ret; |
| } |
| |
| static int __exit nand_davinci_remove(struct platform_device *pdev) |
| { |
| struct davinci_nand_info *info = platform_get_drvdata(pdev); |
| int status; |
| |
| if (mtd_has_partitions() && info->partitioned) |
| status = del_mtd_partitions(&info->mtd); |
| else |
| status = del_mtd_device(&info->mtd); |
| |
| spin_lock_irq(&davinci_nand_lock); |
| if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) |
| ecc4_busy = false; |
| spin_unlock_irq(&davinci_nand_lock); |
| |
| iounmap(info->base); |
| iounmap(info->vaddr); |
| |
| nand_release(&info->mtd); |
| |
| clk_disable(info->clk); |
| clk_put(info->clk); |
| |
| kfree(info); |
| |
| return 0; |
| } |
| |
| static struct platform_driver nand_davinci_driver = { |
| .remove = __exit_p(nand_davinci_remove), |
| .driver = { |
| .name = "davinci_nand", |
| }, |
| }; |
| MODULE_ALIAS("platform:davinci_nand"); |
| |
| static int __init nand_davinci_init(void) |
| { |
| return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe); |
| } |
| module_init(nand_davinci_init); |
| |
| static void __exit nand_davinci_exit(void) |
| { |
| platform_driver_unregister(&nand_davinci_driver); |
| } |
| module_exit(nand_davinci_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Texas Instruments"); |
| MODULE_DESCRIPTION("Davinci NAND flash driver"); |
| |