| /* |
| * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| */ |
| |
| /* |
| * Written by Anatoly P. Pinchuk pap@namesys.botik.ru |
| * Programm System Institute |
| * Pereslavl-Zalessky Russia |
| */ |
| |
| /* |
| * This file contains functions dealing with S+tree |
| * |
| * B_IS_IN_TREE |
| * copy_item_head |
| * comp_short_keys |
| * comp_keys |
| * comp_short_le_keys |
| * le_key2cpu_key |
| * comp_le_keys |
| * bin_search |
| * get_lkey |
| * get_rkey |
| * key_in_buffer |
| * decrement_bcount |
| * decrement_counters_in_path |
| * reiserfs_check_path |
| * pathrelse_and_restore |
| * pathrelse |
| * search_by_key_reada |
| * search_by_key |
| * search_for_position_by_key |
| * comp_items |
| * prepare_for_direct_item |
| * prepare_for_direntry_item |
| * prepare_for_delete_or_cut |
| * calc_deleted_bytes_number |
| * init_tb_struct |
| * padd_item |
| * reiserfs_delete_item |
| * reiserfs_delete_solid_item |
| * reiserfs_delete_object |
| * maybe_indirect_to_direct |
| * indirect_to_direct_roll_back |
| * reiserfs_cut_from_item |
| * truncate_directory |
| * reiserfs_do_truncate |
| * reiserfs_paste_into_item |
| * reiserfs_insert_item |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/time.h> |
| #include <linux/string.h> |
| #include <linux/pagemap.h> |
| #include <linux/reiserfs_fs.h> |
| #include <linux/smp_lock.h> |
| #include <linux/buffer_head.h> |
| #include <linux/quotaops.h> |
| |
| /* Does the buffer contain a disk block which is in the tree. */ |
| inline int B_IS_IN_TREE(const struct buffer_head *p_s_bh) |
| { |
| |
| RFALSE(B_LEVEL(p_s_bh) > MAX_HEIGHT, |
| "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh); |
| |
| return (B_LEVEL(p_s_bh) != FREE_LEVEL); |
| } |
| |
| // |
| // to gets item head in le form |
| // |
| inline void copy_item_head(struct item_head *p_v_to, |
| const struct item_head *p_v_from) |
| { |
| memcpy(p_v_to, p_v_from, IH_SIZE); |
| } |
| |
| /* k1 is pointer to on-disk structure which is stored in little-endian |
| form. k2 is pointer to cpu variable. For key of items of the same |
| object this returns 0. |
| Returns: -1 if key1 < key2 |
| 0 if key1 == key2 |
| 1 if key1 > key2 */ |
| inline int comp_short_keys(const struct reiserfs_key *le_key, |
| const struct cpu_key *cpu_key) |
| { |
| __u32 n; |
| n = le32_to_cpu(le_key->k_dir_id); |
| if (n < cpu_key->on_disk_key.k_dir_id) |
| return -1; |
| if (n > cpu_key->on_disk_key.k_dir_id) |
| return 1; |
| n = le32_to_cpu(le_key->k_objectid); |
| if (n < cpu_key->on_disk_key.k_objectid) |
| return -1; |
| if (n > cpu_key->on_disk_key.k_objectid) |
| return 1; |
| return 0; |
| } |
| |
| /* k1 is pointer to on-disk structure which is stored in little-endian |
| form. k2 is pointer to cpu variable. |
| Compare keys using all 4 key fields. |
| Returns: -1 if key1 < key2 0 |
| if key1 = key2 1 if key1 > key2 */ |
| static inline int comp_keys(const struct reiserfs_key *le_key, |
| const struct cpu_key *cpu_key) |
| { |
| int retval; |
| |
| retval = comp_short_keys(le_key, cpu_key); |
| if (retval) |
| return retval; |
| if (le_key_k_offset(le_key_version(le_key), le_key) < |
| cpu_key_k_offset(cpu_key)) |
| return -1; |
| if (le_key_k_offset(le_key_version(le_key), le_key) > |
| cpu_key_k_offset(cpu_key)) |
| return 1; |
| |
| if (cpu_key->key_length == 3) |
| return 0; |
| |
| /* this part is needed only when tail conversion is in progress */ |
| if (le_key_k_type(le_key_version(le_key), le_key) < |
| cpu_key_k_type(cpu_key)) |
| return -1; |
| |
| if (le_key_k_type(le_key_version(le_key), le_key) > |
| cpu_key_k_type(cpu_key)) |
| return 1; |
| |
| return 0; |
| } |
| |
| inline int comp_short_le_keys(const struct reiserfs_key *key1, |
| const struct reiserfs_key *key2) |
| { |
| __u32 *p_s_1_u32, *p_s_2_u32; |
| int n_key_length = REISERFS_SHORT_KEY_LEN; |
| |
| p_s_1_u32 = (__u32 *) key1; |
| p_s_2_u32 = (__u32 *) key2; |
| for (; n_key_length--; ++p_s_1_u32, ++p_s_2_u32) { |
| if (le32_to_cpu(*p_s_1_u32) < le32_to_cpu(*p_s_2_u32)) |
| return -1; |
| if (le32_to_cpu(*p_s_1_u32) > le32_to_cpu(*p_s_2_u32)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) |
| { |
| int version; |
| to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); |
| to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); |
| |
| // find out version of the key |
| version = le_key_version(from); |
| to->version = version; |
| to->on_disk_key.k_offset = le_key_k_offset(version, from); |
| to->on_disk_key.k_type = le_key_k_type(version, from); |
| } |
| |
| // this does not say which one is bigger, it only returns 1 if keys |
| // are not equal, 0 otherwise |
| inline int comp_le_keys(const struct reiserfs_key *k1, |
| const struct reiserfs_key *k2) |
| { |
| return memcmp(k1, k2, sizeof(struct reiserfs_key)); |
| } |
| |
| /************************************************************************** |
| * Binary search toolkit function * |
| * Search for an item in the array by the item key * |
| * Returns: 1 if found, 0 if not found; * |
| * *p_n_pos = number of the searched element if found, else the * |
| * number of the first element that is larger than p_v_key. * |
| **************************************************************************/ |
| /* For those not familiar with binary search: n_lbound is the leftmost item that it |
| could be, n_rbound the rightmost item that it could be. We examine the item |
| halfway between n_lbound and n_rbound, and that tells us either that we can increase |
| n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that |
| there are no possible items, and we have not found it. With each examination we |
| cut the number of possible items it could be by one more than half rounded down, |
| or we find it. */ |
| static inline int bin_search(const void *p_v_key, /* Key to search for. */ |
| const void *p_v_base, /* First item in the array. */ |
| int p_n_num, /* Number of items in the array. */ |
| int p_n_width, /* Item size in the array. |
| searched. Lest the reader be |
| confused, note that this is crafted |
| as a general function, and when it |
| is applied specifically to the array |
| of item headers in a node, p_n_width |
| is actually the item header size not |
| the item size. */ |
| int *p_n_pos /* Number of the searched for element. */ |
| ) |
| { |
| int n_rbound, n_lbound, n_j; |
| |
| for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2; |
| n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2) |
| switch (comp_keys |
| ((struct reiserfs_key *)((char *)p_v_base + |
| n_j * p_n_width), |
| (struct cpu_key *)p_v_key)) { |
| case -1: |
| n_lbound = n_j + 1; |
| continue; |
| case 1: |
| n_rbound = n_j - 1; |
| continue; |
| case 0: |
| *p_n_pos = n_j; |
| return ITEM_FOUND; /* Key found in the array. */ |
| } |
| |
| /* bin_search did not find given key, it returns position of key, |
| that is minimal and greater than the given one. */ |
| *p_n_pos = n_lbound; |
| return ITEM_NOT_FOUND; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| extern struct tree_balance *cur_tb; |
| #endif |
| |
| /* Minimal possible key. It is never in the tree. */ |
| const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; |
| |
| /* Maximal possible key. It is never in the tree. */ |
| static const struct reiserfs_key MAX_KEY = { |
| __constant_cpu_to_le32(0xffffffff), |
| __constant_cpu_to_le32(0xffffffff), |
| {{__constant_cpu_to_le32(0xffffffff), |
| __constant_cpu_to_le32(0xffffffff)},} |
| }; |
| |
| /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom |
| of the path, and going upwards. We must check the path's validity at each step. If the key is not in |
| the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this |
| case we return a special key, either MIN_KEY or MAX_KEY. */ |
| static inline const struct reiserfs_key *get_lkey(const struct path |
| *p_s_chk_path, |
| const struct super_block |
| *p_s_sb) |
| { |
| int n_position, n_path_offset = p_s_chk_path->path_length; |
| struct buffer_head *p_s_parent; |
| |
| RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-5010: invalid offset in the path"); |
| |
| /* While not higher in path than first element. */ |
| while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(!buffer_uptodate |
| (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), |
| "PAP-5020: parent is not uptodate"); |
| |
| /* Parent at the path is not in the tree now. */ |
| if (!B_IS_IN_TREE |
| (p_s_parent = |
| PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset))) |
| return &MAX_KEY; |
| /* Check whether position in the parent is correct. */ |
| if ((n_position = |
| PATH_OFFSET_POSITION(p_s_chk_path, |
| n_path_offset)) > |
| B_NR_ITEMS(p_s_parent)) |
