| /* |
| * lm80.c - From lm_sensors, Linux kernel modules for hardware |
| * monitoring |
| * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> |
| * and Philip Edelbrock <phil@netroedge.com> |
| * |
| * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| |
| /* Addresses to scan */ |
| static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, |
| 0x2e, 0x2f, I2C_CLIENT_END }; |
| |
| /* Many LM80 constants specified below */ |
| |
| /* The LM80 registers */ |
| #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2) |
| #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2) |
| #define LM80_REG_IN(nr) (0x20 + (nr)) |
| |
| #define LM80_REG_FAN1 0x28 |
| #define LM80_REG_FAN2 0x29 |
| #define LM80_REG_FAN_MIN(nr) (0x3b + (nr)) |
| |
| #define LM80_REG_TEMP 0x27 |
| #define LM80_REG_TEMP_HOT_MAX 0x38 |
| #define LM80_REG_TEMP_HOT_HYST 0x39 |
| #define LM80_REG_TEMP_OS_MAX 0x3a |
| #define LM80_REG_TEMP_OS_HYST 0x3b |
| |
| #define LM80_REG_CONFIG 0x00 |
| #define LM80_REG_ALARM1 0x01 |
| #define LM80_REG_ALARM2 0x02 |
| #define LM80_REG_MASK1 0x03 |
| #define LM80_REG_MASK2 0x04 |
| #define LM80_REG_FANDIV 0x05 |
| #define LM80_REG_RES 0x06 |
| |
| #define LM96080_REG_CONV_RATE 0x07 |
| #define LM96080_REG_MAN_ID 0x3e |
| #define LM96080_REG_DEV_ID 0x3f |
| |
| |
| /* |
| * Conversions. Rounding and limit checking is only done on the TO_REG |
| * variants. Note that you should be a bit careful with which arguments |
| * these macros are called: arguments may be evaluated more than once. |
| * Fixing this is just not worth it. |
| */ |
| |
| #define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255)) |
| #define IN_FROM_REG(val) ((val) * 10) |
| |
| static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div) |
| { |
| if (rpm == 0) |
| return 255; |
| rpm = clamp_val(rpm, 1, 1000000); |
| return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); |
| } |
| |
| #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ |
| (val) == 255 ? 0 : 1350000/((div) * (val))) |
| |
| #define TEMP_FROM_REG(reg) ((reg) * 125 / 32) |
| #define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \ |
| -128000, 127000), 1000) << 8) |
| |
| #define DIV_FROM_REG(val) (1 << (val)) |
| |
| enum temp_index { |
| t_input = 0, |
| t_hot_max, |
| t_hot_hyst, |
| t_os_max, |
| t_os_hyst, |
| t_num_temp |
| }; |
| |
| static const u8 temp_regs[t_num_temp] = { |
| [t_input] = LM80_REG_TEMP, |
| [t_hot_max] = LM80_REG_TEMP_HOT_MAX, |
| [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST, |
| [t_os_max] = LM80_REG_TEMP_OS_MAX, |
| [t_os_hyst] = LM80_REG_TEMP_OS_HYST, |
| }; |
| |
| enum in_index { |
| i_input = 0, |
| i_max, |
| i_min, |
| i_num_in |
| }; |
| |
| enum fan_index { |
| f_input, |
| f_min, |
| f_num_fan |
| }; |
| |
| /* |
| * Client data (each client gets its own) |
| */ |
| |
| struct lm80_data { |
| struct i2c_client *client; |
| struct mutex update_lock; |
| char error; /* !=0 if error occurred during last update */ |
| char valid; /* !=0 if following fields are valid */ |
| unsigned long last_updated; /* In jiffies */ |
| |
| u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */ |
| u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */ |
| u8 fan_div[2]; /* Register encoding, shifted right */ |
| s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */ |
| u16 alarms; /* Register encoding, combined */ |
| }; |
| |
| static int lm80_read_value(struct i2c_client *client, u8 reg) |
| { |
| return i2c_smbus_read_byte_data(client, reg); |
| } |
| |
| static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value) |
| { |
| return i2c_smbus_write_byte_data(client, reg, value); |
| } |
| |
| /* Called when we have found a new LM80 and after read errors */ |
| static void lm80_init_client(struct i2c_client *client) |
| { |
| /* |
| * Reset all except Watchdog values and last conversion values |
| * This sets fan-divs to 2, among others. This makes most other |
| * initializations unnecessary |
| */ |
| lm80_write_value(client, LM80_REG_CONFIG, 0x80); |
| /* Set 11-bit temperature resolution */ |
| lm80_write_value(client, LM80_REG_RES, 0x08); |
| |
| /* Start monitoring */ |
| lm80_write_value(client, LM80_REG_CONFIG, 0x01); |
| } |
| |
| static struct lm80_data *lm80_update_device(struct device *dev) |
| { |
| struct lm80_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int i; |
| int rv; |
| int prev_rv; |
| struct lm80_data *ret = data; |
| |
| mutex_lock(&data->update_lock); |
| |
| if (data->error) |
| lm80_init_client(client); |
| |
| if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { |
| dev_dbg(dev, "Starting lm80 update\n"); |
| for (i = 0; i <= 6; i++) { |
| rv = lm80_read_value(client, LM80_REG_IN(i)); |
| if (rv < 0) |
| goto abort; |
| data->in[i_input][i] = rv; |
| |
