| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| * so the code in this file is compiled twice, once per pte size. |
| */ |
| |
| #if PTTYPE == 64 |
| #define pt_element_t u64 |
| #define guest_walker guest_walker64 |
| #define FNAME(name) paging##64_##name |
| #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) |
| #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) |
| #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| #ifdef CONFIG_X86_64 |
| #define PT_MAX_FULL_LEVELS 4 |
| #define CMPXCHG cmpxchg |
| #else |
| #define CMPXCHG cmpxchg64 |
| #define PT_MAX_FULL_LEVELS 2 |
| #endif |
| #elif PTTYPE == 32 |
| #define pt_element_t u32 |
| #define guest_walker guest_walker32 |
| #define FNAME(name) paging##32_##name |
| #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) |
| #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) |
| #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| #define PT_LEVEL_BITS PT32_LEVEL_BITS |
| #define PT_MAX_FULL_LEVELS 2 |
| #define CMPXCHG cmpxchg |
| #else |
| #error Invalid PTTYPE value |
| #endif |
| |
| #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) |
| #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) |
| |
| /* |
| * The guest_walker structure emulates the behavior of the hardware page |
| * table walker. |
| */ |
| struct guest_walker { |
| int level; |
| gfn_t table_gfn[PT_MAX_FULL_LEVELS]; |
| pt_element_t ptes[PT_MAX_FULL_LEVELS]; |
| pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; |
| gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; |
| unsigned pt_access; |
| unsigned pte_access; |
| gfn_t gfn; |
| struct x86_exception fault; |
| }; |
| |
| static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) |
| { |
| return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; |
| } |
| |
| static bool FNAME(cmpxchg_gpte)(struct kvm *kvm, |
| gfn_t table_gfn, unsigned index, |
| pt_element_t orig_pte, pt_element_t new_pte) |
| { |
| pt_element_t ret; |
| pt_element_t *table; |
| struct page *page; |
| |
| page = gfn_to_page(kvm, table_gfn); |
| |
| table = kmap_atomic(page, KM_USER0); |
| ret = CMPXCHG(&table[index], orig_pte, new_pte); |
| kunmap_atomic(table, KM_USER0); |
| |
| kvm_release_page_dirty(page); |
| |
| return (ret != orig_pte); |
| } |
| |
| static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte) |
| { |
| unsigned access; |
| |
| access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; |
| #if PTTYPE == 64 |
| if (vcpu->arch.mmu.nx) |
| access &= ~(gpte >> PT64_NX_SHIFT); |
| #endif |
| return access; |
| } |
| |
| /* |
| * Fetch a guest pte for a guest virtual address |
| */ |
| static int FNAME(walk_addr_generic)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| gva_t addr, u32 access) |
| { |
| pt_element_t pte; |
| gfn_t table_gfn; |
| unsigned index, pt_access, uninitialized_var(pte_access); |
| gpa_t pte_gpa; |
| bool eperm, present, rsvd_fault; |
| int offset, write_fault, user_fault, fetch_fault; |
| |
| write_fault = access & PFERR_WRITE_MASK; |
| user_fault = access & PFERR_USER_MASK; |
| fetch_fault = access & PFERR_FETCH_MASK; |
| |
| trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault, |
| fetch_fault); |
| walk: |
| present = true; |
| eperm = rsvd_fault = false; |
| walker->level = mmu->root_level; |
| pte = mmu->get_cr3(vcpu); |
| |
| #if PTTYPE == 64 |
| if (walker->level == PT32E_ROOT_LEVEL) { |
| pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3); |
| trace_kvm_mmu_paging_element(pte, walker->level); |
| if (!is_present_gpte(pte)) { |
| present = false; |
| goto error; |
| } |
| --walker->level; |
| } |
| #endif |
| ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || |
| (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0); |
| |
| pt_access = ACC_ALL; |
| |
| for (;;) { |
| index = PT_INDEX(addr, walker->level); |
| |
| table_gfn = gpte_to_gfn(pte); |
| offset = index * sizeof(pt_element_t); |
| pte_gpa = gfn_to_gpa(table_gfn) + offset; |
| walker->table_gfn[walker->level - 1] = table_gfn; |
| walker->pte_gpa[walker->level - 1] = pte_gpa; |
| |
| if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte, |
| offset, sizeof(pte), |
| PFERR_USER_MASK|PFERR_WRITE_MASK)) { |
| present = false; |
| break; |
| } |
| |
| trace_kvm_mmu_paging_element(pte, walker->level); |
| |
| if (!is_present_gpte(pte)) { |
| present = false; |
| break; |
| } |
| |
| if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) { |
