blob: 41c684439751919394b31827d4b7c0559fb40596 [file] [log] [blame]
/* Copyright (c) 2010-2016, 2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/io.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <soc/qcom/scm.h>
#include <linux/hdcp_qseecom.h>
#include "mdss_hdmi_hdcp.h"
#include "video/msm_hdmi_hdcp_mgr.h"
#define HDCP_STATE_NAME (hdcp_state_name(hdcp_ctrl->hdcp_state))
/* HDCP Keys state based on HDMI_HDCP_LINK0_STATUS:KEYS_STATE */
#define HDCP_KEYS_STATE_NO_KEYS 0
#define HDCP_KEYS_STATE_NOT_CHECKED 1
#define HDCP_KEYS_STATE_CHECKING 2
#define HDCP_KEYS_STATE_VALID 3
#define HDCP_KEYS_STATE_AKSV_NOT_VALID 4
#define HDCP_KEYS_STATE_CHKSUM_MISMATCH 5
#define HDCP_KEYS_STATE_PROD_AKSV 6
#define HDCP_KEYS_STATE_RESERVED 7
#define TZ_HDCP_CMD_ID 0x00004401
#define HDCP_REG_ENABLE 0x01
#define HDCP_REG_DISABLE 0x00
#define HDCP_INT_CLR (BIT(1) | BIT(5) | BIT(7) | BIT(9) | BIT(13))
struct hdmi_hdcp_reg_data {
u32 reg_id;
u32 off;
char *name;
u32 reg_val;
};
struct hdmi_hdcp_ctrl {
u32 auth_retries;
u32 tp_msgid;
u32 tz_hdcp;
enum hdmi_hdcp_state hdcp_state;
struct HDCP_V2V1_MSG_TOPOLOGY cached_tp;
struct HDCP_V2V1_MSG_TOPOLOGY current_tp;
struct delayed_work hdcp_auth_work;
struct work_struct hdcp_int_work;
struct completion r0_checked;
struct hdmi_hdcp_init_data init_data;
struct hdmi_hdcp_ops *ops;
bool hdmi_tx_ver_4;
};
const char *hdcp_state_name(enum hdmi_hdcp_state hdcp_state)
{
switch (hdcp_state) {
case HDCP_STATE_INACTIVE: return "HDCP_STATE_INACTIVE";
case HDCP_STATE_AUTHENTICATING: return "HDCP_STATE_AUTHENTICATING";
case HDCP_STATE_AUTHENTICATED: return "HDCP_STATE_AUTHENTICATED";
case HDCP_STATE_AUTH_FAIL: return "HDCP_STATE_AUTH_FAIL";
default: return "???";
}
} /* hdcp_state_name */
static int hdmi_hdcp_count_one(u8 *array, u8 len)
{
int i, j, count = 0;
for (i = 0; i < len; i++)
for (j = 0; j < 8; j++)
count += (((array[i] >> j) & 0x1) ? 1 : 0);
return count;
} /* hdmi_hdcp_count_one */
static void reset_hdcp_ddc_failures(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int hdcp_ddc_ctrl1_reg;
int hdcp_ddc_status;
int failure;
int nack0;
struct mdss_io_data *io;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
io = hdcp_ctrl->init_data.core_io;
/* Check for any DDC transfer failures */
hdcp_ddc_status = DSS_REG_R(io, HDMI_HDCP_DDC_STATUS);
failure = (hdcp_ddc_status >> 16) & 0x1;
nack0 = (hdcp_ddc_status >> 14) & 0x1;
DEV_DBG("%s: %s: On Entry: HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d\n",
__func__, HDCP_STATE_NAME, hdcp_ddc_status, failure, nack0);
if (failure == 0x1) {
/*
* Indicates that the last HDCP HW DDC transfer failed.
* This occurs when a transfer is attempted with HDCP DDC
* disabled (HDCP_DDC_DISABLE=1) or the number of retries
* matches HDCP_DDC_RETRY_CNT.