| rv = lm80_read_value(client, LM80_REG_IN_MIN(i)); |
| if (rv < 0) |
| goto abort; |
| data->in[i_min][i] = rv; |
| |
| rv = lm80_read_value(client, LM80_REG_IN_MAX(i)); |
| if (rv < 0) |
| goto abort; |
| data->in[i_max][i] = rv; |
| } |
| |
| rv = lm80_read_value(client, LM80_REG_FAN1); |
| if (rv < 0) |
| goto abort; |
| data->fan[f_input][0] = rv; |
| |
| rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); |
| if (rv < 0) |
| goto abort; |
| data->fan[f_min][0] = rv; |
| |
| rv = lm80_read_value(client, LM80_REG_FAN2); |
| if (rv < 0) |
| goto abort; |
| data->fan[f_input][1] = rv; |
| |
| rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); |
| if (rv < 0) |
| goto abort; |
| data->fan[f_min][1] = rv; |
| |
| prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP); |
| if (rv < 0) |
| goto abort; |
| rv = lm80_read_value(client, LM80_REG_RES); |
| if (rv < 0) |
| goto abort; |
| data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0); |
| |
| for (i = t_input + 1; i < t_num_temp; i++) { |
| rv = lm80_read_value(client, temp_regs[i]); |
| if (rv < 0) |
| goto abort; |
| data->temp[i] = rv << 8; |
| } |
| |
| rv = lm80_read_value(client, LM80_REG_FANDIV); |
| if (rv < 0) |
| goto abort; |
| data->fan_div[0] = (rv >> 2) & 0x03; |
| data->fan_div[1] = (rv >> 4) & 0x03; |
| |
| prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1); |
| if (rv < 0) |
| goto abort; |
| rv = lm80_read_value(client, LM80_REG_ALARM2); |
| if (rv < 0) |
| goto abort; |
| data->alarms = prev_rv + (rv << 8); |
| |
| data->last_updated = jiffies; |
| data->valid = 1; |
| data->error = 0; |
| } |
| goto done; |
| |
| abort: |
| ret = ERR_PTR(rv); |
| data->valid = 0; |
| data->error = 1; |
| |
| done: |
| mutex_unlock(&data->update_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Sysfs stuff |
| */ |
| |
| static ssize_t show_in(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct lm80_data *data = lm80_update_device(dev); |
| int index = to_sensor_dev_attr_2(attr)->index; |
| int nr = to_sensor_dev_attr_2(attr)->nr; |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index])); |
| } |
| |
| static ssize_t set_in(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct lm80_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int index = to_sensor_dev_attr_2(attr)->index; |
| int nr = to_sensor_dev_attr_2(attr)->nr; |
| long val; |
| u8 reg; |
| int err = kstrtol(buf, 10, &val); |
| if (err < 0) |
| return err; |
| |
| reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index); |
| |
| mutex_lock(&data->update_lock); |
| data->in[nr][index] = IN_TO_REG(val); |
| lm80_write_value(client, reg, data->in[nr][index]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t show_fan(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int index = to_sensor_dev_attr_2(attr)->index; |
| int nr = to_sensor_dev_attr_2(attr)->nr; |
| struct lm80_data *data = lm80_update_device(dev); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index], |
| DIV_FROM_REG(data->fan_div[index]))); |
| } |
| |
| static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct lm80_data *data = lm80_update_device(dev); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); |
| } |
| |
| static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int index = to_sensor_dev_attr_2(attr)->index; |
| int nr = to_sensor_dev_attr_2(attr)->nr; |
| struct lm80_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| unsigned long val; |
| int err = kstrtoul(buf, 10, &val); |
| if (err < 0) |
| return err; |
| |
| mutex_lock(&data->update_lock); |
| data->fan[nr][index] = FAN_TO_REG(val, |
| DIV_FROM_REG(data->fan_div[index])); |
| lm80_write_value(client, LM80_REG_FAN_MIN(index + 1), |
| data->fan[nr][index]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| /* |
| * Note: we save and restore the fan minimum here, because its value is |
| * determined in part by the fan divisor. This follows the principle of |
| * least surprise; the user doesn't expect the fan minimum to change just |
| * because the divisor changed. |
| */ |
| static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct lm80_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| unsigned long min, val; |
| u8 reg; |
| int rv; |
| |
| rv = kstrtoul(buf, 10, &val); |
| if (rv < 0) |
| return rv; |
| |
| /* Save fan_min */ |
| mutex_lock(&data->update_lock); |
| min = FAN_FROM_REG(data->fan[f_min][nr], |
| DIV_FROM_REG(data->fan_div[nr])); |
| |
| switch (val) { |
| case 1: |
| data->fan_div[nr] = 0; |
| break; |
| case 2: |
| data->fan_div[nr] = 1; |
| break; |
| case 4: |
| data->fan_div[nr] = 2; |
| break; |
| case 8: |
| data->fan_div[nr] = 3; |
| break; |
| default: |
| dev_err(dev, |
| "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", |
| val); |
| mutex_unlock(&data->update_lock); |