| return &MAX_KEY; |
| /* Check whether parent at the path really points to the child. */ |
| if (B_N_CHILD_NUM(p_s_parent, n_position) != |
| PATH_OFFSET_PBUFFER(p_s_chk_path, |
| n_path_offset + 1)->b_blocknr) |
| return &MAX_KEY; |
| /* Return delimiting key if position in the parent is not equal to zero. */ |
| if (n_position) |
| return B_N_PDELIM_KEY(p_s_parent, n_position - 1); |
| } |
| /* Return MIN_KEY if we are in the root of the buffer tree. */ |
| if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(p_s_sb)) |
| return &MIN_KEY; |
| return &MAX_KEY; |
| } |
| |
| /* Get delimiting key of the buffer at the path and its right neighbor. */ |
| inline const struct reiserfs_key *get_rkey(const struct path *p_s_chk_path, |
| const struct super_block *p_s_sb) |
| { |
| int n_position, n_path_offset = p_s_chk_path->path_length; |
| struct buffer_head *p_s_parent; |
| |
| RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-5030: invalid offset in the path"); |
| |
| while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(!buffer_uptodate |
| (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), |
| "PAP-5040: parent is not uptodate"); |
| |
| /* Parent at the path is not in the tree now. */ |
| if (!B_IS_IN_TREE |
| (p_s_parent = |
| PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset))) |
| return &MIN_KEY; |
| /* Check whether position in the parent is correct. */ |
| if ((n_position = |
| PATH_OFFSET_POSITION(p_s_chk_path, |
| n_path_offset)) > |
| B_NR_ITEMS(p_s_parent)) |
| return &MIN_KEY; |
| /* Check whether parent at the path really points to the child. */ |
| if (B_N_CHILD_NUM(p_s_parent, n_position) != |
| PATH_OFFSET_PBUFFER(p_s_chk_path, |
| n_path_offset + 1)->b_blocknr) |
| return &MIN_KEY; |
| /* Return delimiting key if position in the parent is not the last one. */ |
| if (n_position != B_NR_ITEMS(p_s_parent)) |
| return B_N_PDELIM_KEY(p_s_parent, n_position); |
| } |
| /* Return MAX_KEY if we are in the root of the buffer tree. */ |
| if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(p_s_sb)) |
| return &MAX_KEY; |
| return &MIN_KEY; |
| } |
| |
| /* Check whether a key is contained in the tree rooted from a buffer at a path. */ |
| /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in |
| the path. These delimiting keys are stored at least one level above that buffer in the tree. If the |
| buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in |
| this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ |
| static inline int key_in_buffer(struct path *p_s_chk_path, /* Path which should be checked. */ |
| const struct cpu_key *p_s_key, /* Key which should be checked. */ |
| struct super_block *p_s_sb /* Super block pointer. */ |
| ) |
| { |
| |
| RFALSE(!p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET |
| || p_s_chk_path->path_length > MAX_HEIGHT, |
| "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", |
| p_s_key, p_s_chk_path->path_length); |
| RFALSE(!PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev, |
| "PAP-5060: device must not be NODEV"); |
| |
| if (comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1) |
| /* left delimiting key is bigger, that the key we look for */ |
| return 0; |
| // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 ) |
| if (comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1) |
| /* p_s_key must be less than right delimitiing key */ |
| return 0; |
| return 1; |
| } |
| |
| inline void decrement_bcount(struct buffer_head *p_s_bh) |
| { |
| if (p_s_bh) { |
| if (atomic_read(&(p_s_bh->b_count))) { |
| put_bh(p_s_bh); |
| return; |
| } |
| reiserfs_panic(NULL, |
| "PAP-5070: decrement_bcount: trying to free free buffer %b", |
| p_s_bh); |
| } |
| } |
| |
| /* Decrement b_count field of the all buffers in the path. */ |
| void decrement_counters_in_path(struct path *p_s_search_path) |
| { |
| int n_path_offset = p_s_search_path->path_length; |
| |
| RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET || |
| n_path_offset > EXTENDED_MAX_HEIGHT - 1, |
| "PAP-5080: invalid path offset of %d", n_path_offset); |
| |
| while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { |
| struct buffer_head *bh; |
| |
| bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--); |
| decrement_bcount(bh); |
| } |
| p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| } |
| |
| int reiserfs_check_path(struct path *p) |
| { |
| RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, |
| "path not properly relsed"); |
| return 0; |
| } |
| |
| /* Release all buffers in the path. Restore dirty bits clean |
| ** when preparing the buffer for the log |
| ** |
| ** only called from fix_nodes() |
| */ |
| void pathrelse_and_restore(struct super_block *s, struct path *p_s_search_path) |
| { |
| int n_path_offset = p_s_search_path->path_length; |
| |
| RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| "clm-4000: invalid path offset"); |
| |
| while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { |
| reiserfs_restore_prepared_buffer(s, |
| PATH_OFFSET_PBUFFER |
| (p_s_search_path, |
| n_path_offset)); |
| brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); |
| } |
| p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| } |
| |
| /* Release all buffers in the path. */ |
| void pathrelse(struct path *p_s_search_path) |
| { |
| int n_path_offset = p_s_search_path->path_length; |
| |
| RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, |
| "PAP-5090: invalid path offset"); |
| |
| while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) |
| brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); |
| |
| p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; |
| } |
| |
| static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) |
| { |
| struct block_head *blkh; |
| struct item_head *ih; |
| int used_space; |
| int prev_location; |
| int i; |
| int nr; |
| |
| blkh = (struct block_head *)buf; |
| if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { |
| reiserfs_warning(NULL, |
| "is_leaf: this should be caught earlier"); |
| return 0; |
| } |
| |
| nr = blkh_nr_item(blkh); |
| if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { |
| /* item number is too big or too small */ |
| reiserfs_warning(NULL, "is_leaf: nr_item seems wrong: %z", bh); |
| return 0; |
| } |
| ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; |
| used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); |
| if (used_space != blocksize - blkh_free_space(blkh)) { |
| /* free space does not match to calculated amount of use space */ |
| reiserfs_warning(NULL, "is_leaf: free space seems wrong: %z", |
| bh); |
| return 0; |
| } |
| // FIXME: it is_leaf will hit performance too much - we may have |
| // return 1 here |
| |
| /* check tables of item heads */ |
| ih = (struct item_head *)(buf + BLKH_SIZE); |
| prev_location = blocksize; |
| for (i = 0; i < nr; i++, ih++) { |
| if (le_ih_k_type(ih) == TYPE_ANY) { |
| reiserfs_warning(NULL, |
| "is_leaf: wrong item type for item %h", |
| ih); |
| return 0; |
| } |
| if (ih_location(ih) >= blocksize |
| || ih_location(ih) < IH_SIZE * nr) { |
| reiserfs_warning(NULL, |
| "is_leaf: item location seems wrong: %h", |
| ih); |
| return 0; |
| } |
| if (ih_item_len(ih) < 1 |
| || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { |
| reiserfs_warning(NULL, |
| "is_leaf: item length seems wrong: %h", |
| ih); |
| return 0; |
| } |
| if (prev_location - ih_location(ih) != ih_item_len(ih)) { |
| reiserfs_warning(NULL, |
| "is_leaf: item location seems wrong (second one): %h", |
| ih); |
| return 0; |
| } |
| prev_location = ih_location(ih); |
| } |
| |
| // one may imagine much more checks |
| return 1; |
| } |
| |
| /* returns 1 if buf looks like an internal node, 0 otherwise */ |
| static int is_internal(char *buf, int blocksize, struct buffer_head *bh) |
| { |
| struct block_head *blkh; |
| int nr; |
| int used_space; |
| |
| blkh = (struct block_head *)buf; |
| nr = blkh_level(blkh); |
| if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { |
| /* this level is not possible for internal nodes */ |
| reiserfs_warning(NULL, |
| "is_internal: this should be caught earlier"); |
| return 0; |
| } |
| |
| nr = blkh_nr_item(blkh); |
| if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { |
| /* for internal which is not root we might check min number of keys */ |
| reiserfs_warning(NULL, |
| "is_internal: number of key seems wrong: %z", |
| bh); |
| return 0; |
| } |
| |
| used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); |
| if (used_space != blocksize - blkh_free_space(blkh)) { |
| reiserfs_warning(NULL, |
| "is_internal: free space seems wrong: %z", bh); |
| return 0; |
