| /* Copyright (c) 2002,2007-2018, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <asm/cacheflush.h> |
| #include <linux/slab.h> |
| #include <linux/kmemleak.h> |
| #include <linux/highmem.h> |
| #include <linux/scatterlist.h> |
| #include <soc/qcom/scm.h> |
| #include <soc/qcom/secure_buffer.h> |
| #include <linux/ratelimit.h> |
| |
| #include "kgsl.h" |
| #include "kgsl_sharedmem.h" |
| #include "kgsl_device.h" |
| #include "kgsl_log.h" |
| #include "kgsl_mmu.h" |
| |
| /* |
| * The user can set this from debugfs to force failed memory allocations to |
| * fail without trying OOM first. This is a debug setting useful for |
| * stress applications that want to test failure cases without pushing the |
| * system into unrecoverable OOM panics |
| */ |
| |
| static bool sharedmem_noretry_flag; |
| |
| static DEFINE_MUTEX(kernel_map_global_lock); |
| |
| struct cp2_mem_chunks { |
| unsigned int chunk_list; |
| unsigned int chunk_list_size; |
| unsigned int chunk_size; |
| } __attribute__ ((__packed__)); |
| |
| struct cp2_lock_req { |
| struct cp2_mem_chunks chunks; |
| unsigned int mem_usage; |
| unsigned int lock; |
| } __attribute__ ((__packed__)); |
| |
| #define MEM_PROTECT_LOCK_ID2 0x0A |
| #define MEM_PROTECT_LOCK_ID2_FLAT 0x11 |
| |
| /* An attribute for showing per-process memory statistics */ |
| struct kgsl_mem_entry_attribute { |
| struct attribute attr; |
| int memtype; |
| ssize_t (*show)(struct kgsl_process_private *priv, |
| int type, char *buf); |
| }; |
| |
| #define to_mem_entry_attr(a) \ |
| container_of(a, struct kgsl_mem_entry_attribute, attr) |
| |
| #define __MEM_ENTRY_ATTR(_type, _name, _show) \ |
| { \ |
| .attr = { .name = __stringify(_name), .mode = 0444 }, \ |
| .memtype = _type, \ |
| .show = _show, \ |
| } |
| |
| /* |
| * A structure to hold the attributes for a particular memory type. |
| * For each memory type in each process we store the current and maximum |
| * memory usage and display the counts in sysfs. This structure and |
| * the following macro allow us to simplify the definition for those |
| * adding new memory types |
| */ |
| |
| struct mem_entry_stats { |
| int memtype; |
| struct kgsl_mem_entry_attribute attr; |
| struct kgsl_mem_entry_attribute max_attr; |
| }; |
| |
| |
| #define MEM_ENTRY_STAT(_type, _name) \ |
| { \ |
| .memtype = _type, \ |
| .attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \ |
| .max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \ |
| mem_entry_max_show), \ |
| } |
| |
| static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc); |
| |
| static ssize_t |
| imported_mem_show(struct kgsl_process_private *priv, |
| int type, char *buf) |
| { |
| struct kgsl_mem_entry *entry; |
| uint64_t imported_mem = 0; |
| int id = 0; |
| |
| spin_lock(&priv->mem_lock); |
| for (entry = idr_get_next(&priv->mem_idr, &id); entry; |
| id++, entry = idr_get_next(&priv->mem_idr, &id)) { |
| |
| int egl_surface_count = 0, egl_image_count = 0; |
| struct kgsl_memdesc *m; |
| |
| if (kgsl_mem_entry_get(entry) == 0) |
| continue; |
| spin_unlock(&priv->mem_lock); |
| |
| m = &entry->memdesc; |
| if (kgsl_memdesc_usermem_type(m) == KGSL_MEM_ENTRY_ION) { |
| kgsl_get_egl_counts(entry, &egl_surface_count, |
| &egl_image_count); |
| |
| if (kgsl_memdesc_get_memtype(m) == |
| KGSL_MEMTYPE_EGL_SURFACE) |
| imported_mem += m->size; |
| else if (egl_surface_count == 0) { |
| uint64_t size = m->size; |
| |
| do_div(size, (egl_image_count ? |
| egl_image_count : 1)); |
| imported_mem += size; |
| } |
| } |
| |
| kgsl_mem_entry_put(entry); |
| spin_lock(&priv->mem_lock); |
| } |
| spin_unlock(&priv->mem_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", imported_mem); |
| } |
| |
| static ssize_t |
| gpumem_mapped_show(struct kgsl_process_private *priv, |
| int type, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", |
| priv->gpumem_mapped); |
| } |
| |
| static ssize_t |
| gpumem_unmapped_show(struct kgsl_process_private *priv, int type, char *buf) |
| { |
| if (priv->gpumem_mapped > priv->stats[type].cur) |
| return -EIO; |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", |
| priv->stats[type].cur - priv->gpumem_mapped); |
| } |
| |
| static struct kgsl_mem_entry_attribute debug_memstats[] = { |
| __MEM_ENTRY_ATTR(0, imported_mem, imported_mem_show), |
| __MEM_ENTRY_ATTR(0, gpumem_mapped, gpumem_mapped_show), |
| __MEM_ENTRY_ATTR(KGSL_MEM_ENTRY_KERNEL, gpumem_unmapped, |
| gpumem_unmapped_show), |
| }; |
| |
| /** |
| * Show the current amount of memory allocated for the given memtype |
| */ |
| |
| static ssize_t |
