| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> |
| * (c) Copyright 2000, 2001 Red Hat Inc |
| * |
| * Development of this driver was funded by Equiinet Ltd |
| * http://www.equiinet.com |
| * |
| * ChangeLog: |
| * |
| * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the |
| * unification of all the Z85x30 asynchronous drivers for real. |
| * |
| * DMA now uses get_free_page as kmalloc buffers may span a 64K |
| * boundary. |
| * |
| * Modified for SMP safety and SMP locking by Alan Cox |
| * <alan@lxorguk.ukuu.org.uk> |
| * |
| * Performance |
| * |
| * Z85230: |
| * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud |
| * X.25 is not unrealistic on all machines. DMA mode can in theory |
| * handle T1/E1 quite nicely. In practice the limit seems to be about |
| * 512Kbit->1Mbit depending on motherboard. |
| * |
| * Z85C30: |
| * 64K will take DMA, 9600 baud X.25 should be ok. |
| * |
| * Z8530: |
| * Synchronous mode without DMA is unlikely to pass about 2400 baud. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/net.h> |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/delay.h> |
| #include <linux/hdlc.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <asm/dma.h> |
| #include <asm/io.h> |
| #define RT_LOCK |
| #define RT_UNLOCK |
| #include <linux/spinlock.h> |
| |
| #include "z85230.h" |
| |
| |
| /** |
| * z8530_read_port - Architecture specific interface function |
| * @p: port to read |
| * |
| * Provided port access methods. The Comtrol SV11 requires no delays |
| * between accesses and uses PC I/O. Some drivers may need a 5uS delay |
| * |
| * In the longer term this should become an architecture specific |
| * section so that this can become a generic driver interface for all |
| * platforms. For now we only handle PC I/O ports with or without the |
| * dread 5uS sanity delay. |
| * |
| * The caller must hold sufficient locks to avoid violating the horrible |
| * 5uS delay rule. |
| */ |
| |
| static inline int z8530_read_port(unsigned long p) |
| { |
| u8 r=inb(Z8530_PORT_OF(p)); |
| if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ |
| udelay(5); |
| return r; |
| } |
| |
| /** |
| * z8530_write_port - Architecture specific interface function |
| * @p: port to write |
| * @d: value to write |
| * |
| * Write a value to a port with delays if need be. Note that the |
| * caller must hold locks to avoid read/writes from other contexts |
| * violating the 5uS rule |
| * |
| * In the longer term this should become an architecture specific |
| * section so that this can become a generic driver interface for all |
| * platforms. For now we only handle PC I/O ports with or without the |
| * dread 5uS sanity delay. |
| */ |
| |
| |
| static inline void z8530_write_port(unsigned long p, u8 d) |
| { |
| outb(d,Z8530_PORT_OF(p)); |
| if(p&Z8530_PORT_SLEEP) |
| udelay(5); |
| } |
| |
| |
| |
| static void z8530_rx_done(struct z8530_channel *c); |
| static void z8530_tx_done(struct z8530_channel *c); |
| |
| |
| /** |
| * read_zsreg - Read a register from a Z85230 |
| * @c: Z8530 channel to read from (2 per chip) |
| * @reg: Register to read |
| * FIXME: Use a spinlock. |
| * |
| * Most of the Z8530 registers are indexed off the control registers. |
| * A read is done by writing to the control register and reading the |
| * register back. The caller must hold the lock |
| */ |
| |
| static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) |
| { |
| if(reg) |
| z8530_write_port(c->ctrlio, reg); |
| return z8530_read_port(c->ctrlio); |
| } |
| |
| /** |
| * read_zsdata - Read the data port of a Z8530 channel |
| * @c: The Z8530 channel to read the data port from |
| * |
| * The data port provides fast access to some things. We still |
| * have all the 5uS delays to worry about. |
| */ |
| |
| static inline u8 read_zsdata(struct z8530_channel *c) |
| { |
| u8 r; |
| r=z8530_read_port(c->dataio); |
| return r; |
| } |
| |
| /** |
| * write_zsreg - Write to a Z8530 channel register |
| * @c: The Z8530 channel |
| * @reg: Register number |
| * @val: Value to write |
| * |
| * Write a value to an indexed register. The caller must hold the lock |
| * to honour the irritating delay rules. We know about register 0 |
| * being fast to access. |
| * |
| * Assumes c->lock is held. |
| */ |
| static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) |
| { |
| if(reg) |
| z8530_write_port(c->ctrlio, reg); |
| z8530_write_port(c->ctrlio, val); |
| |
| } |
| |
| /** |
| * write_zsctrl - Write to a Z8530 control register |
| * @c: The Z8530 channel |
| * @val: Value to write |
| * |
| * Write directly to the control register on the Z8530 |
| */ |
| |
| static inline void write_zsctrl(struct z8530_channel *c, u8 val) |
| { |
| z8530_write_port(c->ctrlio, val); |
| } |
| |
| /** |
| * write_zsdata - Write to a Z8530 control register |
| * @c: The Z8530 channel |
| * @val: Value to write |
| * |
| * Write directly to the data register on the Z8530 |
| */ |
| |
| |
| static inline void write_zsdata(struct z8530_channel *c, u8 val) |
| { |
| z8530_write_port(c->dataio, val); |
| } |
| |
| /* |
| * Register loading parameters for a dead port |
| */ |
| |
| u8 z8530_dead_port[]= |
| { |
| 255 |
| }; |
| |
| EXPORT_SYMBOL(z8530_dead_port); |
| |
| /* |
| * Register loading parameters for currently supported circuit types |
| */ |
| |
| |
| /* |
| * Data clocked by telco end. This is the correct data for the UK |
| * "kilostream" service, and most other similar services. |
| */ |
| |
| u8 z8530_hdlc_kilostream[]= |