| return -EINVAL; |
| } |
| |
| rv = lm80_read_value(client, LM80_REG_FANDIV); |
| if (rv < 0) |
| return rv; |
| reg = (rv & ~(3 << (2 * (nr + 1)))) |
| | (data->fan_div[nr] << (2 * (nr + 1))); |
| lm80_write_value(client, LM80_REG_FANDIV, reg); |
| |
| /* Restore fan_min */ |
| data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); |
| lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), |
| data->fan[f_min][nr]); |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, |
| char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| struct lm80_data *data = lm80_update_device(dev); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); |
| } |
| |
| static ssize_t set_temp(struct device *dev, struct device_attribute *devattr, |
| const char *buf, size_t count) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| struct lm80_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = attr->index; |
| long val; |
| int err = kstrtol(buf, 10, &val); |
| if (err < 0) |
| return err; |
| |
| mutex_lock(&data->update_lock); |
| data->temp[nr] = TEMP_TO_REG(val); |
| lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct lm80_data *data = lm80_update_device(dev); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%u\n", data->alarms); |
| } |
| |
| static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int bitnr = to_sensor_dev_attr(attr)->index; |
| struct lm80_data *data = lm80_update_device(dev); |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); |
| } |
| |
| static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 0); |
| static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 1); |
| static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 2); |
| static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 3); |
| static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 4); |
| static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 5); |
| static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_min, 6); |
| static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 0); |
| static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 1); |
| static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 2); |
| static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 3); |
| static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 4); |
| static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 5); |
| static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO, |
| show_in, set_in, i_max, 6); |
| static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0); |
| static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1); |
| static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2); |
| static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3); |
| static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4); |
| static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5); |
| static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6); |
| static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO, |
| show_fan, set_fan_min, f_min, 0); |
| static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO, |
| show_fan, set_fan_min, f_min, 1); |
| static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0); |
| static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1); |
| static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, |
| show_fan_div, set_fan_div, 0); |
| static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, |
| show_fan_div, set_fan_div, 1); |
| static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input); |
| static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp, |
| set_temp, t_hot_max); |
| static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp, |
| set_temp, t_hot_hyst); |
| static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp, |
| set_temp, t_os_max); |
| static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp, |
| set_temp, t_os_hyst); |
| static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); |
| static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); |
| static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); |
| static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); |
| static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); |
| static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4); |
| static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5); |
| static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6); |
| static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); |
| static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); |
| static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8); |
| static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13); |
| |
| /* |
| * Real code |
| */ |
| |