| mem_entry_show(struct kgsl_process_private *priv, int type, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].cur); |
| } |
| |
| /** |
| * Show the maximum memory allocated for the given memtype through the life of |
| * the process |
| */ |
| |
| static ssize_t |
| mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].max); |
| } |
| |
| static ssize_t mem_entry_sysfs_show(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr); |
| struct kgsl_process_private *priv; |
| ssize_t ret; |
| |
| /* |
| * kgsl_process_init_sysfs takes a refcount to the process_private, |
| * which is put when the kobj is released. This implies that priv will |
| * not be freed until this function completes, and no further locking |
| * is needed. |
| */ |
| priv = kobj ? container_of(kobj, struct kgsl_process_private, kobj) : |
| NULL; |
| |
| if (priv && pattr->show) |
| ret = pattr->show(priv, pattr->memtype, buf); |
| else |
| ret = -EIO; |
| |
| return ret; |
| } |
| |
| static void mem_entry_release(struct kobject *kobj) |
| { |
| struct kgsl_process_private *priv; |
| |
| priv = container_of(kobj, struct kgsl_process_private, kobj); |
| /* Put the refcount we got in kgsl_process_init_sysfs */ |
| kgsl_process_private_put(priv); |
| } |
| |
| static const struct sysfs_ops mem_entry_sysfs_ops = { |
| .show = mem_entry_sysfs_show, |
| }; |
| |
| static struct kobj_type ktype_mem_entry = { |
| .sysfs_ops = &mem_entry_sysfs_ops, |
| .release = &mem_entry_release, |
| }; |
| |
| static struct mem_entry_stats mem_stats[] = { |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel), |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user), |
| #ifdef CONFIG_ION |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion), |
| #endif |
| }; |
| |
| void |
| kgsl_process_uninit_sysfs(struct kgsl_process_private *private) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { |
| sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr); |
| sysfs_remove_file(&private->kobj, |
| &mem_stats[i].max_attr.attr); |
| } |
| |
| kobject_put(&private->kobj); |
| } |
| |
| /** |
| * kgsl_process_init_sysfs() - Initialize and create sysfs files for a process |
| * |
| * @device: Pointer to kgsl device struct |
| * @private: Pointer to the structure for the process |
| * |
| * kgsl_process_init_sysfs() is called at the time of creating the |
| * process struct when a process opens the kgsl device for the first time. |
| * This function creates the sysfs files for the process. |
| */ |
| void kgsl_process_init_sysfs(struct kgsl_device *device, |
| struct kgsl_process_private *private) |
| { |
| unsigned char name[16]; |
| int i; |
| |
| /* Keep private valid until the sysfs enries are removed. */ |
| kgsl_process_private_get(private); |
| |
| snprintf(name, sizeof(name), "%d", private->pid); |
| |
| if (kobject_init_and_add(&private->kobj, &ktype_mem_entry, |
| kgsl_driver.prockobj, name)) { |
| WARN(1, "Unable to add sysfs dir '%s'\n", name); |
| return; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { |
| if (sysfs_create_file(&private->kobj, |
| &mem_stats[i].attr.attr)) |
| WARN(1, "Couldn't create sysfs file '%s'\n", |
| mem_stats[i].attr.attr.name); |
| |
| if (sysfs_create_file(&private->kobj, |
| &mem_stats[i].max_attr.attr)) |
| WARN(1, "Couldn't create sysfs file '%s'\n", |
| mem_stats[i].max_attr.attr.name); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(debug_memstats); i++) { |
| if (sysfs_create_file(&private->kobj, |
| &debug_memstats[i].attr)) |
| WARN(1, "Couldn't create sysfs file '%s'\n", |
| debug_memstats[i].attr.name); |
| } |
| } |
| |
| static ssize_t kgsl_drv_memstat_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| uint64_t val = 0; |
| |
| if (!strcmp(attr->attr.name, "vmalloc")) |
| val = atomic_long_read(&kgsl_driver.stats.vmalloc); |
| else if (!strcmp(attr->attr.name, "vmalloc_max")) |
| val = atomic_long_read(&kgsl_driver.stats.vmalloc_max); |
| else if (!strcmp(attr->attr.name, "page_alloc")) |
| val = atomic_long_read(&kgsl_driver.stats.page_alloc); |
| else if (!strcmp(attr->attr.name, "page_alloc_max")) |
| val = atomic_long_read(&kgsl_driver.stats.page_alloc_max); |
| else if (!strcmp(attr->attr.name, "coherent")) |
| val = atomic_long_read(&kgsl_driver.stats.coherent); |
| else if (!strcmp(attr->attr.name, "coherent_max")) |
| val = atomic_long_read(&kgsl_driver.stats.coherent_max); |
| else if (!strcmp(attr->attr.name, "secure")) |
| val = atomic_long_read(&kgsl_driver.stats.secure); |
| else if (!strcmp(attr->attr.name, "secure_max")) |