| } |
| // one may imagine much more checks |
| return 1; |
| } |
| |
| // make sure that bh contains formatted node of reiserfs tree of |
| // 'level'-th level |
| static int is_tree_node(struct buffer_head *bh, int level) |
| { |
| if (B_LEVEL(bh) != level) { |
| reiserfs_warning(NULL, |
| "is_tree_node: node level %d does not match to the expected one %d", |
| B_LEVEL(bh), level); |
| return 0; |
| } |
| if (level == DISK_LEAF_NODE_LEVEL) |
| return is_leaf(bh->b_data, bh->b_size, bh); |
| |
| return is_internal(bh->b_data, bh->b_size, bh); |
| } |
| |
| #define SEARCH_BY_KEY_READA 16 |
| |
| /* The function is NOT SCHEDULE-SAFE! */ |
| static void search_by_key_reada(struct super_block *s, |
| struct buffer_head **bh, |
| unsigned long *b, int num) |
| { |
| int i, j; |
| |
| for (i = 0; i < num; i++) { |
| bh[i] = sb_getblk(s, b[i]); |
| } |
| for (j = 0; j < i; j++) { |
| /* |
| * note, this needs attention if we are getting rid of the BKL |
| * you have to make sure the prepared bit isn't set on this buffer |
| */ |
| if (!buffer_uptodate(bh[j])) |
| ll_rw_block(READA, 1, bh + j); |
| brelse(bh[j]); |
| } |
| } |
| |
| /************************************************************************** |
| * Algorithm SearchByKey * |
| * look for item in the Disk S+Tree by its key * |
| * Input: p_s_sb - super block * |
| * p_s_key - pointer to the key to search * |
| * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR * |
| * p_s_search_path - path from the root to the needed leaf * |
| **************************************************************************/ |
| |
| /* This function fills up the path from the root to the leaf as it |
| descends the tree looking for the key. It uses reiserfs_bread to |
| try to find buffers in the cache given their block number. If it |
| does not find them in the cache it reads them from disk. For each |
| node search_by_key finds using reiserfs_bread it then uses |
| bin_search to look through that node. bin_search will find the |
| position of the block_number of the next node if it is looking |
| through an internal node. If it is looking through a leaf node |
| bin_search will find the position of the item which has key either |
| equal to given key, or which is the maximal key less than the given |
| key. search_by_key returns a path that must be checked for the |
| correctness of the top of the path but need not be checked for the |
| correctness of the bottom of the path */ |
| /* The function is NOT SCHEDULE-SAFE! */ |
| int search_by_key(struct super_block *p_s_sb, const struct cpu_key *p_s_key, /* Key to search. */ |
| struct path *p_s_search_path, /* This structure was |
| allocated and initialized |
| by the calling |
| function. It is filled up |
| by this function. */ |
| int n_stop_level /* How far down the tree to search. To |
| stop at leaf level - set to |
| DISK_LEAF_NODE_LEVEL */ |
| ) |
| { |
| int n_block_number; |
| int expected_level; |
| struct buffer_head *p_s_bh; |
| struct path_element *p_s_last_element; |
| int n_node_level, n_retval; |
| int right_neighbor_of_leaf_node; |
| int fs_gen; |
| struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; |
| unsigned long reada_blocks[SEARCH_BY_KEY_READA]; |
| int reada_count = 0; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| int n_repeat_counter = 0; |
| #endif |
| |
| PROC_INFO_INC(p_s_sb, search_by_key); |
| |
| /* As we add each node to a path we increase its count. This means that |
| we must be careful to release all nodes in a path before we either |
| discard the path struct or re-use the path struct, as we do here. */ |
| |
| decrement_counters_in_path(p_s_search_path); |
| |
| right_neighbor_of_leaf_node = 0; |
| |
| /* With each iteration of this loop we search through the items in the |
| current node, and calculate the next current node(next path element) |
| for the next iteration of this loop.. */ |
| n_block_number = SB_ROOT_BLOCK(p_s_sb); |
| expected_level = -1; |
| while (1) { |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| if (!(++n_repeat_counter % 50000)) |
| reiserfs_warning(p_s_sb, "PAP-5100: search_by_key: %s:" |
| "there were %d iterations of while loop " |
| "looking for key %K", |
| current->comm, n_repeat_counter, |
| p_s_key); |
| #endif |
| |
| /* prep path to have another element added to it. */ |
| p_s_last_element = |
| PATH_OFFSET_PELEMENT(p_s_search_path, |
| ++p_s_search_path->path_length); |
| fs_gen = get_generation(p_s_sb); |
| |
| /* Read the next tree node, and set the last element in the path to |
| have a pointer to it. */ |
| if ((p_s_bh = p_s_last_element->pe_buffer = |
| sb_getblk(p_s_sb, n_block_number))) { |
| if (!buffer_uptodate(p_s_bh) && reada_count > 1) { |
| search_by_key_reada(p_s_sb, reada_bh, |
| reada_blocks, reada_count); |
| } |
| ll_rw_block(READ, 1, &p_s_bh); |
| wait_on_buffer(p_s_bh); |
| if (!buffer_uptodate(p_s_bh)) |
| goto io_error; |
| } else { |
| io_error: |
| p_s_search_path->path_length--; |
| pathrelse(p_s_search_path); |
| return IO_ERROR; |
| } |
| reada_count = 0; |
| if (expected_level == -1) |
| expected_level = SB_TREE_HEIGHT(p_s_sb); |
| expected_level--; |
| |
| /* It is possible that schedule occurred. We must check whether the key |
| to search is still in the tree rooted from the current buffer. If |
| not then repeat search from the root. */ |
| if (fs_changed(fs_gen, p_s_sb) && |
| (!B_IS_IN_TREE(p_s_bh) || |
| B_LEVEL(p_s_bh) != expected_level || |
| !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) { |
| PROC_INFO_INC(p_s_sb, search_by_key_fs_changed); |
| PROC_INFO_INC(p_s_sb, search_by_key_restarted); |
| PROC_INFO_INC(p_s_sb, |
| sbk_restarted[expected_level - 1]); |
| decrement_counters_in_path(p_s_search_path); |
| |
| /* Get the root block number so that we can repeat the search |
| starting from the root. */ |
| n_block_number = SB_ROOT_BLOCK(p_s_sb); |
| expected_level = -1; |
| right_neighbor_of_leaf_node = 0; |
| |
| /* repeat search from the root */ |
| continue; |
| } |
| |
| /* only check that the key is in the buffer if p_s_key is not |
| equal to the MAX_KEY. Latter case is only possible in |
| "finish_unfinished()" processing during mount. */ |
| RFALSE(comp_keys(&MAX_KEY, p_s_key) && |
| !key_in_buffer(p_s_search_path, p_s_key, p_s_sb), |
| "PAP-5130: key is not in the buffer"); |
| #ifdef CONFIG_REISERFS_CHECK |
| if (cur_tb) { |
| print_cur_tb("5140"); |
| reiserfs_panic(p_s_sb, |
| "PAP-5140: search_by_key: schedule occurred in do_balance!"); |
| } |
| #endif |
| |
| // make sure, that the node contents look like a node of |
| // certain level |
| if (!is_tree_node(p_s_bh, expected_level)) { |
| reiserfs_warning(p_s_sb, "vs-5150: search_by_key: " |
| "invalid format found in block %ld. Fsck?", |
| p_s_bh->b_blocknr); |
| pathrelse(p_s_search_path); |
| return IO_ERROR; |
| } |
| |
| /* ok, we have acquired next formatted node in the tree */ |
| n_node_level = B_LEVEL(p_s_bh); |
| |
| PROC_INFO_BH_STAT(p_s_sb, p_s_bh, n_node_level - 1); |
| |
| RFALSE(n_node_level < n_stop_level, |
| "vs-5152: tree level (%d) is less than stop level (%d)", |
| n_node_level, n_stop_level); |
| |
| n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(p_s_bh, 0), |
| B_NR_ITEMS(p_s_bh), |
| (n_node_level == |
| DISK_LEAF_NODE_LEVEL) ? IH_SIZE : |
| KEY_SIZE, |
| &(p_s_last_element->pe_position)); |
| if (n_node_level == n_stop_level) { |
| return n_retval; |
| } |
| |
| /* we are not in the stop level */ |
| if (n_retval == ITEM_FOUND) |
| /* item has been found, so we choose the pointer which is to the right of the found one */ |
| p_s_last_element->pe_position++; |
| |
| /* if item was not found we choose the position which is to |
| the left of the found item. This requires no code, |
| bin_search did it already. */ |
| |
| /* So we have chosen a position in the current node which is |
| an internal node. Now we calculate child block number by |
| position in the node. */ |
| n_block_number = |
| B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position); |
| |
| /* if we are going to read leaf nodes, try for read ahead as well */ |
| if ((p_s_search_path->reada & PATH_READA) && |
| n_node_level == DISK_LEAF_NODE_LEVEL + 1) { |
| int pos = p_s_last_element->pe_position; |
| int limit = B_NR_ITEMS(p_s_bh); |
| struct reiserfs_key *le_key; |
| |
| if (p_s_search_path->reada & PATH_READA_BACK) |
| limit = 0; |
| while (reada_count < SEARCH_BY_KEY_READA) { |
| if (pos == limit) |
| break; |
| reada_blocks[reada_count++] = |
| B_N_CHILD_NUM(p_s_bh, pos); |
| if (p_s_search_path->reada & PATH_READA_BACK) |
| pos--; |
| else |
| pos++; |
| |
| /* |
| * check to make sure we're in the same object |
| */ |