* Failure occurred, let's clear it.
*/
DEV_DBG("%s: %s: DDC failure detected.HDCP_DDC_STATUS=0x%08x\n",
__func__, HDCP_STATE_NAME, hdcp_ddc_status);
/* First, Disable DDC */
DSS_REG_W(io, HDMI_HDCP_DDC_CTRL_0, BIT(0));
/* ACK the Failure to Clear it */
hdcp_ddc_ctrl1_reg = DSS_REG_R(io, HDMI_HDCP_DDC_CTRL_1);
DSS_REG_W(io, HDMI_HDCP_DDC_CTRL_1,
hdcp_ddc_ctrl1_reg | BIT(0));
/* Check if the FAILURE got Cleared */
hdcp_ddc_status = DSS_REG_R(io, HDMI_HDCP_DDC_STATUS);
hdcp_ddc_status = (hdcp_ddc_status >> 16) & BIT(0);
if (hdcp_ddc_status == 0x0)
DEV_DBG("%s: %s: HDCP DDC Failure cleared\n", __func__,
HDCP_STATE_NAME);
else
DEV_WARN("%s: %s: Unable to clear HDCP DDC Failure",
__func__, HDCP_STATE_NAME);
/* Re-Enable HDCP DDC */
DSS_REG_W(io, HDMI_HDCP_DDC_CTRL_0, 0);
}
if (nack0 == 0x1) {
DEV_DBG("%s: %s: Before: HDMI_DDC_SW_STATUS=0x%08x\n", __func__,
HDCP_STATE_NAME, DSS_REG_R(io, HDMI_DDC_SW_STATUS));
/* Reset HDMI DDC software status */
DSS_REG_W_ND(io, HDMI_DDC_CTRL,
DSS_REG_R(io, HDMI_DDC_CTRL) | BIT(3));
msleep(20);
DSS_REG_W_ND(io, HDMI_DDC_CTRL,
DSS_REG_R(io, HDMI_DDC_CTRL) & ~(BIT(3)));
/* Reset HDMI DDC Controller */
DSS_REG_W_ND(io, HDMI_DDC_CTRL,
DSS_REG_R(io, HDMI_DDC_CTRL) | BIT(1));
msleep(20);
DSS_REG_W_ND(io, HDMI_DDC_CTRL,
DSS_REG_R(io, HDMI_DDC_CTRL) & ~BIT(1));
DEV_DBG("%s: %s: After: HDMI_DDC_SW_STATUS=0x%08x\n", __func__,
HDCP_STATE_NAME, DSS_REG_R(io, HDMI_DDC_SW_STATUS));
}
hdcp_ddc_status = DSS_REG_R(io, HDMI_HDCP_DDC_STATUS);
failure = (hdcp_ddc_status >> 16) & BIT(0);
nack0 = (hdcp_ddc_status >> 14) & BIT(0);
DEV_DBG("%s: %s: On Exit: HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d\n",
__func__, HDCP_STATE_NAME, hdcp_ddc_status, failure, nack0);
} /* reset_hdcp_ddc_failures */
static void hdmi_hdcp_hw_ddc_clean(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
struct mdss_io_data *io = NULL;
u32 hdcp_ddc_status, ddc_hw_status;
u32 ddc_xfer_done, ddc_xfer_req;
u32 ddc_hw_req, ddc_hw_not_idle;
bool ddc_hw_not_ready, xfer_not_done, hw_not_done;
u32 timeout_count;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
io = hdcp_ctrl->init_data.core_io;
if (!io->base) {
DEV_ERR("%s: core io not inititalized\n", __func__);
return;
}
/* Wait to be clean on DDC HW engine */
timeout_count = 100;
do {
hdcp_ddc_status = DSS_REG_R(io, HDMI_HDCP_DDC_STATUS);
ddc_xfer_req = hdcp_ddc_status & BIT(4);
ddc_xfer_done = hdcp_ddc_status & BIT(10);
ddc_hw_status = DSS_REG_R(io, HDMI_DDC_HW_STATUS);
ddc_hw_req = ddc_hw_status & BIT(16);
ddc_hw_not_idle = ddc_hw_status & (BIT(0) | BIT(1));
/* ddc transfer was requested but not completed */
xfer_not_done = ddc_xfer_req && !ddc_xfer_done;
/* ddc status is not idle or a hw request pending */
hw_not_done = ddc_hw_not_idle || ddc_hw_req;
ddc_hw_not_ready = xfer_not_done || hw_not_done;
DEV_DBG("%s: %s: timeout count(%d): ddc hw%sready\n",