| val = atomic_long_read(&kgsl_driver.stats.secure_max); |
| else if (!strcmp(attr->attr.name, "mapped")) |
| val = atomic_long_read(&kgsl_driver.stats.mapped); |
| else if (!strcmp(attr->attr.name, "mapped_max")) |
| val = atomic_long_read(&kgsl_driver.stats.mapped_max); |
| |
| return snprintf(buf, PAGE_SIZE, "%llu\n", val); |
| } |
| |
| static ssize_t kgsl_drv_full_cache_threshold_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret; |
| unsigned int thresh = 0; |
| |
| ret = kgsl_sysfs_store(buf, &thresh); |
| if (ret) |
| return ret; |
| |
| kgsl_driver.full_cache_threshold = thresh; |
| return count; |
| } |
| |
| static ssize_t kgsl_drv_full_cache_threshold_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", |
| kgsl_driver.full_cache_threshold); |
| } |
| |
| static DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(secure, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(secure_max, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL); |
| static DEVICE_ATTR(full_cache_threshold, 0644, |
| kgsl_drv_full_cache_threshold_show, |
| kgsl_drv_full_cache_threshold_store); |
| |
| static const struct device_attribute *drv_attr_list[] = { |
| &dev_attr_vmalloc, |
| &dev_attr_vmalloc_max, |
| &dev_attr_page_alloc, |
| &dev_attr_page_alloc_max, |
| &dev_attr_coherent, |
| &dev_attr_coherent_max, |
| &dev_attr_secure, |
| &dev_attr_secure_max, |
| &dev_attr_mapped, |
| &dev_attr_mapped_max, |
| &dev_attr_full_cache_threshold, |
| NULL |
| }; |
| |
| void |
| kgsl_sharedmem_uninit_sysfs(void) |
| { |
| kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list); |
| } |
| |
| int |
| kgsl_sharedmem_init_sysfs(void) |
| { |
| return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev, |
| drv_attr_list); |
| } |
| |
| static int kgsl_cma_alloc_secure(struct kgsl_device *device, |
| struct kgsl_memdesc *memdesc, uint64_t size); |
| |
| static int kgsl_allocate_secure(struct kgsl_device *device, |
| struct kgsl_memdesc *memdesc, |
| uint64_t size) { |
| int ret; |
| |
| if (MMU_FEATURE(&device->mmu, KGSL_MMU_HYP_SECURE_ALLOC)) |
| ret = kgsl_sharedmem_page_alloc_user(memdesc, size); |
| else |
| ret = kgsl_cma_alloc_secure(device, memdesc, size); |
| |
| return ret; |
| } |
| |
| int kgsl_allocate_user(struct kgsl_device *device, |
| struct kgsl_memdesc *memdesc, |
| uint64_t size, uint64_t flags) |
| { |
| int ret; |
| |
| memdesc->flags = flags; |
| |
| if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE) |
| ret = kgsl_sharedmem_alloc_contig(device, memdesc, size); |
| else if (flags & KGSL_MEMFLAGS_SECURE) |
| ret = kgsl_allocate_secure(device, memdesc, size); |
| else |
| ret = kgsl_sharedmem_page_alloc_user(memdesc, size); |
| |
| return ret; |
| } |
| |
| static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc, |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| int pgoff; |
| unsigned int offset; |
| |
| offset = ((unsigned long) vmf->virtual_address - vma->vm_start); |
| |
| if (offset >= memdesc->size) |
| return VM_FAULT_SIGBUS; |
| |
| pgoff = offset >> PAGE_SHIFT; |
| |
| if (pgoff < memdesc->page_count) { |
| struct page *page = memdesc->pages[pgoff]; |
| |
| get_page(page); |
| vmf->page = page; |
| |
| memdesc->mapsize += PAGE_SIZE; |
| |
| return 0; |
| } |
| |
| return VM_FAULT_SIGBUS; |
| } |
| |
| /* |
| * kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc |
| * |
| * @memdesc: The memory descriptor which contains information about the memory |
| * |
| * Unmaps the memory mapped into kernel address space |
| */ |
| static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc) |
| { |
| mutex_lock(&kernel_map_global_lock); |
| if (!memdesc->hostptr) { |
| /* If already unmapped the refcount should be 0 */ |
| WARN_ON(memdesc->hostptr_count); |
| goto done; |
| } |
| memdesc->hostptr_count--; |
| if (memdesc->hostptr_count) |
| goto done; |
| vunmap(memdesc->hostptr); |
| |
| atomic_long_sub(memdesc->size, &kgsl_driver.stats.vmalloc); |
| memdesc->hostptr = NULL; |
| done: |
| mutex_unlock(&kernel_map_global_lock); |
| } |
| |
| static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc) |
| { |
| kgsl_page_alloc_unmap_kernel(memdesc); |
| /* we certainly do not expect the hostptr to still be mapped */ |
| BUG_ON(memdesc->hostptr); |
| |
| /* Secure buffers need to be unlocked before being freed */ |
| if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) { |
| int ret; |
| int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC; |
| int source_vm = VMID_CP_PIXEL; |
| int dest_vm = VMID_HLOS; |
| |
| ret = hyp_assign_table(memdesc->sgt, &source_vm, 1, |