| le_key = B_N_PDELIM_KEY(p_s_bh, pos); |
| if (le32_to_cpu(le_key->k_objectid) != |
| p_s_key->on_disk_key.k_objectid) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Form the path to an item and position in this item which contains |
| file byte defined by p_s_key. If there is no such item |
| corresponding to the key, we point the path to the item with |
| maximal key less than p_s_key, and *p_n_pos_in_item is set to one |
| past the last entry/byte in the item. If searching for entry in a |
| directory item, and it is not found, *p_n_pos_in_item is set to one |
| entry more than the entry with maximal key which is less than the |
| sought key. |
| |
| Note that if there is no entry in this same node which is one more, |
| then we point to an imaginary entry. for direct items, the |
| position is in units of bytes, for indirect items the position is |
| in units of blocknr entries, for directory items the position is in |
| units of directory entries. */ |
| |
| /* The function is NOT SCHEDULE-SAFE! */ |
| int search_for_position_by_key(struct super_block *p_s_sb, /* Pointer to the super block. */ |
| const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */ |
| struct path *p_s_search_path /* Filled up by this function. */ |
| ) |
| { |
| struct item_head *p_le_ih; /* pointer to on-disk structure */ |
| int n_blk_size; |
| loff_t item_offset, offset; |
| struct reiserfs_dir_entry de; |
| int retval; |
| |
| /* If searching for directory entry. */ |
| if (is_direntry_cpu_key(p_cpu_key)) |
| return search_by_entry_key(p_s_sb, p_cpu_key, p_s_search_path, |
| &de); |
| |
| /* If not searching for directory entry. */ |
| |
| /* If item is found. */ |
| retval = search_item(p_s_sb, p_cpu_key, p_s_search_path); |
| if (retval == IO_ERROR) |
| return retval; |
| if (retval == ITEM_FOUND) { |
| |
| RFALSE(!ih_item_len |
| (B_N_PITEM_HEAD |
| (PATH_PLAST_BUFFER(p_s_search_path), |
| PATH_LAST_POSITION(p_s_search_path))), |
| "PAP-5165: item length equals zero"); |
| |
| pos_in_item(p_s_search_path) = 0; |
| return POSITION_FOUND; |
| } |
| |
| RFALSE(!PATH_LAST_POSITION(p_s_search_path), |
| "PAP-5170: position equals zero"); |
| |
| /* Item is not found. Set path to the previous item. */ |
| p_le_ih = |
| B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), |
| --PATH_LAST_POSITION(p_s_search_path)); |
| n_blk_size = p_s_sb->s_blocksize; |
| |
| if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) { |
| return FILE_NOT_FOUND; |
| } |
| // FIXME: quite ugly this far |
| |
| item_offset = le_ih_k_offset(p_le_ih); |
| offset = cpu_key_k_offset(p_cpu_key); |
| |
| /* Needed byte is contained in the item pointed to by the path. */ |
| if (item_offset <= offset && |
| item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) { |
| pos_in_item(p_s_search_path) = offset - item_offset; |
| if (is_indirect_le_ih(p_le_ih)) { |
| pos_in_item(p_s_search_path) /= n_blk_size; |
| } |
| return POSITION_FOUND; |
| } |
| |
| /* Needed byte is not contained in the item pointed to by the |
| path. Set pos_in_item out of the item. */ |
| if (is_indirect_le_ih(p_le_ih)) |
| pos_in_item(p_s_search_path) = |
| ih_item_len(p_le_ih) / UNFM_P_SIZE; |
| else |
| pos_in_item(p_s_search_path) = ih_item_len(p_le_ih); |
| |
| return POSITION_NOT_FOUND; |
| } |
| |
| /* Compare given item and item pointed to by the path. */ |
| int comp_items(const struct item_head *stored_ih, const struct path *p_s_path) |
| { |
| struct buffer_head *p_s_bh; |
| struct item_head *ih; |
| |
| /* Last buffer at the path is not in the tree. */ |
| if (!B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path))) |
| return 1; |
| |
| /* Last path position is invalid. */ |
| if (PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh)) |
| return 1; |
| |
| /* we need only to know, whether it is the same item */ |
| ih = get_ih(p_s_path); |
| return memcmp(stored_ih, ih, IH_SIZE); |
| } |
| |
| /* unformatted nodes are not logged anymore, ever. This is safe |
| ** now |
| */ |
| #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) |
| |
| // block can not be forgotten as it is in I/O or held by someone |
| #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) |
| |
| // prepare for delete or cut of direct item |
| static inline int prepare_for_direct_item(struct path *path, |
| struct item_head *le_ih, |
| struct inode *inode, |
| loff_t new_file_length, int *cut_size) |
| { |
| loff_t round_len; |
| |
| if (new_file_length == max_reiserfs_offset(inode)) { |
| /* item has to be deleted */ |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; |
| } |
| // new file gets truncated |
| if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { |
| // |
| round_len = ROUND_UP(new_file_length); |
| /* this was n_new_file_length < le_ih ... */ |
| if (round_len < le_ih_k_offset(le_ih)) { |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; /* Delete this item. */ |
| } |
| /* Calculate first position and size for cutting from item. */ |
| pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); |
| *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); |
| |
| return M_CUT; /* Cut from this item. */ |
| } |
| |
| // old file: items may have any length |
| |
| if (new_file_length < le_ih_k_offset(le_ih)) { |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; /* Delete this item. */ |
| } |
| /* Calculate first position and size for cutting from item. */ |
| *cut_size = -(ih_item_len(le_ih) - |
| (pos_in_item(path) = |
| new_file_length + 1 - le_ih_k_offset(le_ih))); |
| return M_CUT; /* Cut from this item. */ |
| } |
| |
| static inline int prepare_for_direntry_item(struct path *path, |
| struct item_head *le_ih, |
| struct inode *inode, |
| loff_t new_file_length, |
| int *cut_size) |
| { |
| if (le_ih_k_offset(le_ih) == DOT_OFFSET && |
| new_file_length == max_reiserfs_offset(inode)) { |
| RFALSE(ih_entry_count(le_ih) != 2, |
| "PAP-5220: incorrect empty directory item (%h)", le_ih); |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; /* Delete the directory item containing "." and ".." entry. */ |
| } |
| |
| if (ih_entry_count(le_ih) == 1) { |
| /* Delete the directory item such as there is one record only |
| in this item */ |
| *cut_size = -(IH_SIZE + ih_item_len(le_ih)); |
| return M_DELETE; |
| } |
| |
| /* Cut one record from the directory item. */ |
| *cut_size = |
| -(DEH_SIZE + |
| entry_length(get_last_bh(path), le_ih, pos_in_item(path))); |
| return M_CUT; |
| } |
| |
| #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) |
| |
| /* If the path points to a directory or direct item, calculate mode and the size cut, for balance. |
| If the path points to an indirect item, remove some number of its unformatted nodes. |
| In case of file truncate calculate whether this item must be deleted/truncated or last |
| unformatted node of this item will be converted to a direct item. |
| This function returns a determination of what balance mode the calling function should employ. */ |
| static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *p_s_path, const struct cpu_key *p_s_item_key, int *p_n_removed, /* Number of unformatted nodes which were removed |
| from end of the file. */ |
| int *p_n_cut_size, unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */ |
| ) |
| { |
| struct super_block *p_s_sb = inode->i_sb; |
| struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_path); |
| struct buffer_head *p_s_bh = PATH_PLAST_BUFFER(p_s_path); |
| |
| BUG_ON(!th->t_trans_id); |
| |
| /* Stat_data item. */ |
| if (is_statdata_le_ih(p_le_ih)) { |
| |
| RFALSE(n_new_file_length != max_reiserfs_offset(inode), |
| "PAP-5210: mode must be M_DELETE"); |
| |
| *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); |
| return M_DELETE; |
| } |
| |
| /* Directory item. */ |
| if (is_direntry_le_ih(p_le_ih)) |
| return prepare_for_direntry_item(p_s_path, p_le_ih, inode, |
| n_new_file_length, |
| p_n_cut_size); |
| |
| /* Direct item. */ |
| if (is_direct_le_ih(p_le_ih)) |
| return prepare_for_direct_item(p_s_path, p_le_ih, inode, |
| n_new_file_length, p_n_cut_size); |
| |
| /* Case of an indirect item. */ |
| { |
| int blk_size = p_s_sb->s_blocksize; |
| struct item_head s_ih; |
| int need_re_search; |
| int delete = 0; |
| int result = M_CUT; |
| int pos = 0; |
| |
| if ( n_new_file_length == max_reiserfs_offset (inode) ) { |
| /* prepare_for_delete_or_cut() is called by |
| * reiserfs_delete_item() */ |
| n_new_file_length = 0; |
| delete = 1; |
| } |
| |
| do { |
| need_re_search = 0; |
| *p_n_cut_size = 0; |
| p_s_bh = PATH_PLAST_BUFFER(p_s_path); |
| copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); |
| pos = I_UNFM_NUM(&s_ih); |
| |