| { |
| 4, SYNC_ENAB|SDLC|X1CLK, |
| 2, 0, /* No vector */ |
| 1, 0, |
| 3, ENT_HM|RxCRC_ENAB|Rx8, |
| 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, |
| 9, 0, /* Disable interrupts */ |
| 6, 0xFF, |
| 7, FLAG, |
| 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ |
| 11, TCTRxCP, |
| 14, DISDPLL, |
| 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, |
| 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, |
| 9, NV|MIE|NORESET, |
| 255 |
| }; |
| |
| EXPORT_SYMBOL(z8530_hdlc_kilostream); |
| |
| /* |
| * As above but for enhanced chips. |
| */ |
| |
| u8 z8530_hdlc_kilostream_85230[]= |
| { |
| 4, SYNC_ENAB|SDLC|X1CLK, |
| 2, 0, /* No vector */ |
| 1, 0, |
| 3, ENT_HM|RxCRC_ENAB|Rx8, |
| 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, |
| 9, 0, /* Disable interrupts */ |
| 6, 0xFF, |
| 7, FLAG, |
| 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */ |
| 11, TCTRxCP, |
| 14, DISDPLL, |
| 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, |
| 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, |
| 9, NV|MIE|NORESET, |
| 23, 3, /* Extended mode AUTO TX and EOM*/ |
| |
| 255 |
| }; |
| |
| EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); |
| |
| /** |
| * z8530_flush_fifo - Flush on chip RX FIFO |
| * @c: Channel to flush |
| * |
| * Flush the receive FIFO. There is no specific option for this, we |
| * blindly read bytes and discard them. Reading when there is no data |
| * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. |
| * |
| * All locking is handled for the caller. On return data may still be |
| * present if it arrived during the flush. |
| */ |
| |
| static void z8530_flush_fifo(struct z8530_channel *c) |
| { |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| if(c->dev->type==Z85230) |
| { |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| read_zsreg(c, R1); |
| } |
| } |
| |
| /** |
| * z8530_rtsdtr - Control the outgoing DTS/RTS line |
| * @c: The Z8530 channel to control; |
| * @set: 1 to set, 0 to clear |
| * |
| * Sets or clears DTR/RTS on the requested line. All locking is handled |
| * by the caller. For now we assume all boards use the actual RTS/DTR |
| * on the chip. Apparently one or two don't. We'll scream about them |
| * later. |
| */ |
| |
| static void z8530_rtsdtr(struct z8530_channel *c, int set) |
| { |
| if (set) |
| c->regs[5] |= (RTS | DTR); |
| else |
| c->regs[5] &= ~(RTS | DTR); |
| write_zsreg(c, R5, c->regs[5]); |
| } |
| |
| /** |
| * z8530_rx - Handle a PIO receive event |
| * @c: Z8530 channel to process |
| * |
| * Receive handler for receiving in PIO mode. This is much like the |
| * async one but not quite the same or as complex |
| * |
| * Note: Its intended that this handler can easily be separated from |
| * the main code to run realtime. That'll be needed for some machines |
| * (eg to ever clock 64kbits on a sparc ;)). |
| * |
| * The RT_LOCK macros don't do anything now. Keep the code covered |
| * by them as short as possible in all circumstances - clocks cost |
| * baud. The interrupt handler is assumed to be atomic w.r.t. to |
| * other code - this is true in the RT case too. |
| * |
| * We only cover the sync cases for this. If you want 2Mbit async |
| * do it yourself but consider medical assistance first. This non DMA |
| * synchronous mode is portable code. The DMA mode assumes PCI like |
| * ISA DMA |
| * |
| * Called with the device lock held |
| */ |
| |
| static void z8530_rx(struct z8530_channel *c) |
| { |
| u8 ch,stat; |
| |
| while(1) |
| { |
| /* FIFO empty ? */ |
| if(!(read_zsreg(c, R0)&1)) |
| break; |
| ch=read_zsdata(c); |
| stat=read_zsreg(c, R1); |
| |
| /* |
| * Overrun ? |
| */ |
| if(c->count < c->max) |
| { |
| *c->dptr++=ch; |
| c->count++; |
| } |
| |
| if(stat&END_FR) |
| { |
| |
| /* |
| * Error ? |
| */ |
| if(stat&(Rx_OVR|CRC_ERR)) |
| { |
| /* Rewind the buffer and return */ |
| if(c->skb) |
| c->dptr=c->skb->data; |
| c->count=0; |
| if(stat&Rx_OVR) |
| { |
| printk(KERN_WARNING "%s: overrun\n", c->dev->name); |
| c->rx_overrun++; |
| } |
| if(stat&CRC_ERR) |
| { |
| c->rx_crc_err++; |
| /* printk("crc error\n"); */ |
| } |
| /* Shove the frame upstream */ |
| } |
| else |
| { |
| /* |
| * Drop the lock for RX processing, or |
| * there are deadlocks |
| */ |
| z8530_rx_done(c); |
| write_zsctrl(c, RES_Rx_CRC); |
| } |
| } |
| } |
| /* |
| * Clear irq |
| */ |
| write_zsctrl(c, ERR_RES); |
| write_zsctrl(c, RES_H_IUS); |
| } |
| |
| |
| /** |
| * z8530_tx - Handle a PIO transmit event |
| * @c: Z8530 channel to process |
| * |
| * Z8530 transmit interrupt handler for the PIO mode. The basic |
| * idea is to attempt to keep the FIFO fed. We fill as many bytes |
| * in as possible, its quite possible that we won't keep up with the |
| * data rate otherwise. |
| */ |
| |
| static void z8530_tx(struct z8530_channel *c) |
| { |
| while(c->txcount) { |
| /* FIFO full ? */ |
| if(!(read_zsreg(c, R0)&4)) |
| return; |
| c->txcount--; |
| /* |
| * Shovel out the byte |
| */ |
| write_zsreg(c, R8, *c->tx_ptr++); |
| write_zsctrl(c, RES_H_IUS); |
| /* We are about to underflow */ |
| if(c->txcount==0) |
| { |
| write_zsctrl(c, RES_EOM_L); |
| write_zsreg(c, R10, c->regs[10]&~ABUNDER); |
| } |
| } |
| |
| |
| /* |
| * End of frame TX - fire another one |
| */ |
| |
| write_zsctrl(c, RES_Tx_P); |
| |
| z8530_tx_done(c); |
| write_zsctrl(c, RES_H_IUS); |
| } |
| |
| /** |
| * z8530_status - Handle a PIO status exception |
| * @chan: Z8530 channel to process |
| * |