| &dest_vm, &dest_perms, 1); |
| if (ret) { |
| pr_err("Secure buf unlock failed: gpuaddr: %llx size: %llx ret: %d\n", |
| memdesc->gpuaddr, memdesc->size, ret); |
| BUG(); |
| } |
| |
| atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure); |
| } else { |
| atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_alloc); |
| } |
| |
| if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) { |
| struct sg_page_iter sg_iter; |
| |
| for_each_sg_page(memdesc->sgt->sgl, &sg_iter, |
| memdesc->sgt->nents, 0) |
| ClearPagePrivate(sg_page_iter_page(&sg_iter)); |
| |
| } |
| |
| /* Free pages using the pages array for non secure paged memory */ |
| if (memdesc->pages != NULL) |
| kgsl_pool_free_pages(memdesc->pages, memdesc->page_count); |
| else |
| kgsl_pool_free_sgt(memdesc->sgt); |
| |
| } |
| |
| /* |
| * kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address |
| * space |
| * |
| * @memdesc - The memory descriptor which contains information about the memory |
| * |
| * Return: 0 on success else error code |
| */ |
| static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc) |
| { |
| int ret = 0; |
| |
| /* Sanity check - don't map more than we could possibly chew */ |
| if (memdesc->size > ULONG_MAX) |
| return -ENOMEM; |
| |
| mutex_lock(&kernel_map_global_lock); |
| if ((!memdesc->hostptr) && (memdesc->pages != NULL)) { |
| pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); |
| |
| memdesc->hostptr = vmap(memdesc->pages, memdesc->page_count, |
| VM_IOREMAP, page_prot); |
| if (memdesc->hostptr) |
| KGSL_STATS_ADD(memdesc->size, |
| &kgsl_driver.stats.vmalloc, |
| &kgsl_driver.stats.vmalloc_max); |
| else |
| ret = -ENOMEM; |
| } |
| if (memdesc->hostptr) |
| memdesc->hostptr_count++; |
| |
| mutex_unlock(&kernel_map_global_lock); |
| |
| return ret; |
| } |
| |
| static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc, |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| unsigned long offset, pfn; |
| int ret; |
| |
| offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >> |
| PAGE_SHIFT; |
| |
| pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset; |
| ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn); |
| |
| if (ret == -ENOMEM || ret == -EAGAIN) |
| return VM_FAULT_OOM; |
| else if (ret == -EFAULT) |
| return VM_FAULT_SIGBUS; |
| |
| memdesc->mapsize += PAGE_SIZE; |
| |
| return VM_FAULT_NOPAGE; |
| } |
| |
| static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc) |
| { |
| unsigned long attrs = 0; |
| |
| if (memdesc->hostptr) { |
| if (memdesc->priv & KGSL_MEMDESC_SECURE) { |
| atomic_long_sub(memdesc->size, |
| &kgsl_driver.stats.secure); |
| |
| kgsl_cma_unlock_secure(memdesc); |
| attrs = (unsigned long)&memdesc->attrs; |
| } else |
| atomic_long_sub(memdesc->size, |
| &kgsl_driver.stats.coherent); |
| |
| dma_free_attrs(memdesc->dev, (size_t) memdesc->size, |
| memdesc->hostptr, memdesc->physaddr, attrs); |
| } |
| } |
| |
| /* Global */ |
| static struct kgsl_memdesc_ops kgsl_page_alloc_ops = { |
| .free = kgsl_page_alloc_free, |
| .vmflags = VM_DONTDUMP | VM_DONTEXPAND | VM_DONTCOPY, |
| .vmfault = kgsl_page_alloc_vmfault, |
| .map_kernel = kgsl_page_alloc_map_kernel, |
| .unmap_kernel = kgsl_page_alloc_unmap_kernel, |
| }; |
| |
| /* CMA ops - used during NOMMU mode */ |
| static struct kgsl_memdesc_ops kgsl_cma_ops = { |
| .free = kgsl_cma_coherent_free, |
| .vmflags = VM_DONTDUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY, |
| .vmfault = kgsl_contiguous_vmfault, |
| }; |
| |
| #ifdef CONFIG_ARM64 |
| /* |
| * For security reasons, ARMv8 doesn't allow invalidate only on read-only |
| * mapping. It would be performance prohibitive to read the permissions on |
| * the buffer before the operation. Every use case that we have found does not |
| * assume that an invalidate operation is invalidate only, so we feel |
| * comfortable turning invalidates into flushes for these targets |
| */ |
| static inline unsigned int _fixup_cache_range_op(unsigned int op) |
| { |
| if (op == KGSL_CACHE_OP_INV) |
| return KGSL_CACHE_OP_FLUSH; |
| return op; |
| } |
| #else |
| static inline unsigned int _fixup_cache_range_op(unsigned int op) |
| { |
| return op; |
| } |
| #endif |
| |
| static inline void _cache_op(unsigned int op, |
| const void *start, const void *end) |
| { |
| /* |
| * The dmac_xxx_range functions handle addresses and sizes that |
| * are not aligned to the cacheline size correctly. |
| */ |
| switch (_fixup_cache_range_op(op)) { |
| case KGSL_CACHE_OP_FLUSH: |
| dmac_flush_range(start, end); |