__func__, HDCP_STATE_NAME, timeout_count,
ddc_hw_not_ready ? " not " : " ");
DEV_DBG("hdcp_ddc_status[0x%x], ddc_hw_status[0x%x]\n",
hdcp_ddc_status, ddc_hw_status);
if (ddc_hw_not_ready)
msleep(20);
} while (ddc_hw_not_ready && --timeout_count);
} /* hdmi_hdcp_hw_ddc_clean */
static int hdcp_scm_call(struct scm_hdcp_req *req, u32 *resp)
{
int ret = 0;
if (!is_scm_armv8()) {
ret = scm_call(SCM_SVC_HDCP, SCM_CMD_HDCP, (void *) req,
SCM_HDCP_MAX_REG * sizeof(struct scm_hdcp_req),
&resp, sizeof(*resp));
} else {
struct scm_desc desc;
desc.args[0] = req[0].addr;
desc.args[1] = req[0].val;
desc.args[2] = req[1].addr;
desc.args[3] = req[1].val;
desc.args[4] = req[2].addr;
desc.args[5] = req[2].val;
desc.args[6] = req[3].addr;
desc.args[7] = req[3].val;
desc.args[8] = req[4].addr;
desc.args[9] = req[4].val;
desc.arginfo = SCM_ARGS(10);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_HDCP, SCM_CMD_HDCP),
&desc);
*resp = desc.ret[0];
if (ret)
return ret;
}
return ret;
}
static int hdmi_hdcp_load_keys(void *input)
{
int rc = 0;
bool use_sw_keys = false;
u32 reg_val;
u32 ksv_lsb_addr, ksv_msb_addr;
u32 aksv_lsb, aksv_msb;
u8 aksv[5];
struct mdss_io_data *io;
struct mdss_io_data *qfprom_io;
struct hdmi_hdcp_ctrl *hdcp_ctrl = input;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io ||
!hdcp_ctrl->init_data.qfprom_io) {
DEV_ERR("%s: invalid input\n", __func__);
rc = -EINVAL;
goto end;
}
if ((hdcp_ctrl->hdcp_state != HDCP_STATE_INACTIVE) &&
(hdcp_ctrl->hdcp_state != HDCP_STATE_AUTH_FAIL)) {
DEV_ERR("%s: %s: invalid state. returning\n", __func__,
HDCP_STATE_NAME);
rc = -EINVAL;
goto end;
}
io = hdcp_ctrl->init_data.core_io;
qfprom_io = hdcp_ctrl->init_data.qfprom_io;
/* On compatible hardware, use SW keys */
reg_val = DSS_REG_R(qfprom_io, SEC_CTRL_HW_VERSION);
if (reg_val >= HDCP_SEL_MIN_SEC_VERSION) {
reg_val = DSS_REG_R(qfprom_io,
QFPROM_RAW_FEAT_CONFIG_ROW0_MSB +
QFPROM_RAW_VERSION_4);
if (!(reg_val & BIT(23)))
use_sw_keys = true;
}
if (use_sw_keys) {
if (hdcp1_set_keys(&aksv_msb, &aksv_lsb)) {
pr_err("%s: setting hdcp SW keys failed\n", __func__);
rc = -EINVAL;
goto end;
}
} else {
/* Fetch aksv from QFPROM, this info should be public. */
ksv_lsb_addr = HDCP_KSV_LSB;
ksv_msb_addr = HDCP_KSV_MSB;
if (hdcp_ctrl->hdmi_tx_ver_4) {
ksv_lsb_addr += HDCP_KSV_VERSION_4_OFFSET;
ksv_msb_addr += HDCP_KSV_VERSION_4_OFFSET;
}
aksv_lsb = DSS_REG_R(qfprom_io, ksv_lsb_addr);
aksv_msb = DSS_REG_R(qfprom_io, ksv_msb_addr);
}
DEV_DBG("%s: %s: AKSV=%02x%08x\n", __func__, HDCP_STATE_NAME,
aksv_msb, aksv_lsb);
aksv[0] = aksv_lsb & 0xFF;
aksv[1] = (aksv_lsb >> 8) & 0xFF;
aksv[2] = (aksv_lsb >> 16) & 0xFF;
aksv[3] = (aksv_lsb >> 24) & 0xFF;
aksv[4] = aksv_msb & 0xFF;
/* check there are 20 ones in AKSV */
if (hdmi_hdcp_count_one(aksv, 5) != 20) {
DEV_ERR("%s: AKSV bit count failed\n", __func__);
rc = -EINVAL;
goto end;