| * A status event occurred in PIO synchronous mode. There are several |
| * reasons the chip will bother us here. A transmit underrun means we |
| * failed to feed the chip fast enough and just broke a packet. A DCD |
| * change is a line up or down. |
| */ |
| |
| static void z8530_status(struct z8530_channel *chan) |
| { |
| u8 status, altered; |
| |
| status = read_zsreg(chan, R0); |
| altered = chan->status ^ status; |
| |
| chan->status = status; |
| |
| if (status & TxEOM) { |
| /* printk("%s: Tx underrun.\n", chan->dev->name); */ |
| chan->netdevice->stats.tx_fifo_errors++; |
| write_zsctrl(chan, ERR_RES); |
| z8530_tx_done(chan); |
| } |
| |
| if (altered & chan->dcdcheck) |
| { |
| if (status & chan->dcdcheck) { |
| printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); |
| write_zsreg(chan, R3, chan->regs[3] | RxENABLE); |
| if (chan->netdevice) |
| netif_carrier_on(chan->netdevice); |
| } else { |
| printk(KERN_INFO "%s: DCD lost\n", chan->dev->name); |
| write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); |
| z8530_flush_fifo(chan); |
| if (chan->netdevice) |
| netif_carrier_off(chan->netdevice); |
| } |
| |
| } |
| write_zsctrl(chan, RES_EXT_INT); |
| write_zsctrl(chan, RES_H_IUS); |
| } |
| |
| struct z8530_irqhandler z8530_sync = |
| { |
| z8530_rx, |
| z8530_tx, |
| z8530_status |
| }; |
| |
| EXPORT_SYMBOL(z8530_sync); |
| |
| /** |
| * z8530_dma_rx - Handle a DMA RX event |
| * @chan: Channel to handle |
| * |
| * Non bus mastering DMA interfaces for the Z8x30 devices. This |
| * is really pretty PC specific. The DMA mode means that most receive |
| * events are handled by the DMA hardware. We get a kick here only if |
| * a frame ended. |
| */ |
| |
| static void z8530_dma_rx(struct z8530_channel *chan) |
| { |
| if(chan->rxdma_on) |
| { |
| /* Special condition check only */ |
| u8 status; |
| |
| read_zsreg(chan, R7); |
| read_zsreg(chan, R6); |
| |
| status=read_zsreg(chan, R1); |
| |
| if(status&END_FR) |
| { |
| z8530_rx_done(chan); /* Fire up the next one */ |
| } |
| write_zsctrl(chan, ERR_RES); |
| write_zsctrl(chan, RES_H_IUS); |
| } |
| else |
| { |
| /* DMA is off right now, drain the slow way */ |
| z8530_rx(chan); |
| } |
| } |
| |
| /** |
| * z8530_dma_tx - Handle a DMA TX event |
| * @chan: The Z8530 channel to handle |
| * |
| * We have received an interrupt while doing DMA transmissions. It |
| * shouldn't happen. Scream loudly if it does. |
| */ |
| |
| static void z8530_dma_tx(struct z8530_channel *chan) |
| { |
| if(!chan->dma_tx) |
| { |
| printk(KERN_WARNING "Hey who turned the DMA off?\n"); |
| z8530_tx(chan); |
| return; |
| } |
| /* This shouldnt occur in DMA mode */ |
| printk(KERN_ERR "DMA tx - bogus event!\n"); |
| z8530_tx(chan); |
| } |
| |
| /** |
| * z8530_dma_status - Handle a DMA status exception |
| * @chan: Z8530 channel to process |
| * |
| * A status event occurred on the Z8530. We receive these for two reasons |
| * when in DMA mode. Firstly if we finished a packet transfer we get one |
| * and kick the next packet out. Secondly we may see a DCD change. |
| * |
| */ |
| |
| static void z8530_dma_status(struct z8530_channel *chan) |
| { |
| u8 status, altered; |
| |
| status=read_zsreg(chan, R0); |
| altered=chan->status^status; |
| |
| chan->status=status; |
| |
| |
| if(chan->dma_tx) |
| { |
| if(status&TxEOM) |
| { |
| unsigned long flags; |
| |
| flags=claim_dma_lock(); |
| disable_dma(chan->txdma); |
| clear_dma_ff(chan->txdma); |
| chan->txdma_on=0; |
| release_dma_lock(flags); |
| z8530_tx_done(chan); |
| } |
| } |
| |
| if (altered & chan->dcdcheck) |
| { |
| if (status & chan->dcdcheck) { |
| printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); |
| write_zsreg(chan, R3, chan->regs[3] | RxENABLE); |
| if (chan->netdevice) |
| netif_carrier_on(chan->netdevice); |
| } else { |
| printk(KERN_INFO "%s:DCD lost\n", chan->dev->name); |
| write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); |
| z8530_flush_fifo(chan); |
| if (chan->netdevice) |
| netif_carrier_off(chan->netdevice); |
| } |
| } |
| |
| write_zsctrl(chan, RES_EXT_INT); |
| write_zsctrl(chan, RES_H_IUS); |
| } |
| |
| static struct z8530_irqhandler z8530_dma_sync = { |
| z8530_dma_rx, |
| z8530_dma_tx, |
| z8530_dma_status |
| }; |
| |
| static struct z8530_irqhandler z8530_txdma_sync = { |
| z8530_rx, |
| z8530_dma_tx, |
| z8530_dma_status |
| }; |
| |
| /** |
| * z8530_rx_clear - Handle RX events from a stopped chip |
| * @c: Z8530 channel to shut up |
| * |
| * Receive interrupt vectors for a Z8530 that is in 'parked' mode. |
| * For machines with PCI Z85x30 cards, or level triggered interrupts |
| * (eg the MacII) we must clear the interrupt cause or die. |
| */ |
| |
| |
| static void z8530_rx_clear(struct z8530_channel *c) |
| { |
| /* |
| * Data and status bytes |
| */ |
| u8 stat; |
| |
| read_zsdata(c); |
| stat=read_zsreg(c, R1); |
| |
| if(stat&END_FR) |
| write_zsctrl(c, RES_Rx_CRC); |
| /* |
| * Clear irq |
| */ |
| write_zsctrl(c, ERR_RES); |
| write_zsctrl(c, RES_H_IUS); |
| } |
| |
| /** |
| * z8530_tx_clear - Handle TX events from a stopped chip |
| * @c: Z8530 channel to shut up |
| * |
| * Transmit interrupt vectors for a Z8530 that is in 'parked' mode. |
| * For machines with PCI Z85x30 cards, or level triggered interrupts |
| * (eg the MacII) we must clear the interrupt cause or die. |
| */ |
| |
| static void z8530_tx_clear(struct z8530_channel *c) |
| { |
| write_zsctrl(c, RES_Tx_P); |
| write_zsctrl(c, RES_H_IUS); |
| } |
| |
| /** |