| break; |
| case KGSL_CACHE_OP_CLEAN: |
| dmac_clean_range(start, end); |
| break; |
| case KGSL_CACHE_OP_INV: |
| dmac_inv_range(start, end); |
| break; |
| } |
| } |
| |
| static int kgsl_do_cache_op(struct page *page, void *addr, |
| uint64_t offset, uint64_t size, unsigned int op) |
| { |
| if (page != NULL) { |
| unsigned long pfn = page_to_pfn(page) + offset / PAGE_SIZE; |
| /* |
| * page_address() returns the kernel virtual address of page. |
| * For high memory kernel virtual address exists only if page |
| * has been mapped. So use a version of kmap rather than |
| * page_address() for high memory. |
| */ |
| if (PageHighMem(page)) { |
| offset &= ~PAGE_MASK; |
| |
| do { |
| unsigned int len = size; |
| |
| if (len + offset > PAGE_SIZE) |
| len = PAGE_SIZE - offset; |
| |
| page = pfn_to_page(pfn++); |
| addr = kmap_atomic(page); |
| _cache_op(op, addr + offset, |
| addr + offset + len); |
| kunmap_atomic(addr); |
| |
| size -= len; |
| offset = 0; |
| } while (size); |
| |
| return 0; |
| } |
| |
| addr = page_address(page); |
| } |
| |
| _cache_op(op, addr + offset, addr + offset + (size_t) size); |
| return 0; |
| } |
| |
| int kgsl_cache_range_op(struct kgsl_memdesc *memdesc, uint64_t offset, |
| uint64_t size, unsigned int op) |
| { |
| void *addr = NULL; |
| struct sg_table *sgt = NULL; |
| struct scatterlist *sg; |
| unsigned int i, pos = 0; |
| int ret = 0; |
| |
| if (size == 0 || size > UINT_MAX) |
| return -EINVAL; |
| |
| /* Make sure that the offset + size does not overflow */ |
| if ((offset + size < offset) || (offset + size < size)) |
| return -ERANGE; |
| |
| /* Check that offset+length does not exceed memdesc->size */ |
| if (offset + size > memdesc->size) |
| return -ERANGE; |
| |
| if (memdesc->hostptr) { |
| addr = memdesc->hostptr; |
| /* Make sure the offset + size do not overflow the address */ |
| if (addr + ((size_t) offset + (size_t) size) < addr) |
| return -ERANGE; |
| |
| ret = kgsl_do_cache_op(NULL, addr, offset, size, op); |
| return ret; |
| } |
| |
| /* |
| * If the buffer is not to mapped to kernel, perform cache |
| * operations after mapping to kernel. |
| */ |
| if (memdesc->sgt != NULL) |
| sgt = memdesc->sgt; |
| else { |
| if (memdesc->pages == NULL) |
| return ret; |
| |
| sgt = kgsl_alloc_sgt_from_pages(memdesc); |
| if (IS_ERR(sgt)) |
| return PTR_ERR(sgt); |
| } |
| |
| for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| uint64_t sg_offset, sg_left; |
| |
| if (offset >= (pos + sg->length)) { |
| pos += sg->length; |
| continue; |
| } |
| sg_offset = offset > pos ? offset - pos : 0; |
| sg_left = (sg->length - sg_offset > size) ? size : |
| sg->length - sg_offset; |
| ret = kgsl_do_cache_op(sg_page(sg), NULL, sg_offset, |
| sg_left, op); |
| size -= sg_left; |
| if (size == 0) |
| break; |
| pos += sg->length; |
| } |
| |
| if (memdesc->sgt == NULL) |
| kgsl_free_sgt(sgt); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kgsl_cache_range_op); |
| |
| int |
| kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc, |
| uint64_t size) |
| { |
| int ret = 0; |
| unsigned int j, page_size, len_alloc; |
| unsigned int pcount = 0; |
| size_t len; |
| unsigned int align; |
| |
| static DEFINE_RATELIMIT_STATE(_rs, |
| DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| size = PAGE_ALIGN(size); |
| if (size == 0 || size > UINT_MAX) |
| return -EINVAL; |
| |
| align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT; |
| |
| /* |
| * As 1MB is the max supported page size, use the alignment |
| * corresponding to 1MB page to make sure higher order pages |
| * are used if possible for a given memory size. Also, we |
| * don't need to update alignment in memdesc flags in case |
| * higher order page is used, as memdesc flags represent the |
| * virtual alignment specified by the user which is anyways |
| * getting satisfied. |
| */ |
| if (align < ilog2(SZ_1M)) |
| align = ilog2(SZ_1M); |
| |
| page_size = kgsl_get_page_size(size, align); |
| |
| /* |
| * The alignment cannot be less than the intended page size - it can be |
| * larger however to accommodate hardware quirks |
| */ |
| |
| if (align < ilog2(page_size)) { |
| kgsl_memdesc_set_align(memdesc, ilog2(page_size)); |
| align = ilog2(page_size); |
| } |
| |
| /* |
| * There needs to be enough room in the page array to be able to |
| * service the allocation entirely with PAGE_SIZE sized chunks |
| */ |
| |
| len_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| |
| memdesc->ops = &kgsl_page_alloc_ops; |
| |
| /* |