}
DSS_REG_W(io, HDMI_HDCP_SW_LOWER_AKSV, aksv_lsb);
DSS_REG_W(io, HDMI_HDCP_SW_UPPER_AKSV, aksv_msb);
/* Setup seed values for random number An */
DSS_REG_W(io, HDMI_HDCP_ENTROPY_CTRL0, 0xB1FFB0FF);
DSS_REG_W(io, HDMI_HDCP_ENTROPY_CTRL1, 0xF00DFACE);
/* Disable the RngCipher state */
DSS_REG_W(io, HDMI_HDCP_DEBUG_CTRL,
DSS_REG_R(io, HDMI_HDCP_DEBUG_CTRL) & ~(BIT(2)));
/* make sure hw is programmed */
wmb();
DSS_REG_W(io, HDMI_HDCP_CTRL, BIT(0));
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING;
end:
return rc;
}
static int hdmi_hdcp_authentication_part1(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc;
u32 link0_aksv_0, link0_aksv_1;
u32 link0_bksv_0, link0_bksv_1;
u32 link0_an_0, link0_an_1;
u32 timeout_count;
bool is_match;
struct mdss_io_data *io;
struct mdss_io_data *hdcp_io;
u8 aksv[5], *bksv = NULL;
u8 an[8];
u8 bcaps = 0;
struct hdmi_tx_ddc_data ddc_data;
u32 link0_status = 0, an_ready, keys_state;
u8 buf[0xFF];
struct scm_hdcp_req scm_buf[SCM_HDCP_MAX_REG];
u32 phy_addr;
u32 ret = 0;
u32 resp = 0;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io ||
!hdcp_ctrl->init_data.qfprom_io) {
DEV_ERR("%s: invalid input\n", __func__);
rc = -EINVAL;
goto error;
}
phy_addr = hdcp_ctrl->init_data.phy_addr;
bksv = hdcp_ctrl->current_tp.bksv;
io = hdcp_ctrl->init_data.core_io;
hdcp_io = hdcp_ctrl->init_data.hdcp_io;
if (hdcp_ctrl->hdcp_state != HDCP_STATE_AUTHENTICATING) {
DEV_ERR("%s: %s: invalid state. returning\n", __func__,
HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
/* Clear any DDC failures from previous tries */
reset_hdcp_ddc_failures(hdcp_ctrl);
/*
* Read BCAPS
* We need to first try to read an HDCP register on the sink to see if
* the sink is ready for HDCP authentication
*/
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x40;
ddc_data.data_buf = &bcaps;
ddc_data.data_len = 1;
ddc_data.request_len = 1;
ddc_data.retry = 5;
ddc_data.what = "Bcaps";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: BCAPS read failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
DEV_DBG("%s: %s: BCAPS=%02x\n", __func__, HDCP_STATE_NAME, bcaps);
/* receiver (0), repeater (1) */
hdcp_ctrl->current_tp.ds_type =
(bcaps & BIT(6)) >> 6 ? DS_REPEATER : DS_RECEIVER;
/* Write BCAPS to the hardware */
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + HDMI_HDCP_RCVPORT_DATA12;
scm_buf[0].val = bcaps;
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W(hdcp_io, HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA12,
bcaps);
} else {
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA12, bcaps);
}
/* Wait for HDCP keys to be checked and validated */
timeout_count = 100;
keys_state = (link0_status >> 28) & 0x7;
while ((keys_state != HDCP_KEYS_STATE_VALID) &&
--timeout_count) {
link0_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
keys_state = (link0_status >> 28) & 0x7;