| while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > n_new_file_length) { |
| __u32 *unfm, block; |
| |
| /* Each unformatted block deletion may involve one additional |
| * bitmap block into the transaction, thereby the initial |
| * journal space reservation might not be enough. */ |
| if (!delete && (*p_n_cut_size) != 0 && |
| reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { |
| break; |
| } |
| |
| unfm = (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + pos - 1; |
| block = get_block_num(unfm, 0); |
| |
| if (block != 0) { |
| reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1); |
| put_block_num(unfm, 0, 0); |
| journal_mark_dirty (th, p_s_sb, p_s_bh); |
| reiserfs_free_block(th, inode, block, 1); |
| } |
| |
| cond_resched(); |
| |
| if (item_moved (&s_ih, p_s_path)) { |
| need_re_search = 1; |
| break; |
| } |
| |
| pos --; |
| (*p_n_removed) ++; |
| (*p_n_cut_size) -= UNFM_P_SIZE; |
| |
| if (pos == 0) { |
| (*p_n_cut_size) -= IH_SIZE; |
| result = M_DELETE; |
| break; |
| } |
| } |
| /* a trick. If the buffer has been logged, this will do nothing. If |
| ** we've broken the loop without logging it, it will restore the |
| ** buffer */ |
| reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh); |
| } while (need_re_search && |
| search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND); |
| pos_in_item(p_s_path) = pos * UNFM_P_SIZE; |
| |
| if (*p_n_cut_size == 0) { |
| /* Nothing were cut. maybe convert last unformatted node to the |
| * direct item? */ |
| result = M_CONVERT; |
| } |
| return result; |
| } |
| } |
| |
| /* Calculate number of bytes which will be deleted or cut during balance */ |
| static int calc_deleted_bytes_number(struct tree_balance *p_s_tb, char c_mode) |
| { |
| int n_del_size; |
| struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path); |
| |
| if (is_statdata_le_ih(p_le_ih)) |
| return 0; |
| |
| n_del_size = |
| (c_mode == |
| M_DELETE) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0]; |
| if (is_direntry_le_ih(p_le_ih)) { |
| // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */ |
| // we can't use EMPTY_DIR_SIZE, as old format dirs have a different |
| // empty size. ick. FIXME, is this right? |
| // |
| return n_del_size; |
| } |
| |
| if (is_indirect_le_ih(p_le_ih)) |
| n_del_size = (n_del_size / UNFM_P_SIZE) * (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size); // - get_ih_free_space (p_le_ih); |
| return n_del_size; |
| } |
| |
| static void init_tb_struct(struct reiserfs_transaction_handle *th, |
| struct tree_balance *p_s_tb, |
| struct super_block *p_s_sb, |
| struct path *p_s_path, int n_size) |
| { |
| |
| BUG_ON(!th->t_trans_id); |
| |
| memset(p_s_tb, '\0', sizeof(struct tree_balance)); |
| p_s_tb->transaction_handle = th; |
| p_s_tb->tb_sb = p_s_sb; |
| p_s_tb->tb_path = p_s_path; |
| PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; |
| PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; |
| p_s_tb->insert_size[0] = n_size; |
| } |
| |
| void padd_item(char *item, int total_length, int length) |
| { |
| int i; |
| |
| for (i = total_length; i > length;) |
| item[--i] = 0; |
| } |
| |
| #ifdef REISERQUOTA_DEBUG |
| char key2type(struct reiserfs_key *ih) |
| { |
| if (is_direntry_le_key(2, ih)) |
| return 'd'; |
| if (is_direct_le_key(2, ih)) |
| return 'D'; |
| if (is_indirect_le_key(2, ih)) |
| return 'i'; |
| if (is_statdata_le_key(2, ih)) |
| return 's'; |
| return 'u'; |
| } |
| |
| char head2type(struct item_head *ih) |
| { |
| if (is_direntry_le_ih(ih)) |
| return 'd'; |
| if (is_direct_le_ih(ih)) |
| return 'D'; |
| if (is_indirect_le_ih(ih)) |
| return 'i'; |
| if (is_statdata_le_ih(ih)) |
| return 's'; |
| return 'u'; |
| } |
| #endif |
| |
| /* Delete object item. */ |
| int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct path *p_s_path, /* Path to the deleted item. */ |
| const struct cpu_key *p_s_item_key, /* Key to search for the deleted item. */ |
| struct inode *p_s_inode, /* inode is here just to update i_blocks and quotas */ |
| struct buffer_head *p_s_un_bh) |
| { /* NULL or unformatted node pointer. */ |
| struct super_block *p_s_sb = p_s_inode->i_sb; |
| struct tree_balance s_del_balance; |
| struct item_head s_ih; |
| struct item_head *q_ih; |
| int quota_cut_bytes; |
| int n_ret_value, n_del_size, n_removed; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| char c_mode; |
| int n_iter = 0; |
| #endif |
| |
| BUG_ON(!th->t_trans_id); |
| |
| init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, |
| 0 /*size is unknown */ ); |
| |
| while (1) { |
| n_removed = 0; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| n_iter++; |
| c_mode = |
| #endif |
| prepare_for_delete_or_cut(th, p_s_inode, p_s_path, |
| p_s_item_key, &n_removed, |
| &n_del_size, |
| max_reiserfs_offset(p_s_inode)); |
| |
| RFALSE(c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); |
| |
| copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); |
| s_del_balance.insert_size[0] = n_del_size; |
| |
| n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); |
| if (n_ret_value != REPEAT_SEARCH) |
| break; |
| |
| PROC_INFO_INC(p_s_sb, delete_item_restarted); |
| |
| // file system changed, repeat search |
| n_ret_value = |
| search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); |
| if (n_ret_value == IO_ERROR) |
| break; |
| if (n_ret_value == FILE_NOT_FOUND) { |
| reiserfs_warning(p_s_sb, |
| "vs-5340: reiserfs_delete_item: " |
| "no items of the file %K found", |
| p_s_item_key); |
| break; |
| } |
| } /* while (1) */ |
| |
| if (n_ret_value != CARRY_ON) { |
| unfix_nodes(&s_del_balance); |
| return 0; |
| } |
| // reiserfs_delete_item returns item length when success |
| n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); |
| q_ih = get_ih(p_s_path); |
| quota_cut_bytes = ih_item_len(q_ih); |
| |
| /* hack so the quota code doesn't have to guess if the file |
| ** has a tail. On tail insert, we allocate quota for 1 unformatted node. |
| ** We test the offset because the tail might have been |
| ** split into multiple items, and we only want to decrement for |
| ** the unfm node once |
| */ |
| if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(q_ih)) { |
| if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) { |
| quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; |
| } else { |
| quota_cut_bytes = 0; |
| } |
| } |
| |
| if (p_s_un_bh) { |
| int off; |
| char *data; |
| |
| /* We are in direct2indirect conversion, so move tail contents |
| to the unformatted node */ |
| /* note, we do the copy before preparing the buffer because we |
| ** don't care about the contents of the unformatted node yet. |
| ** the only thing we really care about is the direct item's data |
| ** is in the unformatted node. |
| ** |
| ** Otherwise, we would have to call reiserfs_prepare_for_journal on |
| ** the unformatted node, which might schedule, meaning we'd have to |
| ** loop all the way back up to the start of the while loop. |
| ** |
| ** The unformatted node must be dirtied later on. We can't be |
| ** sure here if the entire tail has been deleted yet. |
| ** |
| ** p_s_un_bh is from the page cache (all unformatted nodes are |
| ** from the page cache) and might be a highmem page. So, we |
| ** can't use p_s_un_bh->b_data. |
| ** -clm |
| */ |
| |
| data = kmap_atomic(p_s_un_bh->b_page, KM_USER0); |
| off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); |
| memcpy(data + off, |
| B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), |
| n_ret_value); |
| kunmap_atomic(data, KM_USER0); |
| } |
| /* Perform balancing after all resources have been collected at once. */ |
| do_balance(&s_del_balance, NULL, NULL, M_DELETE); |
| |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(p_s_sb, REISERFS_DEBUG_CODE, |
| "reiserquota delete_item(): freeing %u, id=%u type=%c", |
| quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih)); |
| #endif |
| DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); |
| |
| /* Return deleted body length */ |
| return n_ret_value; |
| } |
| |
| /* Summary Of Mechanisms For Handling Collisions Between Processes: |
| |
| deletion of the body of the object is performed by iput(), with the |
| result that if multiple processes are operating on a file, the |
| deletion of the body of the file is deferred until the last process |
| that has an open inode performs its iput(). |
| |
| writes and truncates are protected from collisions by use of |
| semaphores. |
| |
| creates, linking, and mknod are protected from collisions with other |
| processes by making the reiserfs_add_entry() the last step in the |
| creation, and then rolling back all changes if there was a collision. |