| * Allocate space to store the list of pages. This is an array of |
| * pointers so we can track 1024 pages per page of allocation. |
| * Keep this array around for non global non secure buffers that |
| * are allocated by kgsl. This helps with improving the vm fault |
| * routine by finding the faulted page in constant time. |
| */ |
| |
| memdesc->pages = kgsl_malloc(len_alloc * sizeof(struct page *)); |
| memdesc->page_count = 0; |
| memdesc->size = 0; |
| |
| if (memdesc->pages == NULL) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| len = size; |
| |
| while (len > 0) { |
| int page_count; |
| |
| page_count = kgsl_pool_alloc_page(&page_size, |
| memdesc->pages + pcount, |
| len_alloc - pcount, |
| &align); |
| if (page_count <= 0) { |
| if (page_count == -EAGAIN) |
| continue; |
| |
| /* |
| * Update sglen and memdesc size,as requested allocation |
| * not served fully. So that they can be correctly freed |
| * in kgsl_sharedmem_free(). |
| */ |
| memdesc->size = (size - len); |
| |
| if (sharedmem_noretry_flag != true && |
| __ratelimit(&_rs)) |
| KGSL_CORE_ERR( |
| "Out of memory: only allocated %lldKB of %lldKB requested\n", |
| (size - len) >> 10, size >> 10); |
| |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| pcount += page_count; |
| len -= page_size; |
| memdesc->size += page_size; |
| memdesc->page_count += page_count; |
| |
| /* Get the needed page size for the next iteration */ |
| page_size = kgsl_get_page_size(len, align); |
| } |
| |
| /* Call to the hypervisor to lock any secure buffer allocations */ |
| if (memdesc->flags & KGSL_MEMFLAGS_SECURE) { |
| unsigned int i; |
| struct scatterlist *sg; |
| int dest_perms = PERM_READ | PERM_WRITE; |
| int source_vm = VMID_HLOS; |
| int dest_vm = VMID_CP_PIXEL; |
| |
| memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL); |
| if (memdesc->sgt == NULL) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| ret = sg_alloc_table_from_pages(memdesc->sgt, memdesc->pages, |
| memdesc->page_count, 0, memdesc->size, GFP_KERNEL); |
| if (ret) { |
| kfree(memdesc->sgt); |
| goto done; |
| } |
| |
| ret = hyp_assign_table(memdesc->sgt, &source_vm, 1, |
| &dest_vm, &dest_perms, 1); |
| if (ret) { |
| sg_free_table(memdesc->sgt); |
| kfree(memdesc->sgt); |
| memdesc->sgt = NULL; |
| goto done; |
| } |
| |
| /* Set private bit for each sg to indicate that its secured */ |
| for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) |
| SetPagePrivate(sg_page(sg)); |
| |
| memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; |
| |
| /* Record statistics */ |
| KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.secure, |
| &kgsl_driver.stats.secure_max); |
| |
| /* |
| * We don't need the array for secure buffers because they are |
| * not mapped to CPU |
| */ |
| kgsl_free(memdesc->pages); |
| memdesc->pages = NULL; |
| memdesc->page_count = 0; |
| |
| /* Don't map and zero the locked secure buffer */ |
| goto done; |
| } |
| |
| KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.page_alloc, |
| &kgsl_driver.stats.page_alloc_max); |
| |
| done: |
| if (ret) { |
| if (memdesc->pages) { |
| unsigned int count = 1; |
| |
| for (j = 0; j < pcount; j += count) { |
| count = 1 << compound_order(memdesc->pages[j]); |
| kgsl_pool_free_page(memdesc->pages[j]); |
| } |
| } |
| |
| kgsl_free(memdesc->pages); |
| memset(memdesc, 0, sizeof(*memdesc)); |
| } |
| |
| return ret; |
| } |
| |
| void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc) |
| { |
| if (memdesc == NULL || memdesc->size == 0) |
| return; |
| |
| /* Make sure the memory object has been unmapped */ |
| kgsl_mmu_put_gpuaddr(memdesc); |
| |
| if (memdesc->ops && memdesc->ops->free) |
| memdesc->ops->free(memdesc); |
| |
| if (memdesc->sgt) { |
| sg_free_table(memdesc->sgt); |
| kfree(memdesc->sgt); |
| } |
| |
| if (memdesc->pages) |
| kgsl_free(memdesc->pages); |
| |
| memset(memdesc, 0, sizeof(*memdesc)); |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_free); |
| |
| int |
| kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc, |
| uint32_t *dst, |
| uint64_t offsetbytes) |
| { |
| uint32_t *src; |
| |
| if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL || |
| dst == NULL)) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); |
| if (offsetbytes > (memdesc->size - sizeof(uint32_t))) |
| return -ERANGE; |
| |
| /* |
| * We are reading shared memory between CPU and GPU. |
| * Make sure reads before this are complete |
| */ |
| rmb(); |
| src = (uint32_t *)(memdesc->hostptr + offsetbytes); |
| *dst = *src; |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_readl); |