| * z8530_status_clear - Handle status events from a stopped chip |
| * @chan: Z8530 channel to shut up |
| * |
| * Status interrupt vectors for a Z8530 that is in 'parked' mode. |
| * For machines with PCI Z85x30 cards, or level triggered interrupts |
| * (eg the MacII) we must clear the interrupt cause or die. |
| */ |
| |
| static void z8530_status_clear(struct z8530_channel *chan) |
| { |
| u8 status=read_zsreg(chan, R0); |
| if(status&TxEOM) |
| write_zsctrl(chan, ERR_RES); |
| write_zsctrl(chan, RES_EXT_INT); |
| write_zsctrl(chan, RES_H_IUS); |
| } |
| |
| struct z8530_irqhandler z8530_nop= |
| { |
| z8530_rx_clear, |
| z8530_tx_clear, |
| z8530_status_clear |
| }; |
| |
| |
| EXPORT_SYMBOL(z8530_nop); |
| |
| /** |
| * z8530_interrupt - Handle an interrupt from a Z8530 |
| * @irq: Interrupt number |
| * @dev_id: The Z8530 device that is interrupting. |
| * |
| * A Z85[2]30 device has stuck its hand in the air for attention. |
| * We scan both the channels on the chip for events and then call |
| * the channel specific call backs for each channel that has events. |
| * We have to use callback functions because the two channels can be |
| * in different modes. |
| * |
| * Locking is done for the handlers. Note that locking is done |
| * at the chip level (the 5uS delay issue is per chip not per |
| * channel). c->lock for both channels points to dev->lock |
| */ |
| |
| irqreturn_t z8530_interrupt(int irq, void *dev_id) |
| { |
| struct z8530_dev *dev=dev_id; |
| u8 uninitialized_var(intr); |
| static volatile int locker=0; |
| int work=0; |
| struct z8530_irqhandler *irqs; |
| |
| if(locker) |
| { |
| printk(KERN_ERR "IRQ re-enter\n"); |
| return IRQ_NONE; |
| } |
| locker=1; |
| |
| spin_lock(&dev->lock); |
| |
| while(++work<5000) |
| { |
| |
| intr = read_zsreg(&dev->chanA, R3); |
| if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) |
| break; |
| |
| /* This holds the IRQ status. On the 8530 you must read it from chan |
| A even though it applies to the whole chip */ |
| |
| /* Now walk the chip and see what it is wanting - it may be |
| an IRQ for someone else remember */ |
| |
| irqs=dev->chanA.irqs; |
| |
| if(intr & (CHARxIP|CHATxIP|CHAEXT)) |
| { |
| if(intr&CHARxIP) |
| irqs->rx(&dev->chanA); |
| if(intr&CHATxIP) |
| irqs->tx(&dev->chanA); |
| if(intr&CHAEXT) |
| irqs->status(&dev->chanA); |
| } |
| |
| irqs=dev->chanB.irqs; |
| |
| if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) |
| { |
| if(intr&CHBRxIP) |
| irqs->rx(&dev->chanB); |
| if(intr&CHBTxIP) |
| irqs->tx(&dev->chanB); |
| if(intr&CHBEXT) |
| irqs->status(&dev->chanB); |
| } |
| } |
| spin_unlock(&dev->lock); |
| if(work==5000) |
| printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr); |
| /* Ok all done */ |
| locker=0; |
| return IRQ_HANDLED; |
| } |
| |
| EXPORT_SYMBOL(z8530_interrupt); |
| |
| static char reg_init[16]= |
| { |
| 0,0,0,0, |
| 0,0,0,0, |
| 0,0,0,0, |
| 0x55,0,0,0 |
| }; |
| |
| |
| /** |
| * z8530_sync_open - Open a Z8530 channel for PIO |
| * @dev: The network interface we are using |
| * @c: The Z8530 channel to open in synchronous PIO mode |
| * |
| * Switch a Z8530 into synchronous mode without DMA assist. We |
| * raise the RTS/DTR and commence network operation. |
| */ |
| |
| int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(c->lock, flags); |
| |
| c->sync = 1; |
| c->mtu = dev->mtu+64; |
| c->count = 0; |
| c->skb = NULL; |
| c->skb2 = NULL; |
| c->irqs = &z8530_sync; |
| |
| /* This loads the double buffer up */ |
| z8530_rx_done(c); /* Load the frame ring */ |
| z8530_rx_done(c); /* Load the backup frame */ |
| z8530_rtsdtr(c,1); |
| c->dma_tx = 0; |
| c->regs[R1]|=TxINT_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| |
| spin_unlock_irqrestore(c->lock, flags); |
| return 0; |
| } |
| |
| |
| EXPORT_SYMBOL(z8530_sync_open); |
| |
| /** |
| * z8530_sync_close - Close a PIO Z8530 channel |
| * @dev: Network device to close |
| * @c: Z8530 channel to disassociate and move to idle |
| * |
| * Close down a Z8530 interface and switch its interrupt handlers |
| * to discard future events. |
| */ |
| |
| int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) |
| { |
| u8 chk; |
| unsigned long flags; |
| |
| spin_lock_irqsave(c->lock, flags); |
| c->irqs = &z8530_nop; |
| c->max = 0; |
| c->sync = 0; |
| |
| chk=read_zsreg(c,R0); |
| write_zsreg(c, R3, c->regs[R3]); |
| z8530_rtsdtr(c,0); |
| |
| spin_unlock_irqrestore(c->lock, flags); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_sync_close); |
| |
| /** |
| * z8530_sync_dma_open - Open a Z8530 for DMA I/O |
| * @dev: The network device to attach |
| * @c: The Z8530 channel to configure in sync DMA mode. |
| * |
| * Set up a Z85x30 device for synchronous DMA in both directions. Two |
| * ISA DMA channels must be available for this to work. We assume ISA |
| * DMA driven I/O and PC limits on access. |
| */ |
| |
| int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) |
| { |
| unsigned long cflags, dflags; |
| |
| c->sync = 1; |
| c->mtu = dev->mtu+64; |
| c->count = 0; |
| c->skb = NULL; |
| c->skb2 = NULL; |
| /* |
| * Load the DMA interfaces up |
| */ |
| c->rxdma_on = 0; |
| c->txdma_on = 0; |
| |
| /* |
| * Allocate the DMA flip buffers. Limit by page size. |
| * Everyone runs 1500 mtu or less on wan links so this |
| * should be fine. |
| */ |
| |
| if(c->mtu > PAGE_SIZE/2) |
| return -EMSGSIZE; |
| |
| c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| if(c->rx_buf[0]==NULL) |
| return -ENOBUFS; |