| rsvd_fault = true; |
| break; |
| } |
| |
| if (write_fault && !is_writable_pte(pte)) |
| if (user_fault || is_write_protection(vcpu)) |
| eperm = true; |
| |
| if (user_fault && !(pte & PT_USER_MASK)) |
| eperm = true; |
| |
| #if PTTYPE == 64 |
| if (fetch_fault && (pte & PT64_NX_MASK)) |
| eperm = true; |
| #endif |
| |
| if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) { |
| trace_kvm_mmu_set_accessed_bit(table_gfn, index, |
| sizeof(pte)); |
| if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, |
| index, pte, pte|PT_ACCESSED_MASK)) |
| goto walk; |
| mark_page_dirty(vcpu->kvm, table_gfn); |
| pte |= PT_ACCESSED_MASK; |
| } |
| |
| pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); |
| |
| walker->ptes[walker->level - 1] = pte; |
| |
| if ((walker->level == PT_PAGE_TABLE_LEVEL) || |
| ((walker->level == PT_DIRECTORY_LEVEL) && |
| is_large_pte(pte) && |
| (PTTYPE == 64 || is_pse(vcpu))) || |
| ((walker->level == PT_PDPE_LEVEL) && |
| is_large_pte(pte) && |
| mmu->root_level == PT64_ROOT_LEVEL)) { |
| int lvl = walker->level; |
| gpa_t real_gpa; |
| gfn_t gfn; |
| u32 ac; |
| |
| gfn = gpte_to_gfn_lvl(pte, lvl); |
| gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT; |
| |
| if (PTTYPE == 32 && |
| walker->level == PT_DIRECTORY_LEVEL && |
| is_cpuid_PSE36()) |
| gfn += pse36_gfn_delta(pte); |
| |
| ac = write_fault | fetch_fault | user_fault; |
| |
| real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), |
| ac); |
| if (real_gpa == UNMAPPED_GVA) |
| return 0; |
| |
| walker->gfn = real_gpa >> PAGE_SHIFT; |
| |
| break; |
| } |
| |
| pt_access = pte_access; |
| --walker->level; |
| } |
| |
| if (!present || eperm || rsvd_fault) |
| goto error; |
| |
| if (write_fault && !is_dirty_gpte(pte)) { |
| bool ret; |
| |
| trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); |
| ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte, |
| pte|PT_DIRTY_MASK); |
| if (ret) |
| goto walk; |
| mark_page_dirty(vcpu->kvm, table_gfn); |
| pte |= PT_DIRTY_MASK; |
| walker->ptes[walker->level - 1] = pte; |
| } |
| |
| walker->pt_access = pt_access; |
| walker->pte_access = pte_access; |
| pgprintk("%s: pte %llx pte_access %x pt_access %x\n", |
| __func__, (u64)pte, pte_access, pt_access); |
| return 1; |
| |
| error: |
| walker->fault.vector = PF_VECTOR; |
| walker->fault.error_code_valid = true; |
| walker->fault.error_code = 0; |
| if (present) |
| walker->fault.error_code |= PFERR_PRESENT_MASK; |
| |
| walker->fault.error_code |= write_fault | user_fault; |
| |
| if (fetch_fault && mmu->nx) |
| walker->fault.error_code |= PFERR_FETCH_MASK; |
| if (rsvd_fault) |
| walker->fault.error_code |= PFERR_RSVD_MASK; |
| |
| walker->fault.address = addr; |
| walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; |
| |
| trace_kvm_mmu_walker_error(walker->fault.error_code); |
| return 0; |
| } |
| |
| static int FNAME(walk_addr)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, gva_t addr, u32 access) |
| { |
| return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, |
| access); |
| } |
| |
| static int FNAME(walk_addr_nested)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, gva_t addr, |
| u32 access) |
| { |
| return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, |
| addr, access); |
| } |
| |
| static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *spte, |
| pt_element_t gpte) |
| { |
| u64 nonpresent = shadow_trap_nonpresent_pte; |
| |
| if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) |
| goto no_present; |
| |
| if (!is_present_gpte(gpte)) { |
| if (!sp->unsync) |
| nonpresent = shadow_notrap_nonpresent_pte; |
| goto no_present; |
| } |
| |
| if (!(gpte & PT_ACCESSED_MASK)) |
| goto no_present; |
| |
| return false; |
| |
| no_present: |
| drop_spte(vcpu->kvm, spte, nonpresent); |
| return true; |
| } |
| |
| static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| u64 *spte, const void *pte) |
| { |
| pt_element_t gpte; |
| unsigned pte_access; |
| pfn_t pfn; |
| |
| gpte = *(const pt_element_t *)pte; |
| if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) |
| return; |
| |
| pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); |
| pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); |
| pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte)); |
| if (is_error_pfn(pfn)) { |
| kvm_release_pfn_clean(pfn); |
| return; |
| } |
| |
| /* |