| - Hans |
| */ |
| |
| /* this deletes item which never gets split */ |
| void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct reiserfs_key *key) |
| { |
| struct tree_balance tb; |
| INITIALIZE_PATH(path); |
| int item_len = 0; |
| int tb_init = 0; |
| struct cpu_key cpu_key; |
| int retval; |
| int quota_cut_bytes = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| le_key2cpu_key(&cpu_key, key); |
| |
| while (1) { |
| retval = search_item(th->t_super, &cpu_key, &path); |
| if (retval == IO_ERROR) { |
| reiserfs_warning(th->t_super, |
| "vs-5350: reiserfs_delete_solid_item: " |
| "i/o failure occurred trying to delete %K", |
| &cpu_key); |
| break; |
| } |
| if (retval != ITEM_FOUND) { |
| pathrelse(&path); |
| // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir |
| if (! |
| ((unsigned long long) |
| GET_HASH_VALUE(le_key_k_offset |
| (le_key_version(key), key)) == 0 |
| && (unsigned long long) |
| GET_GENERATION_NUMBER(le_key_k_offset |
| (le_key_version(key), |
| key)) == 1)) |
| reiserfs_warning(th->t_super, |
| "vs-5355: reiserfs_delete_solid_item: %k not found", |
| key); |
| break; |
| } |
| if (!tb_init) { |
| tb_init = 1; |
| item_len = ih_item_len(PATH_PITEM_HEAD(&path)); |
| init_tb_struct(th, &tb, th->t_super, &path, |
| -(IH_SIZE + item_len)); |
| } |
| quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)); |
| |
| retval = fix_nodes(M_DELETE, &tb, NULL, NULL); |
| if (retval == REPEAT_SEARCH) { |
| PROC_INFO_INC(th->t_super, delete_solid_item_restarted); |
| continue; |
| } |
| |
| if (retval == CARRY_ON) { |
| do_balance(&tb, NULL, NULL, M_DELETE); |
| if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */ |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| "reiserquota delete_solid_item(): freeing %u id=%u type=%c", |
| quota_cut_bytes, inode->i_uid, |
| key2type(key)); |
| #endif |
| DQUOT_FREE_SPACE_NODIRTY(inode, |
| quota_cut_bytes); |
| } |
| break; |
| } |
| // IO_ERROR, NO_DISK_SPACE, etc |
| reiserfs_warning(th->t_super, |
| "vs-5360: reiserfs_delete_solid_item: " |
| "could not delete %K due to fix_nodes failure", |
| &cpu_key); |
| unfix_nodes(&tb); |
| break; |
| } |
| |
| reiserfs_check_path(&path); |
| } |
| |
| int reiserfs_delete_object(struct reiserfs_transaction_handle *th, |
| struct inode *inode) |
| { |
| int err; |
| inode->i_size = 0; |
| BUG_ON(!th->t_trans_id); |
| |
| /* for directory this deletes item containing "." and ".." */ |
| err = |
| reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); |
| if (err) |
| return err; |
| |
| #if defined( USE_INODE_GENERATION_COUNTER ) |
| if (!old_format_only(th->t_super)) { |
| __le32 *inode_generation; |
| |
| inode_generation = |
| &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; |
| *inode_generation = |
| cpu_to_le32(le32_to_cpu(*inode_generation) + 1); |
| } |
| /* USE_INODE_GENERATION_COUNTER */ |
| #endif |
| reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| |
| return err; |
| } |
| |
| static void unmap_buffers(struct page *page, loff_t pos) |
| { |
| struct buffer_head *bh; |
| struct buffer_head *head; |
| struct buffer_head *next; |
| unsigned long tail_index; |
| unsigned long cur_index; |
| |
| if (page) { |
| if (page_has_buffers(page)) { |
| tail_index = pos & (PAGE_CACHE_SIZE - 1); |
| cur_index = 0; |
| head = page_buffers(page); |
| bh = head; |
| do { |
| next = bh->b_this_page; |
| |
| /* we want to unmap the buffers that contain the tail, and |
| ** all the buffers after it (since the tail must be at the |
| ** end of the file). We don't want to unmap file data |
| ** before the tail, since it might be dirty and waiting to |
| ** reach disk |
| */ |
| cur_index += bh->b_size; |
| if (cur_index > tail_index) { |
| reiserfs_unmap_buffer(bh); |
| } |
| bh = next; |
| } while (bh != head); |
| if (PAGE_SIZE == bh->b_size) { |
| clear_page_dirty(page); |
| } |
| } |
| } |
| } |
| |
| static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, |
| struct inode *p_s_inode, |
| struct page *page, |
| struct path *p_s_path, |
| const struct cpu_key *p_s_item_key, |
| loff_t n_new_file_size, char *p_c_mode) |
| { |
| struct super_block *p_s_sb = p_s_inode->i_sb; |
| int n_block_size = p_s_sb->s_blocksize; |
| int cut_bytes; |
| BUG_ON(!th->t_trans_id); |
| |
| if (n_new_file_size != p_s_inode->i_size) |
| BUG(); |
| |
| /* the page being sent in could be NULL if there was an i/o error |
| ** reading in the last block. The user will hit problems trying to |
| ** read the file, but for now we just skip the indirect2direct |
| */ |
| if (atomic_read(&p_s_inode->i_count) > 1 || |
| !tail_has_to_be_packed(p_s_inode) || |
| !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) { |
| // leave tail in an unformatted node |
| *p_c_mode = M_SKIP_BALANCING; |
| cut_bytes = |
| n_block_size - (n_new_file_size & (n_block_size - 1)); |
| pathrelse(p_s_path); |
| return cut_bytes; |
| } |
| /* Permorm the conversion to a direct_item. */ |
| /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); */ |
| return indirect2direct(th, p_s_inode, page, p_s_path, p_s_item_key, |
| n_new_file_size, p_c_mode); |
| } |
| |
| /* we did indirect_to_direct conversion. And we have inserted direct |
| item successesfully, but there were no disk space to cut unfm |
| pointer being converted. Therefore we have to delete inserted |
| direct item(s) */ |
| static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct path *path) |
| { |
| struct cpu_key tail_key; |
| int tail_len; |
| int removed; |
| BUG_ON(!th->t_trans_id); |
| |
| make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!! |
| tail_key.key_length = 4; |
| |
| tail_len = |
| (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; |
| while (tail_len) { |
| /* look for the last byte of the tail */ |
| if (search_for_position_by_key(inode->i_sb, &tail_key, path) == |
| POSITION_NOT_FOUND) |
| reiserfs_panic(inode->i_sb, |
| "vs-5615: indirect_to_direct_roll_back: found invalid item"); |
| RFALSE(path->pos_in_item != |
| ih_item_len(PATH_PITEM_HEAD(path)) - 1, |
| "vs-5616: appended bytes found"); |
| PATH_LAST_POSITION(path)--; |
| |
| removed = |
| reiserfs_delete_item(th, path, &tail_key, inode, |
| NULL /*unbh not needed */ ); |
| RFALSE(removed <= 0 |
| || removed > tail_len, |
| "vs-5617: there was tail %d bytes, removed item length %d bytes", |
| tail_len, removed); |
| tail_len -= removed; |
| set_cpu_key_k_offset(&tail_key, |
| cpu_key_k_offset(&tail_key) - removed); |
| } |
| reiserfs_warning(inode->i_sb, |
| "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space"); |
| //mark_file_without_tail (inode); |
| mark_inode_dirty(inode); |
| } |
| |
| /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ |
| int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, |
| struct path *p_s_path, |
| struct cpu_key *p_s_item_key, |
| struct inode *p_s_inode, |
| struct page *page, loff_t n_new_file_size) |
| { |
| struct super_block *p_s_sb = p_s_inode->i_sb; |
| /* Every function which is going to call do_balance must first |
| create a tree_balance structure. Then it must fill up this |
| structure by using the init_tb_struct and fix_nodes functions. |
| After that we can make tree balancing. */ |
| struct tree_balance s_cut_balance; |
| struct item_head *p_le_ih; |
| int n_cut_size = 0, /* Amount to be cut. */ |
| n_ret_value = CARRY_ON, n_removed = 0, /* Number of the removed unformatted nodes. */ |
| n_is_inode_locked = 0; |
| char c_mode; /* Mode of the balance. */ |
| int retval2 = -1; |
| int quota_cut_bytes; |
| loff_t tail_pos = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, |
| n_cut_size); |
| |
| /* Repeat this loop until we either cut the item without needing |
| to balance, or we fix_nodes without schedule occurring */ |
| while (1) { |
| /* Determine the balance mode, position of the first byte to |
| be cut, and size to be cut. In case of the indirect item |
| free unformatted nodes which are pointed to by the cut |
| pointers. */ |
| |
| c_mode = |
| prepare_for_delete_or_cut(th, p_s_inode, p_s_path, |
| p_s_item_key, &n_removed, |
| &n_cut_size, n_new_file_size); |
| if (c_mode == M_CONVERT) { |
| /* convert last unformatted node to direct item or leave |
| tail in the unformatted node */ |
| RFALSE(n_ret_value != CARRY_ON, |
| "PAP-5570: can not convert twice"); |
| |
| n_ret_value = |
| maybe_indirect_to_direct(th, p_s_inode, page, |
| p_s_path, p_s_item_key, |
| n_new_file_size, &c_mode); |
| if (c_mode == M_SKIP_BALANCING) |
| /* tail has been left in the unformatted node */ |
| return n_ret_value; |
| |
| n_is_inode_locked = 1; |
| |
| /* removing of last unformatted node will change value we |