| c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; |
| |
| c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| if(c->tx_dma_buf[0]==NULL) |
| { |
| free_page((unsigned long)c->rx_buf[0]); |
| c->rx_buf[0]=NULL; |
| return -ENOBUFS; |
| } |
| c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; |
| |
| c->tx_dma_used=0; |
| c->dma_tx = 1; |
| c->dma_num=0; |
| c->dma_ready=1; |
| |
| /* |
| * Enable DMA control mode |
| */ |
| |
| spin_lock_irqsave(c->lock, cflags); |
| |
| /* |
| * TX DMA via DIR/REQ |
| */ |
| |
| c->regs[R14]|= DTRREQ; |
| write_zsreg(c, R14, c->regs[R14]); |
| |
| c->regs[R1]&= ~TxINT_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| |
| /* |
| * RX DMA via W/Req |
| */ |
| |
| c->regs[R1]|= WT_FN_RDYFN; |
| c->regs[R1]|= WT_RDY_RT; |
| c->regs[R1]|= INT_ERR_Rx; |
| c->regs[R1]&= ~TxINT_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| c->regs[R1]|= WT_RDY_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| |
| /* |
| * DMA interrupts |
| */ |
| |
| /* |
| * Set up the DMA configuration |
| */ |
| |
| dflags=claim_dma_lock(); |
| |
| disable_dma(c->rxdma); |
| clear_dma_ff(c->rxdma); |
| set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); |
| set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); |
| set_dma_count(c->rxdma, c->mtu); |
| enable_dma(c->rxdma); |
| |
| disable_dma(c->txdma); |
| clear_dma_ff(c->txdma); |
| set_dma_mode(c->txdma, DMA_MODE_WRITE); |
| disable_dma(c->txdma); |
| |
| release_dma_lock(dflags); |
| |
| /* |
| * Select the DMA interrupt handlers |
| */ |
| |
| c->rxdma_on = 1; |
| c->txdma_on = 1; |
| c->tx_dma_used = 1; |
| |
| c->irqs = &z8530_dma_sync; |
| z8530_rtsdtr(c,1); |
| write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| |
| spin_unlock_irqrestore(c->lock, cflags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_sync_dma_open); |
| |
| /** |
| * z8530_sync_dma_close - Close down DMA I/O |
| * @dev: Network device to detach |
| * @c: Z8530 channel to move into discard mode |
| * |
| * Shut down a DMA mode synchronous interface. Halt the DMA, and |
| * free the buffers. |
| */ |
| |
| int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) |
| { |
| u8 chk; |
| unsigned long flags; |
| |
| c->irqs = &z8530_nop; |
| c->max = 0; |
| c->sync = 0; |
| |
| /* |
| * Disable the PC DMA channels |
| */ |
| |
| flags=claim_dma_lock(); |
| disable_dma(c->rxdma); |
| clear_dma_ff(c->rxdma); |
| |
| c->rxdma_on = 0; |
| |
| disable_dma(c->txdma); |
| clear_dma_ff(c->txdma); |
| release_dma_lock(flags); |
| |
| c->txdma_on = 0; |
| c->tx_dma_used = 0; |
| |
| spin_lock_irqsave(c->lock, flags); |
| |
| /* |
| * Disable DMA control mode |
| */ |
| |
| c->regs[R1]&= ~WT_RDY_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); |
| c->regs[R1]|= INT_ALL_Rx; |
| write_zsreg(c, R1, c->regs[R1]); |
| c->regs[R14]&= ~DTRREQ; |
| write_zsreg(c, R14, c->regs[R14]); |
| |
| if(c->rx_buf[0]) |
| { |
| free_page((unsigned long)c->rx_buf[0]); |
| c->rx_buf[0]=NULL; |
| } |
| if(c->tx_dma_buf[0]) |
| { |
| free_page((unsigned long)c->tx_dma_buf[0]); |
| c->tx_dma_buf[0]=NULL; |
| } |
| chk=read_zsreg(c,R0); |
| write_zsreg(c, R3, c->regs[R3]); |
| z8530_rtsdtr(c,0); |
| |
| spin_unlock_irqrestore(c->lock, flags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_sync_dma_close); |
| |
| /** |
| * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA |
| * @dev: The network device to attach |
| * @c: The Z8530 channel to configure in sync DMA mode. |
| * |
| * Set up a Z85x30 device for synchronous DMA tranmission. One |
| * ISA DMA channel must be available for this to work. The receive |
| * side is run in PIO mode, but then it has the bigger FIFO. |
| */ |
| |
| int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) |
| { |
| unsigned long cflags, dflags; |
| |
| printk("Opening sync interface for TX-DMA\n"); |
| c->sync = 1; |
| c->mtu = dev->mtu+64; |
| c->count = 0; |
| c->skb = NULL; |
| c->skb2 = NULL; |
| |
| /* |
| * Allocate the DMA flip buffers. Limit by page size. |
| * Everyone runs 1500 mtu or less on wan links so this |
| * should be fine. |
| */ |
| |
| if(c->mtu > PAGE_SIZE/2) |
| return -EMSGSIZE; |
| |
| c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| if(c->tx_dma_buf[0]==NULL) |
| return -ENOBUFS; |
| |
| c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; |
| |
| |
| spin_lock_irqsave(c->lock, cflags); |
| |
| /* |
| * Load the PIO receive ring |
| */ |
| |
| z8530_rx_done(c); |
| z8530_rx_done(c); |
| |
| /* |
| * Load the DMA interfaces up |
| */ |
| |
| c->rxdma_on = 0; |
| c->txdma_on = 0; |
| |
| c->tx_dma_used=0; |
| c->dma_num=0; |
| c->dma_ready=1; |
| c->dma_tx = 1; |
| |
| /* |
| * Enable DMA control mode |
| */ |
| |
| /* |
| * TX DMA via DIR/REQ |
| */ |
| c->regs[R14]|= DTRREQ; |
| write_zsreg(c, R14, c->regs[R14]); |
| |
| c->regs[R1]&= ~TxINT_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| |
| /* |
| * Set up the DMA configuration |
| */ |
| |
| dflags = claim_dma_lock(); |
| |
| disable_dma(c->txdma); |
| clear_dma_ff(c->txdma); |
| set_dma_mode(c->txdma, DMA_MODE_WRITE); |
| disable_dma(c->txdma); |
| |
| release_dma_lock(dflags); |
| |
| /* |
| * Select the DMA interrupt handlers |
| */ |
| |
| c->rxdma_on = 0; |
| c->txdma_on = 1; |
| c->tx_dma_used = 1; |
| |
| c->irqs = &z8530_txdma_sync; |
| z8530_rtsdtr(c,1); |
| write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| spin_unlock_irqrestore(c->lock, cflags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_sync_txdma_open); |