| * we call mmu_set_spte() with host_writable = true because that |
| * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1). |
| */ |
| mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0, |
| is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL, |
| gpte_to_gfn(gpte), pfn, true, true); |
| } |
| |
| static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, |
| struct guest_walker *gw, int level) |
| { |
| pt_element_t curr_pte; |
| gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; |
| u64 mask; |
| int r, index; |
| |
| if (level == PT_PAGE_TABLE_LEVEL) { |
| mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; |
| base_gpa = pte_gpa & ~mask; |
| index = (pte_gpa - base_gpa) / sizeof(pt_element_t); |
| |
| r = kvm_read_guest_atomic(vcpu->kvm, base_gpa, |
| gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); |
| curr_pte = gw->prefetch_ptes[index]; |
| } else |
| r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, |
| &curr_pte, sizeof(curr_pte)); |
| |
| return r || curr_pte != gw->ptes[level - 1]; |
| } |
| |
| static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, |
| u64 *sptep) |
| { |
| struct kvm_mmu_page *sp; |
| pt_element_t *gptep = gw->prefetch_ptes; |
| u64 *spte; |
| int i; |
| |
| sp = page_header(__pa(sptep)); |
| |
| if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| return; |
| |
| if (sp->role.direct) |
| return __direct_pte_prefetch(vcpu, sp, sptep); |
| |
| i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| spte = sp->spt + i; |
| |
| for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| pt_element_t gpte; |
| unsigned pte_access; |
| gfn_t gfn; |
| pfn_t pfn; |
| bool dirty; |
| |
| if (spte == sptep) |
| continue; |
| |
| if (*spte != shadow_trap_nonpresent_pte) |
| continue; |
| |
| gpte = gptep[i]; |
| |
| if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) |
| continue; |
| |
| pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); |
| gfn = gpte_to_gfn(gpte); |
| dirty = is_dirty_gpte(gpte); |
| pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, |
| (pte_access & ACC_WRITE_MASK) && dirty); |
| if (is_error_pfn(pfn)) { |
| kvm_release_pfn_clean(pfn); |
| break; |
| } |
| |
| mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0, |
| dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn, |
| pfn, true, true); |
| } |
| } |
| |
| /* |
| * Fetch a shadow pte for a specific level in the paging hierarchy. |
| */ |
| static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, |
| struct guest_walker *gw, |
| int user_fault, int write_fault, int hlevel, |
| int *ptwrite, pfn_t pfn, bool map_writable, |
| bool prefault) |
| { |
| unsigned access = gw->pt_access; |
| struct kvm_mmu_page *sp = NULL; |
| bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]); |
| int top_level; |
| unsigned direct_access; |
| struct kvm_shadow_walk_iterator it; |
| |
| if (!is_present_gpte(gw->ptes[gw->level - 1])) |
| return NULL; |
| |
| direct_access = gw->pt_access & gw->pte_access; |
| if (!dirty) |
| direct_access &= ~ACC_WRITE_MASK; |
| |
| top_level = vcpu->arch.mmu.root_level; |
| if (top_level == PT32E_ROOT_LEVEL) |
| top_level = PT32_ROOT_LEVEL; |
| /* |
| * Verify that the top-level gpte is still there. Since the page |
| * is a root page, it is either write protected (and cannot be |
| * changed from now on) or it is invalid (in which case, we don't |
| * really care if it changes underneath us after this point). |
| */ |
| if (FNAME(gpte_changed)(vcpu, gw, top_level)) |
| goto out_gpte_changed; |
| |
| for (shadow_walk_init(&it, vcpu, addr); |
| shadow_walk_okay(&it) && it.level > gw->level; |
| shadow_walk_next(&it)) { |
| gfn_t table_gfn; |
| |
| drop_large_spte(vcpu, it.sptep); |
| |
| sp = NULL; |
| if (!is_shadow_present_pte(*it.sptep)) { |
| table_gfn = gw->table_gfn[it.level - 2]; |
| sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, |
| false, access, it.sptep); |
| } |
| |
| /* |
| * Verify that the gpte in the page we've just write |
| * protected is still there. |
| */ |
| if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) |
| goto out_gpte_changed; |
| |
| if (sp) |
| link_shadow_page(it.sptep, sp); |
| } |
| |
| for (; |
| shadow_walk_okay(&it) && it.level > hlevel; |
| shadow_walk_next(&it)) { |
| gfn_t direct_gfn; |
| |
| validate_direct_spte(vcpu, it.sptep, direct_access); |
| |
| drop_large_spte(vcpu, it.sptep); |
| |
| if (is_shadow_present_pte(*it.sptep)) |