DEV_DBG("%s: %s: Keys not ready(%d). s=%d\n, l0=%0x08x",
__func__, HDCP_STATE_NAME, timeout_count,
keys_state, link0_status);
msleep(20);
}
if (!timeout_count) {
DEV_ERR("%s: %s: Invalid Keys State: %d\n", __func__,
HDCP_STATE_NAME, keys_state);
rc = -EINVAL;
goto error;
}
/*
* 1.1_Features turned off by default.
* No need to write AInfo since 1.1_Features is disabled.
*/
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA4, 0);
/* Wait for An0 and An1 bit to be ready */
timeout_count = 100;
do {
link0_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
an_ready = (link0_status & BIT(8)) && (link0_status & BIT(9));
if (!an_ready) {
DEV_DBG("%s: %s: An not ready(%d). l0_status=0x%08x\n",
__func__, HDCP_STATE_NAME, timeout_count,
link0_status);
msleep(20);
}
} while (!an_ready && --timeout_count);
if (!timeout_count) {
rc = -ETIMEDOUT;
DEV_ERR("%s: %s: timedout, An0=%ld, An1=%ld\n", __func__,
HDCP_STATE_NAME, (link0_status & BIT(8)) >> 8,
(link0_status & BIT(9)) >> 9);
goto error;
}
/* As per hardware recommendations, wait before reading An */
msleep(20);
/* Read An0 and An1 */
link0_an_0 = DSS_REG_R(io, HDMI_HDCP_RCVPORT_DATA5);
link0_an_1 = DSS_REG_R(io, HDMI_HDCP_RCVPORT_DATA6);
/* Read AKSV */
link0_aksv_0 = DSS_REG_R(io, HDMI_HDCP_RCVPORT_DATA3);
link0_aksv_1 = DSS_REG_R(io, HDMI_HDCP_RCVPORT_DATA4);
/* Copy An and AKSV to byte arrays for transmission */
aksv[0] = link0_aksv_0 & 0xFF;
aksv[1] = (link0_aksv_0 >> 8) & 0xFF;
aksv[2] = (link0_aksv_0 >> 16) & 0xFF;
aksv[3] = (link0_aksv_0 >> 24) & 0xFF;
aksv[4] = link0_aksv_1 & 0xFF;
an[0] = link0_an_0 & 0xFF;
an[1] = (link0_an_0 >> 8) & 0xFF;
an[2] = (link0_an_0 >> 16) & 0xFF;
an[3] = (link0_an_0 >> 24) & 0xFF;
an[4] = link0_an_1 & 0xFF;
an[5] = (link0_an_1 >> 8) & 0xFF;
an[6] = (link0_an_1 >> 16) & 0xFF;
an[7] = (link0_an_1 >> 24) & 0xFF;
/* Write An to offset 0x18 */
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x18;
ddc_data.data_buf = an;
ddc_data.data_len = 8;
ddc_data.what = "An";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_write(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: An write failed\n", __func__, HDCP_STATE_NAME);
goto error;
}
/* Write AKSV to offset 0x10 */
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x10;
ddc_data.data_buf = aksv;
ddc_data.data_len = 5;
ddc_data.what = "Aksv";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_write(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: AKSV write failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
DEV_DBG("%s: %s: Link0-AKSV=%02x%08x\n", __func__,
HDCP_STATE_NAME, link0_aksv_1 & 0xFF, link0_aksv_0);
/* Read BKSV at offset 0x00 */
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x00;
ddc_data.data_buf = bksv;
ddc_data.data_len = 5;
ddc_data.request_len = 5;
ddc_data.retry = 5;