| |
| /** |
| * z8530_sync_txdma_close - Close down a TX driven DMA channel |
| * @dev: Network device to detach |
| * @c: Z8530 channel to move into discard mode |
| * |
| * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, |
| * and free the buffers. |
| */ |
| |
| int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) |
| { |
| unsigned long dflags, cflags; |
| u8 chk; |
| |
| |
| spin_lock_irqsave(c->lock, cflags); |
| |
| c->irqs = &z8530_nop; |
| c->max = 0; |
| c->sync = 0; |
| |
| /* |
| * Disable the PC DMA channels |
| */ |
| |
| dflags = claim_dma_lock(); |
| |
| disable_dma(c->txdma); |
| clear_dma_ff(c->txdma); |
| c->txdma_on = 0; |
| c->tx_dma_used = 0; |
| |
| release_dma_lock(dflags); |
| |
| /* |
| * Disable DMA control mode |
| */ |
| |
| c->regs[R1]&= ~WT_RDY_ENAB; |
| write_zsreg(c, R1, c->regs[R1]); |
| c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); |
| c->regs[R1]|= INT_ALL_Rx; |
| write_zsreg(c, R1, c->regs[R1]); |
| c->regs[R14]&= ~DTRREQ; |
| write_zsreg(c, R14, c->regs[R14]); |
| |
| if(c->tx_dma_buf[0]) |
| { |
| free_page((unsigned long)c->tx_dma_buf[0]); |
| c->tx_dma_buf[0]=NULL; |
| } |
| chk=read_zsreg(c,R0); |
| write_zsreg(c, R3, c->regs[R3]); |
| z8530_rtsdtr(c,0); |
| |
| spin_unlock_irqrestore(c->lock, cflags); |
| return 0; |
| } |
| |
| |
| EXPORT_SYMBOL(z8530_sync_txdma_close); |
| |
| |
| /* |
| * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny |
| * it exists... |
| */ |
| |
| static char *z8530_type_name[]={ |
| "Z8530", |
| "Z85C30", |
| "Z85230" |
| }; |
| |
| /** |
| * z8530_describe - Uniformly describe a Z8530 port |
| * @dev: Z8530 device to describe |
| * @mapping: string holding mapping type (eg "I/O" or "Mem") |
| * @io: the port value in question |
| * |
| * Describe a Z8530 in a standard format. We must pass the I/O as |
| * the port offset isnt predictable. The main reason for this function |
| * is to try and get a common format of report. |
| */ |
| |
| void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) |
| { |
| printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n", |
| dev->name, |
| z8530_type_name[dev->type], |
| mapping, |
| Z8530_PORT_OF(io), |
| dev->irq); |
| } |
| |
| EXPORT_SYMBOL(z8530_describe); |
| |
| /* |
| * Locked operation part of the z8530 init code |
| */ |
| |
| static inline int do_z8530_init(struct z8530_dev *dev) |
| { |
| /* NOP the interrupt handlers first - we might get a |
| floating IRQ transition when we reset the chip */ |
| dev->chanA.irqs=&z8530_nop; |
| dev->chanB.irqs=&z8530_nop; |
| dev->chanA.dcdcheck=DCD; |
| dev->chanB.dcdcheck=DCD; |
| |
| /* Reset the chip */ |
| write_zsreg(&dev->chanA, R9, 0xC0); |
| udelay(200); |
| /* Now check its valid */ |
| write_zsreg(&dev->chanA, R12, 0xAA); |
| if(read_zsreg(&dev->chanA, R12)!=0xAA) |
| return -ENODEV; |
| write_zsreg(&dev->chanA, R12, 0x55); |
| if(read_zsreg(&dev->chanA, R12)!=0x55) |
| return -ENODEV; |
| |
| dev->type=Z8530; |
| |
| /* |
| * See the application note. |
| */ |
| |
| write_zsreg(&dev->chanA, R15, 0x01); |
| |
| /* |
| * If we can set the low bit of R15 then |
| * the chip is enhanced. |
| */ |
| |
| if(read_zsreg(&dev->chanA, R15)==0x01) |
| { |
| /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ |
| /* Put a char in the fifo */ |
| write_zsreg(&dev->chanA, R8, 0); |
| if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) |
| dev->type = Z85230; /* Has a FIFO */ |
| else |
| dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ |
| } |
| |
| /* |
| * The code assumes R7' and friends are |
| * off. Use write_zsext() for these and keep |
| * this bit clear. |
| */ |
| |
| write_zsreg(&dev->chanA, R15, 0); |
| |
| /* |
| * At this point it looks like the chip is behaving |
| */ |
| |
| memcpy(dev->chanA.regs, reg_init, 16); |
| memcpy(dev->chanB.regs, reg_init ,16); |
| |
| return 0; |
| } |
| |
| /** |
| * z8530_init - Initialise a Z8530 device |
| * @dev: Z8530 device to initialise. |
| * |
| * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device |
| * is present, identify the type and then program it to hopefully |
| * keep quite and behave. This matters a lot, a Z8530 in the wrong |
| * state will sometimes get into stupid modes generating 10Khz |
| * interrupt streams and the like. |
| * |
| * We set the interrupt handler up to discard any events, in case |
| * we get them during reset or setp. |
| * |
| * Return 0 for success, or a negative value indicating the problem |
| * in errno form. |
| */ |
| |
| int z8530_init(struct z8530_dev *dev) |
| { |
| unsigned long flags; |
| int ret; |
| |
| /* Set up the chip level lock */ |
| spin_lock_init(&dev->lock); |
| dev->chanA.lock = &dev->lock; |
| dev->chanB.lock = &dev->lock; |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| ret = do_z8530_init(dev); |
| spin_unlock_irqrestore(&dev->lock, flags); |
| |
| return ret; |
| } |
| |
| |
| EXPORT_SYMBOL(z8530_init); |
| |
| /** |
| * z8530_shutdown - Shutdown a Z8530 device |
| * @dev: The Z8530 chip to shutdown |
| * |
| * We set the interrupt handlers to silence any interrupts. We then |
| * reset the chip and wait 100uS to be sure the reset completed. Just |
| * in case the caller then tries to do stuff. |
| * |
| * This is called without the lock held |
| */ |
| |
| int z8530_shutdown(struct z8530_dev *dev) |
| { |
| unsigned long flags; |
| /* Reset the chip */ |
| |
| spin_lock_irqsave(&dev->lock, flags); |
| dev->chanA.irqs=&z8530_nop; |
| dev->chanB.irqs=&z8530_nop; |
| write_zsreg(&dev->chanA, R9, 0xC0); |