| continue; |
| |
| direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); |
| |
| sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, |
| true, direct_access, it.sptep); |
| link_shadow_page(it.sptep, sp); |
| } |
| |
| mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access, |
| user_fault, write_fault, dirty, ptwrite, it.level, |
| gw->gfn, pfn, prefault, map_writable); |
| FNAME(pte_prefetch)(vcpu, gw, it.sptep); |
| |
| return it.sptep; |
| |
| out_gpte_changed: |
| if (sp) |
| kvm_mmu_put_page(sp, it.sptep); |
| kvm_release_pfn_clean(pfn); |
| return NULL; |
| } |
| |
| /* |
| * Page fault handler. There are several causes for a page fault: |
| * - there is no shadow pte for the guest pte |
| * - write access through a shadow pte marked read only so that we can set |
| * the dirty bit |
| * - write access to a shadow pte marked read only so we can update the page |
| * dirty bitmap, when userspace requests it |
| * - mmio access; in this case we will never install a present shadow pte |
| * - normal guest page fault due to the guest pte marked not present, not |
| * writable, or not executable |
| * |
| * Returns: 1 if we need to emulate the instruction, 0 otherwise, or |
| * a negative value on error. |
| */ |
| static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, |
| bool prefault) |
| { |
| int write_fault = error_code & PFERR_WRITE_MASK; |
| int user_fault = error_code & PFERR_USER_MASK; |
| struct guest_walker walker; |
| u64 *sptep; |
| int write_pt = 0; |
| int r; |
| pfn_t pfn; |
| int level = PT_PAGE_TABLE_LEVEL; |
| int force_pt_level; |
| unsigned long mmu_seq; |
| bool map_writable; |
| |
| pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| /* |
| * Look up the guest pte for the faulting address. |
| */ |
| r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); |
| |
| /* |
| * The page is not mapped by the guest. Let the guest handle it. |
| */ |
| if (!r) { |
| pgprintk("%s: guest page fault\n", __func__); |
| if (!prefault) { |
| inject_page_fault(vcpu, &walker.fault); |
| /* reset fork detector */ |
| vcpu->arch.last_pt_write_count = 0; |
| } |
| return 0; |
| } |
| |
| if (walker.level >= PT_DIRECTORY_LEVEL) |
| force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn); |
| else |
| force_pt_level = 1; |
| if (!force_pt_level) { |
| level = min(walker.level, mapping_level(vcpu, walker.gfn)); |
| walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| } |
| |
| mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, |
| &map_writable)) |
| return 0; |
| |
| /* mmio */ |
| if (is_error_pfn(pfn)) |
| return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (mmu_notifier_retry(vcpu, mmu_seq)) |
| goto out_unlock; |
| |
| trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); |
| kvm_mmu_free_some_pages(vcpu); |
| if (!force_pt_level) |
| transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); |
| sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, |
| level, &write_pt, pfn, map_writable, prefault); |
| (void)sptep; |
| pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__, |
| sptep, *sptep, write_pt); |
| |
| if (!write_pt) |
| vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ |
| |
| ++vcpu->stat.pf_fixed; |
| trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| return write_pt; |
| |
| out_unlock: |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| return 0; |
| } |
| |
| static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| struct kvm_mmu_page *sp; |
| gpa_t pte_gpa = -1; |
| int level; |
| u64 *sptep; |
| int need_flush = 0; |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| |
| for_each_shadow_entry(vcpu, gva, iterator) { |
| level = iterator.level; |
| sptep = iterator.sptep; |
| |
| sp = page_header(__pa(sptep)); |
| if (is_last_spte(*sptep, level)) { |
| int offset, shift; |
| |
| if (!sp->unsync) |
| break; |
| |
| shift = PAGE_SHIFT - |
| (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level; |
| offset = sp->role.quadrant << shift; |
| |
| pte_gpa = (sp->gfn << PAGE_SHIFT) + offset; |
| pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); |
| |
| if (is_shadow_present_pte(*sptep)) { |
| if (is_large_pte(*sptep)) |
| --vcpu->kvm->stat.lpages; |
| drop_spte(vcpu->kvm, sptep, |
| shadow_trap_nonpresent_pte); |
| need_flush = 1; |
| } else |
| __set_spte(sptep, shadow_trap_nonpresent_pte); |
| break; |
| } |
| |