| |
| int |
| kgsl_sharedmem_writel(struct kgsl_device *device, |
| const struct kgsl_memdesc *memdesc, |
| uint64_t offsetbytes, |
| uint32_t src) |
| { |
| uint32_t *dst; |
| |
| if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); |
| if (offsetbytes > (memdesc->size - sizeof(uint32_t))) |
| return -ERANGE; |
| dst = (uint32_t *)(memdesc->hostptr + offsetbytes); |
| *dst = src; |
| |
| /* |
| * We are writing to shared memory between CPU and GPU. |
| * Make sure write above is posted immediately |
| */ |
| wmb(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_writel); |
| |
| int |
| kgsl_sharedmem_readq(const struct kgsl_memdesc *memdesc, |
| uint64_t *dst, |
| uint64_t offsetbytes) |
| { |
| uint64_t *src; |
| |
| if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL || |
| dst == NULL)) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); |
| if (offsetbytes > (memdesc->size - sizeof(uint32_t))) |
| return -ERANGE; |
| |
| /* |
| * We are reading shared memory between CPU and GPU. |
| * Make sure reads before this are complete |
| */ |
| rmb(); |
| src = (uint64_t *)(memdesc->hostptr + offsetbytes); |
| *dst = *src; |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_readq); |
| |
| int |
| kgsl_sharedmem_writeq(struct kgsl_device *device, |
| const struct kgsl_memdesc *memdesc, |
| uint64_t offsetbytes, |
| uint64_t src) |
| { |
| uint64_t *dst; |
| |
| if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t))); |
| if (offsetbytes > (memdesc->size - sizeof(uint32_t))) |
| return -ERANGE; |
| dst = (uint64_t *)(memdesc->hostptr + offsetbytes); |
| *dst = src; |
| |
| /* |
| * We are writing to shared memory between CPU and GPU. |
| * Make sure write above is posted immediately |
| */ |
| wmb(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_writeq); |
| |
| int |
| kgsl_sharedmem_set(struct kgsl_device *device, |
| const struct kgsl_memdesc *memdesc, uint64_t offsetbytes, |
| unsigned int value, uint64_t sizebytes) |
| { |
| if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL)) |
| return -EINVAL; |
| |
| if (WARN_ON(offsetbytes + sizebytes > memdesc->size)) |
| return -EINVAL; |
| |
| memset(memdesc->hostptr + offsetbytes, value, sizebytes); |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_set); |
| |
| static const char * const memtype_str[] = { |
| [KGSL_MEMTYPE_OBJECTANY] = "any(0)", |
| [KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer", |
| [KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer", |
| [KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer", |
| [KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer", |
| [KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer", |
| [KGSL_MEMTYPE_TEXTURE] = "texture", |
| [KGSL_MEMTYPE_SURFACE] = "surface", |
| [KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface", |
| [KGSL_MEMTYPE_GL] = "gl", |
| [KGSL_MEMTYPE_CL] = "cl", |
| [KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map", |
| [KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap", |
| [KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map", |
| [KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap", |
| [KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack", |
| [KGSL_MEMTYPE_COMMAND] = "command", |
| [KGSL_MEMTYPE_2D] = "2d", |
| [KGSL_MEMTYPE_EGL_IMAGE] = "egl_image", |
| [KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow", |
| [KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample", |
| /* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */ |
| }; |
| |
| void kgsl_get_memory_usage(char *name, size_t name_size, uint64_t memflags) |
| { |
| unsigned int type = MEMFLAGS(memflags, KGSL_MEMTYPE_MASK, |
| KGSL_MEMTYPE_SHIFT); |
| |
| if (type == KGSL_MEMTYPE_KERNEL) |
| strlcpy(name, "kernel", name_size); |
| else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL) |
| strlcpy(name, memtype_str[type], name_size); |
| else |
| snprintf(name, name_size, "VK/others(%3d)", type); |
| } |
| EXPORT_SYMBOL(kgsl_get_memory_usage); |
| |
| int kgsl_sharedmem_alloc_contig(struct kgsl_device *device, |
| struct kgsl_memdesc *memdesc, uint64_t size) |
| { |
| int result = 0; |
| |
| size = PAGE_ALIGN(size); |
| if (size == 0 || size > SIZE_MAX) |
| return -EINVAL; |
| |
| memdesc->size = size; |
| memdesc->ops = &kgsl_cma_ops; |
| memdesc->dev = device->dev->parent; |
| |
| memdesc->hostptr = dma_alloc_attrs(memdesc->dev, (size_t) size, |
| &memdesc->physaddr, GFP_KERNEL, 0); |
| |
| if (memdesc->hostptr == NULL) { |
| result = -ENOMEM; |
| goto err; |