ddc_data.what = "Bksv";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: BKSV read failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
/* check there are 20 ones in BKSV */
if (hdmi_hdcp_count_one(bksv, 5) != 20) {
DEV_ERR("%s: %s: BKSV doesn't have 20 1's and 20 0's\n",
__func__, HDCP_STATE_NAME);
DEV_ERR("%s: %s: BKSV chk fail. BKSV=%02x%02x%02x%02x%02x\n",
__func__, HDCP_STATE_NAME, bksv[4], bksv[3], bksv[2],
bksv[1], bksv[0]);
rc = -EINVAL;
goto error;
}
link0_bksv_0 = bksv[3];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[2];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[1];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[0];
link0_bksv_1 = bksv[4];
DEV_DBG("%s: %s: BKSV=%02x%08x\n", __func__, HDCP_STATE_NAME,
link0_bksv_1, link0_bksv_0);
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + HDMI_HDCP_RCVPORT_DATA0;
scm_buf[0].val = link0_bksv_0;
scm_buf[1].addr = phy_addr + HDMI_HDCP_RCVPORT_DATA1;
scm_buf[1].val = link0_bksv_1;
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W(hdcp_io, HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA0,
link0_bksv_0);
DSS_REG_W(hdcp_io, HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA1,
link0_bksv_1);
} else {
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA0, link0_bksv_0);
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA1, link0_bksv_1);
}
/* Enable HDCP interrupts and ack/clear any stale interrupts */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, 0xE6);
/*
* HDCP Compliace Test case 1A-01:
* Wait here at least 100ms before reading R0'
*/
msleep(125);
/* Read R0' at offset 0x08 */
memset(buf, 0, sizeof(buf));
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x08;
ddc_data.data_buf = buf;
ddc_data.data_len = 2;
ddc_data.request_len = 2;
ddc_data.retry = 5;
ddc_data.what = "R0'";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: R0' read failed\n", __func__, HDCP_STATE_NAME);
goto error;
}
DEV_DBG("%s: %s: R0'=%02x%02x\n", __func__, HDCP_STATE_NAME,
buf[1], buf[0]);
/* Write R0' to HDCP registers and check to see if it is a match */
reinit_completion(&hdcp_ctrl->r0_checked);
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA2_0, (((u32)buf[1]) << 8) | buf[0]);
timeout_count = wait_for_completion_timeout(
&hdcp_ctrl->r0_checked, HZ*2);
link0_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
is_match = link0_status & BIT(12);
if (!is_match) {
DEV_DBG("%s: %s: Link0_Status=0x%08x\n", __func__,
HDCP_STATE_NAME, link0_status);
if (!timeout_count) {
DEV_ERR("%s: %s: Timeout. No R0 mtch. R0'=%02x%02x\n",
__func__, HDCP_STATE_NAME, buf[1], buf[0]);
rc = -ETIMEDOUT;
goto error;
} else {
DEV_ERR("%s: %s: R0 mismatch. R0'=%02x%02x\n", __func__,
HDCP_STATE_NAME, buf[1], buf[0]);
rc = -EINVAL;
goto error;
}
} else {
DEV_DBG("%s: %s: R0 matches\n", __func__, HDCP_STATE_NAME);
}
error:
if (rc) {