| static struct attribute *lm80_attrs[] = { |
| &sensor_dev_attr_in0_min.dev_attr.attr, |
| &sensor_dev_attr_in1_min.dev_attr.attr, |
| &sensor_dev_attr_in2_min.dev_attr.attr, |
| &sensor_dev_attr_in3_min.dev_attr.attr, |
| &sensor_dev_attr_in4_min.dev_attr.attr, |
| &sensor_dev_attr_in5_min.dev_attr.attr, |
| &sensor_dev_attr_in6_min.dev_attr.attr, |
| &sensor_dev_attr_in0_max.dev_attr.attr, |
| &sensor_dev_attr_in1_max.dev_attr.attr, |
| &sensor_dev_attr_in2_max.dev_attr.attr, |
| &sensor_dev_attr_in3_max.dev_attr.attr, |
| &sensor_dev_attr_in4_max.dev_attr.attr, |
| &sensor_dev_attr_in5_max.dev_attr.attr, |
| &sensor_dev_attr_in6_max.dev_attr.attr, |
| &sensor_dev_attr_in0_input.dev_attr.attr, |
| &sensor_dev_attr_in1_input.dev_attr.attr, |
| &sensor_dev_attr_in2_input.dev_attr.attr, |
| &sensor_dev_attr_in3_input.dev_attr.attr, |
| &sensor_dev_attr_in4_input.dev_attr.attr, |
| &sensor_dev_attr_in5_input.dev_attr.attr, |
| &sensor_dev_attr_in6_input.dev_attr.attr, |
| &sensor_dev_attr_fan1_min.dev_attr.attr, |
| &sensor_dev_attr_fan2_min.dev_attr.attr, |
| &sensor_dev_attr_fan1_input.dev_attr.attr, |
| &sensor_dev_attr_fan2_input.dev_attr.attr, |
| &sensor_dev_attr_fan1_div.dev_attr.attr, |
| &sensor_dev_attr_fan2_div.dev_attr.attr, |
| &sensor_dev_attr_temp1_input.dev_attr.attr, |
| &sensor_dev_attr_temp1_max.dev_attr.attr, |
| &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, |
| &dev_attr_alarms.attr, |
| &sensor_dev_attr_in0_alarm.dev_attr.attr, |
| &sensor_dev_attr_in1_alarm.dev_attr.attr, |
| &sensor_dev_attr_in2_alarm.dev_attr.attr, |
| &sensor_dev_attr_in3_alarm.dev_attr.attr, |
| &sensor_dev_attr_in4_alarm.dev_attr.attr, |
| &sensor_dev_attr_in5_alarm.dev_attr.attr, |
| &sensor_dev_attr_in6_alarm.dev_attr.attr, |
| &sensor_dev_attr_fan1_alarm.dev_attr.attr, |
| &sensor_dev_attr_fan2_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(lm80); |
| |
| /* Return 0 if detection is successful, -ENODEV otherwise */ |
| static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| int i, cur, man_id, dev_id; |
| const char *name = NULL; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -ENODEV; |
| |
| /* First check for unused bits, common to both chip types */ |
| if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0) |
| || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80)) |
| return -ENODEV; |
| |
| /* |
| * The LM96080 has manufacturer and stepping/die rev registers so we |
| * can just check that. The LM80 does not have such registers so we |
| * have to use a more expensive trick. |
| */ |
| man_id = lm80_read_value(client, LM96080_REG_MAN_ID); |
| dev_id = lm80_read_value(client, LM96080_REG_DEV_ID); |
| if (man_id == 0x01 && dev_id == 0x08) { |
| /* Check more unused bits for confirmation */ |
| if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe) |
| return -ENODEV; |
| |
| name = "lm96080"; |
| } else { |
| /* Check 6-bit addressing */ |
| for (i = 0x2a; i <= 0x3d; i++) { |
| cur = i2c_smbus_read_byte_data(client, i); |
| if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur) |
| || (i2c_smbus_read_byte_data(client, i + 0x80) != cur) |
| || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur)) |
| return -ENODEV; |
| } |
| |
| name = "lm80"; |
| } |
| |
| strlcpy(info->type, name, I2C_NAME_SIZE); |
| |
| return 0; |
| } |
| |
| static int lm80_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct device *dev = &client->dev; |
| struct device *hwmon_dev; |
| struct lm80_data *data; |
| int rv; |
| |
| data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->client = client; |
| mutex_init(&data->update_lock); |
| |
| /* Initialize the LM80 chip */ |
| lm80_init_client(client); |
| |
| /* A few vars need to be filled upon startup */ |
| rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); |
| if (rv < 0) |
| return rv; |
| data->fan[f_min][0] = rv; |
| rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); |
| if (rv < 0) |
| return rv; |
| data->fan[f_min][1] = rv; |
| |
| hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, |
| data, lm80_groups); |
| |
| return PTR_ERR_OR_ZERO(hwmon_dev); |
| } |
| |
| /* |
| * Driver data (common to all clients) |
| */ |
| |
| static const struct i2c_device_id lm80_id[] = { |
| { "lm80", 0 }, |
| { "lm96080", 1 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, lm80_id); |
| |
| static struct i2c_driver lm80_driver = { |
| .class = I2C_CLASS_HWMON, |
| .driver = { |
| .name = "lm80", |
| }, |
| .probe = lm80_probe, |
| .id_table = lm80_id, |
| .detect = lm80_detect, |
| .address_list = normal_i2c, |
| }; |
| |
| module_i2c_driver(lm80_driver); |
| |
| MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " |
| "Philip Edelbrock <phil@netroedge.com>"); |
| MODULE_DESCRIPTION("LM80 driver"); |
| MODULE_LICENSE("GPL"); |