| } |
| |
| result = memdesc_sg_dma(memdesc, memdesc->physaddr, size); |
| if (result) |
| goto err; |
| |
| /* Record statistics */ |
| |
| if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE) |
| memdesc->gpuaddr = memdesc->physaddr; |
| |
| KGSL_STATS_ADD(size, &kgsl_driver.stats.coherent, |
| &kgsl_driver.stats.coherent_max); |
| |
| err: |
| if (result) |
| kgsl_sharedmem_free(memdesc); |
| |
| return result; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_alloc_contig); |
| |
| static int scm_lock_chunk(struct kgsl_memdesc *memdesc, int lock) |
| { |
| struct cp2_lock_req request; |
| unsigned int resp; |
| unsigned int *chunk_list; |
| struct scm_desc desc = {0}; |
| int result; |
| |
| /* |
| * Flush the virt addr range before sending the memory to the |
| * secure environment to ensure the data is actually present |
| * in RAM |
| * |
| * Chunk_list holds the physical address of secure memory. |
| * Pass in the virtual address of chunk_list to flush. |
| * Chunk_list size is 1 because secure memory is physically |
| * contiguous. |
| */ |
| chunk_list = kzalloc(sizeof(unsigned int), GFP_KERNEL); |
| if (!chunk_list) |
| return -ENOMEM; |
| |
| chunk_list[0] = memdesc->physaddr; |
| dmac_flush_range((void *)chunk_list, (void *)chunk_list + 1); |
| |
| request.chunks.chunk_list = virt_to_phys(chunk_list); |
| /* |
| * virt_to_phys(chunk_list) may be an address > 4GB. It is guaranteed |
| * that when using scm_call (the older interface), the phys addresses |
| * will be restricted to below 4GB. |
| */ |
| desc.args[0] = virt_to_phys(chunk_list); |
| desc.args[1] = request.chunks.chunk_list_size = 1; |
| desc.args[2] = request.chunks.chunk_size = (unsigned int) memdesc->size; |
| desc.args[3] = request.mem_usage = 0; |
| desc.args[4] = request.lock = lock; |
| desc.args[5] = 0; |
| desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL, |
| SCM_VAL); |
| kmap_flush_unused(); |
| kmap_atomic_flush_unused(); |
| if (!is_scm_armv8()) { |
| result = scm_call(SCM_SVC_MP, MEM_PROTECT_LOCK_ID2, |
| &request, sizeof(request), &resp, sizeof(resp)); |
| } else { |
| result = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, |
| MEM_PROTECT_LOCK_ID2_FLAT), &desc); |
| resp = desc.ret[0]; |
| } |
| |
| kfree(chunk_list); |
| return result; |
| } |
| |
| static int kgsl_cma_alloc_secure(struct kgsl_device *device, |
| struct kgsl_memdesc *memdesc, uint64_t size) |
| { |
| struct kgsl_iommu *iommu = KGSL_IOMMU_PRIV(device); |
| int result = 0; |
| size_t aligned; |
| |
| /* Align size to 1M boundaries */ |
| aligned = ALIGN(size, SZ_1M); |
| |
| /* The SCM call uses an unsigned int for the size */ |
| if (aligned == 0 || aligned > UINT_MAX) |
| return -EINVAL; |
| |
| /* |
| * If there is more than a page gap between the requested size and the |
| * aligned size we don't need to add more memory for a guard page. Yay! |
| */ |
| |
| if (memdesc->priv & KGSL_MEMDESC_GUARD_PAGE) |
| if (aligned - size >= SZ_4K) |
| memdesc->priv &= ~KGSL_MEMDESC_GUARD_PAGE; |
| |
| memdesc->size = aligned; |
| memdesc->ops = &kgsl_cma_ops; |
| memdesc->dev = iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE].dev; |
| |
| memdesc->attrs |= DMA_ATTR_STRONGLY_ORDERED; |
| |
| memdesc->hostptr = dma_alloc_attrs(memdesc->dev, aligned, |
| &memdesc->physaddr, GFP_KERNEL, memdesc->attrs); |
| |
| if (memdesc->hostptr == NULL) { |
| result = -ENOMEM; |
| goto err; |
| } |
| |
| result = memdesc_sg_dma(memdesc, memdesc->physaddr, aligned); |
| if (result) |
| goto err; |
| |
| result = scm_lock_chunk(memdesc, 1); |
| |
| if (result != 0) |
| goto err; |
| |
| /* Set the private bit to indicate that we've secured this */ |
| SetPagePrivate(sg_page(memdesc->sgt->sgl)); |
| |
| memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED; |
| |
| /* Record statistics */ |
| KGSL_STATS_ADD(aligned, &kgsl_driver.stats.secure, |
| &kgsl_driver.stats.secure_max); |
| err: |
| if (result) |
| kgsl_sharedmem_free(memdesc); |
| |
| return result; |
| } |
| |
| /** |
| * kgsl_cma_unlock_secure() - Unlock secure memory by calling TZ |
| * @memdesc: memory descriptor |
| */ |
| static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc) |
| { |
| if (memdesc->size == 0 || !(memdesc->priv & KGSL_MEMDESC_TZ_LOCKED)) |
| return; |
| |
| if (!scm_lock_chunk(memdesc, 0)) |
| ClearPagePrivate(sg_page(memdesc->sgt->sgl)); |
| } |
| |
| void kgsl_sharedmem_set_noretry(bool val) |
| { |
| sharedmem_noretry_flag = val; |
| } |
| |
| bool kgsl_sharedmem_get_noretry(void) |
| { |
| return sharedmem_noretry_flag; |
| } |