| if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) |
| break; |
| } |
| |
| if (need_flush) |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| |
| atomic_inc(&vcpu->kvm->arch.invlpg_counter); |
| |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| |
| if (pte_gpa == -1) |
| return; |
| |
| if (mmu_topup_memory_caches(vcpu)) |
| return; |
| kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0); |
| } |
| |
| static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, |
| struct x86_exception *exception) |
| { |
| struct guest_walker walker; |
| gpa_t gpa = UNMAPPED_GVA; |
| int r; |
| |
| r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); |
| |
| if (r) { |
| gpa = gfn_to_gpa(walker.gfn); |
| gpa |= vaddr & ~PAGE_MASK; |
| } else if (exception) |
| *exception = walker.fault; |
| |
| return gpa; |
| } |
| |
| static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, |
| u32 access, |
| struct x86_exception *exception) |
| { |
| struct guest_walker walker; |
| gpa_t gpa = UNMAPPED_GVA; |
| int r; |
| |
| r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); |
| |
| if (r) { |
| gpa = gfn_to_gpa(walker.gfn); |
| gpa |= vaddr & ~PAGE_MASK; |
| } else if (exception) |
| *exception = walker.fault; |
| |
| return gpa; |
| } |
| |
| static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp) |
| { |
| int i, j, offset, r; |
| pt_element_t pt[256 / sizeof(pt_element_t)]; |
| gpa_t pte_gpa; |
| |
| if (sp->role.direct |
| || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) { |
| nonpaging_prefetch_page(vcpu, sp); |
| return; |
| } |
| |
| pte_gpa = gfn_to_gpa(sp->gfn); |
| if (PTTYPE == 32) { |
| offset = sp->role.quadrant << PT64_LEVEL_BITS; |
| pte_gpa += offset * sizeof(pt_element_t); |
| } |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) { |
| r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt); |
| pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t); |
| for (j = 0; j < ARRAY_SIZE(pt); ++j) |
| if (r || is_present_gpte(pt[j])) |
| sp->spt[i+j] = shadow_trap_nonpresent_pte; |
| else |
| sp->spt[i+j] = shadow_notrap_nonpresent_pte; |
| } |
| } |
| |
| /* |
| * Using the cached information from sp->gfns is safe because: |
| * - The spte has a reference to the struct page, so the pfn for a given gfn |
| * can't change unless all sptes pointing to it are nuked first. |
| * |
| * Note: |
| * We should flush all tlbs if spte is dropped even though guest is |
| * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page |
| * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't |
| * used by guest then tlbs are not flushed, so guest is allowed to access the |
| * freed pages. |
| * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. |
| */ |
| static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| int i, offset, nr_present; |
| bool host_writable; |
| gpa_t first_pte_gpa; |
| |
| offset = nr_present = 0; |
| |
| /* direct kvm_mmu_page can not be unsync. */ |
| BUG_ON(sp->role.direct); |
| |
| if (PTTYPE == 32) |
| offset = sp->role.quadrant << PT64_LEVEL_BITS; |
| |
| first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; i++) { |
| unsigned pte_access; |
| pt_element_t gpte; |
| gpa_t pte_gpa; |
| gfn_t gfn; |
| |
| if (!is_shadow_present_pte(sp->spt[i])) |
| continue; |
| |
| pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); |
| |
| if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, |
| sizeof(pt_element_t))) |
| return -EINVAL; |
| |
| gfn = gpte_to_gfn(gpte); |
| |
| if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { |
| vcpu->kvm->tlbs_dirty++; |
| continue; |
| } |
| |
| if (gfn != sp->gfns[i]) { |
| drop_spte(vcpu->kvm, &sp->spt[i], |
| shadow_trap_nonpresent_pte); |
| vcpu->kvm->tlbs_dirty++; |
| continue; |
| } |
| |
| nr_present++; |
| pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); |
| host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; |
| |
| set_spte(vcpu, &sp->spt[i], pte_access, 0, 0, |
| is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn, |
| spte_to_pfn(sp->spt[i]), true, false, |
| host_writable); |
| } |
| |
| return !nr_present; |
| } |
| |
| #undef pt_element_t |
| #undef guest_walker |
| #undef FNAME |
| #undef PT_BASE_ADDR_MASK |
| #undef PT_INDEX |
| #undef PT_LVL_ADDR_MASK |
| #undef PT_LVL_OFFSET_MASK |
| #undef PT_LEVEL_BITS |
| #undef PT_MAX_FULL_LEVELS |
| #undef gpte_to_gfn |
| #undef gpte_to_gfn_lvl |
| #undef CMPXCHG |