| have to return to truncate. Save it */ |
| retval2 = n_ret_value; |
| /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1)); */ |
| |
| /* So, we have performed the first part of the conversion: |
| inserting the new direct item. Now we are removing the |
| last unformatted node pointer. Set key to search for |
| it. */ |
| set_cpu_key_k_type(p_s_item_key, TYPE_INDIRECT); |
| p_s_item_key->key_length = 4; |
| n_new_file_size -= |
| (n_new_file_size & (p_s_sb->s_blocksize - 1)); |
| tail_pos = n_new_file_size; |
| set_cpu_key_k_offset(p_s_item_key, n_new_file_size + 1); |
| if (search_for_position_by_key |
| (p_s_sb, p_s_item_key, |
| p_s_path) == POSITION_NOT_FOUND) { |
| print_block(PATH_PLAST_BUFFER(p_s_path), 3, |
| PATH_LAST_POSITION(p_s_path) - 1, |
| PATH_LAST_POSITION(p_s_path) + 1); |
| reiserfs_panic(p_s_sb, |
| "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", |
| p_s_item_key); |
| } |
| continue; |
| } |
| if (n_cut_size == 0) { |
| pathrelse(p_s_path); |
| return 0; |
| } |
| |
| s_cut_balance.insert_size[0] = n_cut_size; |
| |
| n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL); |
| if (n_ret_value != REPEAT_SEARCH) |
| break; |
| |
| PROC_INFO_INC(p_s_sb, cut_from_item_restarted); |
| |
| n_ret_value = |
| search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); |
| if (n_ret_value == POSITION_FOUND) |
| continue; |
| |
| reiserfs_warning(p_s_sb, |
| "PAP-5610: reiserfs_cut_from_item: item %K not found", |
| p_s_item_key); |
| unfix_nodes(&s_cut_balance); |
| return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT; |
| } /* while */ |
| |
| // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) |
| if (n_ret_value != CARRY_ON) { |
| if (n_is_inode_locked) { |
| // FIXME: this seems to be not needed: we are always able |
| // to cut item |
| indirect_to_direct_roll_back(th, p_s_inode, p_s_path); |
| } |
| if (n_ret_value == NO_DISK_SPACE) |
| reiserfs_warning(p_s_sb, "NO_DISK_SPACE"); |
| unfix_nodes(&s_cut_balance); |
| return -EIO; |
| } |
| |
| /* go ahead and perform balancing */ |
| |
| RFALSE(c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode"); |
| |
| /* Calculate number of bytes that need to be cut from the item. */ |
| quota_cut_bytes = |
| (c_mode == |
| M_DELETE) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance. |
| insert_size[0]; |
| if (retval2 == -1) |
| n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode); |
| else |
| n_ret_value = retval2; |
| |
| /* For direct items, we only change the quota when deleting the last |
| ** item. |
| */ |
| p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path); |
| if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) { |
| if (c_mode == M_DELETE && |
| (le_ih_k_offset(p_le_ih) & (p_s_sb->s_blocksize - 1)) == |
| 1) { |
| // FIXME: this is to keep 3.5 happy |
| REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX; |
| quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; |
| } else { |
| quota_cut_bytes = 0; |
| } |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| if (n_is_inode_locked) { |
| struct item_head *le_ih = |
| PATH_PITEM_HEAD(s_cut_balance.tb_path); |
| /* we are going to complete indirect2direct conversion. Make |
| sure, that we exactly remove last unformatted node pointer |
| of the item */ |
| if (!is_indirect_le_ih(le_ih)) |
| reiserfs_panic(p_s_sb, |
| "vs-5652: reiserfs_cut_from_item: " |
| "item must be indirect %h", le_ih); |
| |
| if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) |
| reiserfs_panic(p_s_sb, |
| "vs-5653: reiserfs_cut_from_item: " |
| "completing indirect2direct conversion indirect item %h " |
| "being deleted must be of 4 byte long", |
| le_ih); |
| |
| if (c_mode == M_CUT |
| && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { |
| reiserfs_panic(p_s_sb, |
| "vs-5654: reiserfs_cut_from_item: " |
| "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)", |
| le_ih, s_cut_balance.insert_size[0]); |
| } |
| /* it would be useful to make sure, that right neighboring |
| item is direct item of this file */ |
| } |
| #endif |
| |
| do_balance(&s_cut_balance, NULL, NULL, c_mode); |
| if (n_is_inode_locked) { |
| /* we've done an indirect->direct conversion. when the data block |
| ** was freed, it was removed from the list of blocks that must |
| ** be flushed before the transaction commits, make sure to |
| ** unmap and invalidate it |
| */ |
| unmap_buffers(page, tail_pos); |
| REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask; |
| } |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(p_s_inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota cut_from_item(): freeing %u id=%u type=%c", |
| quota_cut_bytes, p_s_inode->i_uid, '?'); |
| #endif |
| DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); |
| return n_ret_value; |
| } |
| |
| static void truncate_directory(struct reiserfs_transaction_handle *th, |
| struct inode *inode) |
| { |
| BUG_ON(!th->t_trans_id); |
| if (inode->i_nlink) |
| reiserfs_warning(inode->i_sb, |
| "vs-5655: truncate_directory: link count != 0"); |
| |
| set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); |
| set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); |
| reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); |
| reiserfs_update_sd(th, inode); |
| set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); |
| set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); |
| } |
| |
| /* Truncate file to the new size. Note, this must be called with a transaction |
| already started */ |
| int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, struct inode *p_s_inode, /* ->i_size contains new |
| size */ |
| struct page *page, /* up to date for last block */ |
| int update_timestamps /* when it is called by |
| file_release to convert |
| the tail - no timestamps |
| should be updated */ |
| ) |
| { |
| INITIALIZE_PATH(s_search_path); /* Path to the current object item. */ |
| struct item_head *p_le_ih; /* Pointer to an item header. */ |
| struct cpu_key s_item_key; /* Key to search for a previous file item. */ |
| loff_t n_file_size, /* Old file size. */ |
| n_new_file_size; /* New file size. */ |
| int n_deleted; /* Number of deleted or truncated bytes. */ |
| int retval; |
| int err = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| if (! |
| (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) |
| || S_ISLNK(p_s_inode->i_mode))) |
| return 0; |
| |
| if (S_ISDIR(p_s_inode->i_mode)) { |
| // deletion of directory - no need to update timestamps |
| truncate_directory(th, p_s_inode); |
| return 0; |
| } |
| |
| /* Get new file size. */ |
| n_new_file_size = p_s_inode->i_size; |
| |
| // FIXME: note, that key type is unimportant here |
| make_cpu_key(&s_item_key, p_s_inode, max_reiserfs_offset(p_s_inode), |
| TYPE_DIRECT, 3); |
| |
| retval = |
| search_for_position_by_key(p_s_inode->i_sb, &s_item_key, |
| &s_search_path); |
| if (retval == IO_ERROR) { |
| reiserfs_warning(p_s_inode->i_sb, |
| "vs-5657: reiserfs_do_truncate: " |
| "i/o failure occurred trying to truncate %K", |
| &s_item_key); |
| err = -EIO; |
| goto out; |
| } |
| if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { |
| reiserfs_warning(p_s_inode->i_sb, |
| "PAP-5660: reiserfs_do_truncate: " |
| "wrong result %d of search for %K", retval, |
| &s_item_key); |
| |
| err = -EIO; |
| goto out; |
| } |
| |
| s_search_path.pos_in_item--; |
| |
| /* Get real file size (total length of all file items) */ |
| p_le_ih = PATH_PITEM_HEAD(&s_search_path); |
| if (is_statdata_le_ih(p_le_ih)) |
| n_file_size = 0; |
| else { |
| loff_t offset = le_ih_k_offset(p_le_ih); |
| int bytes = |
| op_bytes_number(p_le_ih, p_s_inode->i_sb->s_blocksize); |
| |
| /* this may mismatch with real file size: if last direct item |
| had no padding zeros and last unformatted node had no free |
| space, this file would have this file size */ |
| n_file_size = offset + bytes - 1; |
| } |
| /* |
| * are we doing a full truncate or delete, if so |
| * kick in the reada code |
| */ |
| if (n_new_file_size == 0) |
| s_search_path.reada = PATH_READA | PATH_READA_BACK; |
| |
| if (n_file_size == 0 || n_file_size < n_new_file_size) { |
| goto update_and_out; |
| } |
| |
| /* Update key to search for the last file item. */ |
| set_cpu_key_k_offset(&s_item_key, n_file_size); |
| |
| do { |
| /* Cut or delete file item. */ |
| n_deleted = |
| reiserfs_cut_from_item(th, &s_search_path, &s_item_key, |
| p_s_inode, page, n_new_file_size); |
| if (n_deleted < 0) { |
| reiserfs_warning(p_s_inode->i_sb, |
| "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed"); |
| reiserfs_check_path(&s_search_path); |
| return 0; |
| } |
| |
| RFALSE(n_deleted > n_file_size, |