| /* We must lock the udelay, the chip is offlimits here */ |
| udelay(100); |
| spin_unlock_irqrestore(&dev->lock, flags); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_shutdown); |
| |
| /** |
| * z8530_channel_load - Load channel data |
| * @c: Z8530 channel to configure |
| * @rtable: table of register, value pairs |
| * FIXME: ioctl to allow user uploaded tables |
| * |
| * Load a Z8530 channel up from the system data. We use +16 to |
| * indicate the "prime" registers. The value 255 terminates the |
| * table. |
| */ |
| |
| int z8530_channel_load(struct z8530_channel *c, u8 *rtable) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(c->lock, flags); |
| |
| while(*rtable!=255) |
| { |
| int reg=*rtable++; |
| if(reg>0x0F) |
| write_zsreg(c, R15, c->regs[15]|1); |
| write_zsreg(c, reg&0x0F, *rtable); |
| if(reg>0x0F) |
| write_zsreg(c, R15, c->regs[15]&~1); |
| c->regs[reg]=*rtable++; |
| } |
| c->rx_function=z8530_null_rx; |
| c->skb=NULL; |
| c->tx_skb=NULL; |
| c->tx_next_skb=NULL; |
| c->mtu=1500; |
| c->max=0; |
| c->count=0; |
| c->status=read_zsreg(c, R0); |
| c->sync=1; |
| write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| |
| spin_unlock_irqrestore(c->lock, flags); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_channel_load); |
| |
| |
| /** |
| * z8530_tx_begin - Begin packet transmission |
| * @c: The Z8530 channel to kick |
| * |
| * This is the speed sensitive side of transmission. If we are called |
| * and no buffer is being transmitted we commence the next buffer. If |
| * nothing is queued we idle the sync. |
| * |
| * Note: We are handling this code path in the interrupt path, keep it |
| * fast or bad things will happen. |
| * |
| * Called with the lock held. |
| */ |
| |
| static void z8530_tx_begin(struct z8530_channel *c) |
| { |
| unsigned long flags; |
| if(c->tx_skb) |
| return; |
| |
| c->tx_skb=c->tx_next_skb; |
| c->tx_next_skb=NULL; |
| c->tx_ptr=c->tx_next_ptr; |
| |
| if(c->tx_skb==NULL) |
| { |
| /* Idle on */ |
| if(c->dma_tx) |
| { |
| flags=claim_dma_lock(); |
| disable_dma(c->txdma); |
| /* |
| * Check if we crapped out. |
| */ |
| if (get_dma_residue(c->txdma)) |
| { |
| c->netdevice->stats.tx_dropped++; |
| c->netdevice->stats.tx_fifo_errors++; |
| } |
| release_dma_lock(flags); |
| } |
| c->txcount=0; |
| } |
| else |
| { |
| c->txcount=c->tx_skb->len; |
| |
| |
| if(c->dma_tx) |
| { |
| /* |
| * FIXME. DMA is broken for the original 8530, |
| * on the older parts we need to set a flag and |
| * wait for a further TX interrupt to fire this |
| * stage off |
| */ |
| |
| flags=claim_dma_lock(); |
| disable_dma(c->txdma); |
| |
| /* |
| * These two are needed by the 8530/85C30 |
| * and must be issued when idling. |
| */ |
| |
| if(c->dev->type!=Z85230) |
| { |
| write_zsctrl(c, RES_Tx_CRC); |
| write_zsctrl(c, RES_EOM_L); |
| } |
| write_zsreg(c, R10, c->regs[10]&~ABUNDER); |
| clear_dma_ff(c->txdma); |
| set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); |
| set_dma_count(c->txdma, c->txcount); |
| enable_dma(c->txdma); |
| release_dma_lock(flags); |
| write_zsctrl(c, RES_EOM_L); |
| write_zsreg(c, R5, c->regs[R5]|TxENAB); |
| } |
| else |
| { |
| |
| /* ABUNDER off */ |
| write_zsreg(c, R10, c->regs[10]); |
| write_zsctrl(c, RES_Tx_CRC); |
| |
| while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) |
| { |
| write_zsreg(c, R8, *c->tx_ptr++); |
| c->txcount--; |
| } |
| |
| } |
| } |
| /* |
| * Since we emptied tx_skb we can ask for more |
| */ |
| netif_wake_queue(c->netdevice); |
| } |
| |
| /** |
| * z8530_tx_done - TX complete callback |
| * @c: The channel that completed a transmit. |
| * |
| * This is called when we complete a packet send. We wake the queue, |
| * start the next packet going and then free the buffer of the existing |
| * packet. This code is fairly timing sensitive. |
| * |
| * Called with the register lock held. |
| */ |
| |
| static void z8530_tx_done(struct z8530_channel *c) |
| { |
| struct sk_buff *skb; |
| |
| /* Actually this can happen.*/ |
| if (c->tx_skb == NULL) |
| return; |
| |
| skb = c->tx_skb; |
| c->tx_skb = NULL; |
| z8530_tx_begin(c); |
| c->netdevice->stats.tx_packets++; |
| c->netdevice->stats.tx_bytes += skb->len; |
| dev_kfree_skb_irq(skb); |
| } |
| |
| /** |
| * z8530_null_rx - Discard a packet |
| * @c: The channel the packet arrived on |
| * @skb: The buffer |
| * |
| * We point the receive handler at this function when idle. Instead |
| * of processing the frames we get to throw them away. |
| */ |
| |
| void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) |
| { |
| dev_kfree_skb_any(skb); |
| } |
| |
| EXPORT_SYMBOL(z8530_null_rx); |
| |
| /** |
| * z8530_rx_done - Receive completion callback |
| * @c: The channel that completed a receive |
| * |
| * A new packet is complete. Our goal here is to get back into receive |
| * mode as fast as possible. On the Z85230 we could change to using |
| * ESCC mode, but on the older chips we have no choice. We flip to the |
| * new buffer immediately in DMA mode so that the DMA of the next |
| * frame can occur while we are copying the previous buffer to an sk_buff |
| * |
| * Called with the lock held |
| */ |
| |
| static void z8530_rx_done(struct z8530_channel *c) |
| { |
| struct sk_buff *skb; |
| int ct; |
| |
| /* |
| * Is our receive engine in DMA mode |
| */ |
| |
| if(c->rxdma_on) |
| { |
| /* |
| * Save the ready state and the buffer currently |
| * being used as the DMA target |
| */ |
| |
| int ready=c->dma_ready; |
| unsigned char *rxb=c->rx_buf[c->dma_num]; |
| unsigned long flags; |
| |
| /* |
| * Complete this DMA. Neccessary to find the length |
| */ |
| |
| flags=claim_dma_lock(); |
| |
| disable_dma(c->rxdma); |
| clear_dma_ff(c->rxdma); |
| c->rxdma_on=0; |
| ct=c->mtu-get_dma_residue(c->rxdma); |
| if(ct<0) |
| ct=2; /* Shit happens.. */ |
| c->dma_ready=0; |
| |
| /* |
| * Normal case: the other slot is free, start the next DMA |
| * into it immediately. |
| */ |
| |
| if(ready) |
| { |
| c->dma_num^=1; |
| set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); |
| set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); |
| set_dma_count(c->rxdma, c->mtu); |
| c->rxdma_on = 1; |
| enable_dma(c->rxdma); |
| /* Stop any frames that we missed the head of |
| from passing */ |
| write_zsreg(c, R0, RES_Rx_CRC); |
| } |
| else |
| /* Can't occur as we dont reenable the DMA irq until |
| after the flip is done */ |
| printk(KERN_WARNING "%s: DMA flip overrun!\n", |
| c->netdevice->name); |
| |
| release_dma_lock(flags); |
| |
| /* |
| * Shove the old buffer into an sk_buff. We can't DMA |
| * directly into one on a PC - it might be above the 16Mb |
| * boundary. Optimisation - we could check to see if we |
| * can avoid the copy. Optimisation 2 - make the memcpy |
| * a copychecksum. |
| */ |
| |
| skb = dev_alloc_skb(ct); |
| if (skb == NULL) { |
| c->netdevice->stats.rx_dropped++; |
| printk(KERN_WARNING "%s: Memory squeeze.\n", |
| c->netdevice->name); |
| } else { |
| skb_put(skb, ct); |
| skb_copy_to_linear_data(skb, rxb, ct); |
| c->netdevice->stats.rx_packets++; |
| c->netdevice->stats.rx_bytes += ct; |
| } |
| c->dma_ready = 1; |
| } else { |
| RT_LOCK; |
| skb = c->skb; |
| |
| /* |
| * The game we play for non DMA is similar. We want to |
| * get the controller set up for the next packet as fast |
| * as possible. We potentially only have one byte + the |
| * fifo length for this. Thus we want to flip to the new |
| * buffer and then mess around copying and allocating |
| * things. For the current case it doesn't matter but |
| * if you build a system where the sync irq isnt blocked |
| * by the kernel IRQ disable then you need only block the |
| * sync IRQ for the RT_LOCK area. |
| * |
| */ |
| ct=c->count; |
| |
| c->skb = c->skb2; |
| c->count = 0; |
| c->max = c->mtu; |
| if (c->skb) { |
| c->dptr = c->skb->data; |
| c->max = c->mtu; |
| } else { |
| c->count = 0; |
| c->max = 0; |
| } |
| RT_UNLOCK; |
| |
| c->skb2 = dev_alloc_skb(c->mtu); |
| if (c->skb2 == NULL) |
| printk(KERN_WARNING "%s: memory squeeze.\n", |
| c->netdevice->name); |
| else |
| skb_put(c->skb2, c->mtu); |
| c->netdevice->stats.rx_packets++; |
| c->netdevice->stats.rx_bytes += ct; |
| } |
| /* |
| * If we received a frame we must now process it. |
| */ |
| if (skb) { |
| skb_trim(skb, ct); |
| c->rx_function(c, skb); |
| } else { |
| c->netdevice->stats.rx_dropped++; |
| printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name); |
| } |
| } |
| |
| /** |
| * spans_boundary - Check a packet can be ISA DMA'd |
| * @skb: The buffer to check |
| * |
| * Returns true if the buffer cross a DMA boundary on a PC. The poor |
| * thing can only DMA within a 64K block not across the edges of it. |
| */ |
| |
| static inline int spans_boundary(struct sk_buff *skb) |
| { |
| unsigned long a=(unsigned long)skb->data; |
| a^=(a+skb->len); |
| if(a&0x00010000) /* If the 64K bit is different.. */ |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * z8530_queue_xmit - Queue a packet |
| * @c: The channel to use |
| * @skb: The packet to kick down the channel |
| * |
| * Queue a packet for transmission. Because we have rather |
| * hard to hit interrupt latencies for the Z85230 per packet |
| * even in DMA mode we do the flip to DMA buffer if needed here |
| * not in the IRQ. |
| * |
| * Called from the network code. The lock is not held at this |
| * point. |
| */ |
| |
| int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) |
| { |
| unsigned long flags; |
| |
| netif_stop_queue(c->netdevice); |
| if(c->tx_next_skb) |
| { |
| return 1; |
| } |
| |
| /* PC SPECIFIC - DMA limits */ |
| |
| /* |
| * If we will DMA the transmit and its gone over the ISA bus |
| * limit, then copy to the flip buffer |
| */ |
| |
| if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) |
| { |
| /* |
| * Send the flip buffer, and flip the flippy bit. |
| * We don't care which is used when just so long as |
| * we never use the same buffer twice in a row. Since |
| * only one buffer can be going out at a time the other |
| * has to be safe. |
| */ |
| c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; |
| c->tx_dma_used^=1; /* Flip temp buffer */ |
| skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); |
| } |
| else |
| c->tx_next_ptr=skb->data; |
| RT_LOCK; |
| c->tx_next_skb=skb; |
| RT_UNLOCK; |
| |
| spin_lock_irqsave(c->lock, flags); |
| z8530_tx_begin(c); |
| spin_unlock_irqrestore(c->lock, flags); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(z8530_queue_xmit); |
| |
| /* |
| * Module support |
| */ |
| static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; |
| |
| static int __init z85230_init_driver(void) |
| { |
| printk(banner); |
| return 0; |
| } |
| module_init(z85230_init_driver); |
| |
| static void __exit z85230_cleanup_driver(void) |
| { |
| } |
| module_exit(z85230_cleanup_driver); |
| |
| MODULE_AUTHOR("Red Hat Inc."); |
| MODULE_DESCRIPTION("Z85x30 synchronous driver core"); |
| MODULE_LICENSE("GPL"); |