| "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", |
| n_deleted, n_file_size, &s_item_key); |
| |
| /* Change key to search the last file item. */ |
| n_file_size -= n_deleted; |
| |
| set_cpu_key_k_offset(&s_item_key, n_file_size); |
| |
| /* While there are bytes to truncate and previous file item is presented in the tree. */ |
| |
| /* |
| ** This loop could take a really long time, and could log |
| ** many more blocks than a transaction can hold. So, we do a polite |
| ** journal end here, and if the transaction needs ending, we make |
| ** sure the file is consistent before ending the current trans |
| ** and starting a new one |
| */ |
| if (journal_transaction_should_end(th, 0) || |
| reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { |
| int orig_len_alloc = th->t_blocks_allocated; |
| decrement_counters_in_path(&s_search_path); |
| |
| if (update_timestamps) { |
| p_s_inode->i_mtime = p_s_inode->i_ctime = |
| CURRENT_TIME_SEC; |
| } |
| reiserfs_update_sd(th, p_s_inode); |
| |
| err = journal_end(th, p_s_inode->i_sb, orig_len_alloc); |
| if (err) |
| goto out; |
| err = journal_begin(th, p_s_inode->i_sb, |
| JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; |
| if (err) |
| goto out; |
| reiserfs_update_inode_transaction(p_s_inode); |
| } |
| } while (n_file_size > ROUND_UP(n_new_file_size) && |
| search_for_position_by_key(p_s_inode->i_sb, &s_item_key, |
| &s_search_path) == POSITION_FOUND); |
| |
| RFALSE(n_file_size > ROUND_UP(n_new_file_size), |
| "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", |
| n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid); |
| |
| update_and_out: |
| if (update_timestamps) { |
| // this is truncate, not file closing |
| p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; |
| } |
| reiserfs_update_sd(th, p_s_inode); |
| |
| out: |
| pathrelse(&s_search_path); |
| return err; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| // this makes sure, that we __append__, not overwrite or add holes |
| static void check_research_for_paste(struct path *path, |
| const struct cpu_key *p_s_key) |
| { |
| struct item_head *found_ih = get_ih(path); |
| |
| if (is_direct_le_ih(found_ih)) { |
| if (le_ih_k_offset(found_ih) + |
| op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| cpu_key_k_offset(p_s_key) |
| || op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| pos_in_item(path)) |
| reiserfs_panic(NULL, |
| "PAP-5720: check_research_for_paste: " |
| "found direct item %h or position (%d) does not match to key %K", |
| found_ih, pos_in_item(path), p_s_key); |
| } |
| if (is_indirect_le_ih(found_ih)) { |
| if (le_ih_k_offset(found_ih) + |
| op_bytes_number(found_ih, |
| get_last_bh(path)->b_size) != |
| cpu_key_k_offset(p_s_key) |
| || I_UNFM_NUM(found_ih) != pos_in_item(path) |
| || get_ih_free_space(found_ih) != 0) |
| reiserfs_panic(NULL, |
| "PAP-5730: check_research_for_paste: " |
| "found indirect item (%h) or position (%d) does not match to key (%K)", |
| found_ih, pos_in_item(path), p_s_key); |
| } |
| } |
| #endif /* config reiserfs check */ |
| |
| /* Paste bytes to the existing item. Returns bytes number pasted into the item. */ |
| int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct path *p_s_search_path, /* Path to the pasted item. */ |
| const struct cpu_key *p_s_key, /* Key to search for the needed item. */ |
| struct inode *inode, /* Inode item belongs to */ |
| const char *p_c_body, /* Pointer to the bytes to paste. */ |
| int n_pasted_size) |
| { /* Size of pasted bytes. */ |
| struct tree_balance s_paste_balance; |
| int retval; |
| int fs_gen; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| fs_gen = get_generation(inode->i_sb); |
| |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota paste_into_item(): allocating %u id=%u type=%c", |
| n_pasted_size, inode->i_uid, |
| key2type(&(p_s_key->on_disk_key))); |
| #endif |
| |
| if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) { |
| pathrelse(p_s_search_path); |
| return -EDQUOT; |
| } |
| init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, |
| n_pasted_size); |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| s_paste_balance.key = p_s_key->on_disk_key; |
| #endif |
| |
| /* DQUOT_* can schedule, must check before the fix_nodes */ |
| if (fs_changed(fs_gen, inode->i_sb)) { |
| goto search_again; |
| } |
| |
| while ((retval = |
| fix_nodes(M_PASTE, &s_paste_balance, NULL, |
| p_c_body)) == REPEAT_SEARCH) { |
| search_again: |
| /* file system changed while we were in the fix_nodes */ |
| PROC_INFO_INC(th->t_super, paste_into_item_restarted); |
| retval = |
| search_for_position_by_key(th->t_super, p_s_key, |
| p_s_search_path); |
| if (retval == IO_ERROR) { |
| retval = -EIO; |
| goto error_out; |
| } |
| if (retval == POSITION_FOUND) { |
| reiserfs_warning(inode->i_sb, |
| "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", |
| p_s_key); |
| retval = -EEXIST; |
| goto error_out; |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| check_research_for_paste(p_s_search_path, p_s_key); |
| #endif |
| } |
| |
| /* Perform balancing after all resources are collected by fix_nodes, and |
| accessing them will not risk triggering schedule. */ |
| if (retval == CARRY_ON) { |
| do_balance(&s_paste_balance, NULL /*ih */ , p_c_body, M_PASTE); |
| return 0; |
| } |
| retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| error_out: |
| /* this also releases the path */ |
| unfix_nodes(&s_paste_balance); |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota paste_into_item(): freeing %u id=%u type=%c", |
| n_pasted_size, inode->i_uid, |
| key2type(&(p_s_key->on_disk_key))); |
| #endif |
| DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size); |
| return retval; |
| } |
| |
| /* Insert new item into the buffer at the path. */ |
| int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct path *p_s_path, /* Path to the inserteded item. */ |
| const struct cpu_key *key, struct item_head *p_s_ih, /* Pointer to the item header to insert. */ |
| struct inode *inode, const char *p_c_body) |
| { /* Pointer to the bytes to insert. */ |
| struct tree_balance s_ins_balance; |
| int retval; |
| int fs_gen = 0; |
| int quota_bytes = 0; |
| |
| BUG_ON(!th->t_trans_id); |
| |
| if (inode) { /* Do we count quotas for item? */ |
| fs_gen = get_generation(inode->i_sb); |
| quota_bytes = ih_item_len(p_s_ih); |
| |
| /* hack so the quota code doesn't have to guess if the file has |
| ** a tail, links are always tails, so there's no guessing needed |
| */ |
| if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_s_ih)) { |
| quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; |
| } |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, |
| "reiserquota insert_item(): allocating %u id=%u type=%c", |
| quota_bytes, inode->i_uid, head2type(p_s_ih)); |
| #endif |
| /* We can't dirty inode here. It would be immediately written but |
| * appropriate stat item isn't inserted yet... */ |
| if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) { |
| pathrelse(p_s_path); |
| return -EDQUOT; |
| } |
| } |
| init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, |
| IH_SIZE + ih_item_len(p_s_ih)); |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| s_ins_balance.key = key->on_disk_key; |
| #endif |
| /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ |
| if (inode && fs_changed(fs_gen, inode->i_sb)) { |
| goto search_again; |
| } |
| |
| while ((retval = |
| fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, |
| p_c_body)) == REPEAT_SEARCH) { |
| search_again: |
| /* file system changed while we were in the fix_nodes */ |
| PROC_INFO_INC(th->t_super, insert_item_restarted); |
| retval = search_item(th->t_super, key, p_s_path); |
| if (retval == IO_ERROR) { |
| retval = -EIO; |
| goto error_out; |
| } |
| if (retval == ITEM_FOUND) { |
| reiserfs_warning(th->t_super, |
| "PAP-5760: reiserfs_insert_item: " |
| "key %K already exists in the tree", |
| key); |
| retval = -EEXIST; |
| goto error_out; |
| } |
| } |
| |
| /* make balancing after all resources will be collected at a time */ |
| if (retval == CARRY_ON) { |
| do_balance(&s_ins_balance, p_s_ih, p_c_body, M_INSERT); |
| return 0; |
| } |
| |
| retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; |
| error_out: |
| /* also releases the path */ |
| unfix_nodes(&s_ins_balance); |
| #ifdef REISERQUOTA_DEBUG |
| reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, |
| "reiserquota insert_item(): freeing %u id=%u type=%c", |
| quota_bytes, inode->i_uid, head2type(p_s_ih)); |
| #endif |
| if (inode) |
| DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes); |
| return retval; |
| } |