DEV_ERR("%s: %s: Authentication Part I failed\n", __func__,
hdcp_ctrl ? HDCP_STATE_NAME : "???");
} else {
/* Enable HDCP Encryption */
DSS_REG_W(io, HDMI_HDCP_CTRL, BIT(0) | BIT(8));
DEV_INFO("%s: %s: Authentication Part I successful\n",
__func__, HDCP_STATE_NAME);
}
return rc;
} /* hdmi_hdcp_authentication_part1 */
static int read_write_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl,
struct hdmi_tx_ddc_data ddc_data,
struct mdss_io_data *io, int off, char *name,
u32 reg, bool wr)
{
int rc = 0;
do {
ddc_data.offset = off;
memset(ddc_data.what, 0, 20);
snprintf(ddc_data.what, 20, name);
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: Read %s failed\n", __func__,
HDCP_STATE_NAME, ddc_data.what);
return rc;
}
DEV_DBG("%s: %s: %s: buf[0]=%x, [1]=%x,[2]=%x, [3]=%x\n",
__func__, HDCP_STATE_NAME, ddc_data.what,
ddc_data.data_buf[0], ddc_data.data_buf[1],
ddc_data.data_buf[2], ddc_data.data_buf[3]);
if (wr) {
DSS_REG_W((io), (reg),
(ddc_data.data_buf[3] << 24 |
ddc_data.data_buf[2] << 16 |
ddc_data.data_buf[1] << 8 |
ddc_data.data_buf[0]));
}
} while (0);
return rc;
}
static int hdmi_hdcp_transfer_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
char what[20];
int rc = 0;
u8 buf[4];
struct hdmi_tx_ddc_data ddc_data;
struct mdss_io_data *io;
struct scm_hdcp_req scm_buf[SCM_HDCP_MAX_REG];
u32 phy_addr;
struct hdmi_hdcp_reg_data reg_data[] = {
{HDMI_HDCP_RCVPORT_DATA7, 0x20, "V' H0"},
{HDMI_HDCP_RCVPORT_DATA8, 0x24, "V' H1"},
{HDMI_HDCP_RCVPORT_DATA9, 0x28, "V' H2"},
{HDMI_HDCP_RCVPORT_DATA10, 0x2C, "V' H3"},
{HDMI_HDCP_RCVPORT_DATA11, 0x30, "V' H4"},
};
u32 size = ARRAY_SIZE(reg_data)/sizeof(reg_data[0]);
u32 iter = 0;
u32 ret = 0;
u32 resp = 0;
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.data_buf = buf;
ddc_data.data_len = 4;
ddc_data.request_len = 4;
ddc_data.retry = 5;
ddc_data.what = what;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
phy_addr = hdcp_ctrl->init_data.phy_addr;
io = hdcp_ctrl->init_data.core_io;
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
for (iter = 0; iter < size && iter < SCM_HDCP_MAX_REG; iter++) {
struct hdmi_hdcp_reg_data *rd = reg_data + iter;
if (read_write_v_h(hdcp_ctrl, ddc_data, io, rd->off,
rd->name, 0, false))
goto error;
rd->reg_val = buf[3] << 24 | buf[2] << 16 |
buf[1] << 8 | buf[0];
scm_buf[iter].addr = phy_addr + reg_data[iter].reg_id;
scm_buf[iter].val = reg_data[iter].reg_val;
}
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
struct mdss_io_data *hdcp_io = hdcp_ctrl->init_data.hdcp_io;
/* Read V'.HO 4 Byte at offset 0x20 */
if (read_write_v_h(hdcp_ctrl, ddc_data, hdcp_io, 0x20, "V' H0",
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA7, true))
goto error;
/* Read V'.H1 4 Byte at offset 0x24 */
if (read_write_v_h(hdcp_ctrl, ddc_data, hdcp_io, 0x24, "V' H1",
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA8, true))
goto error;
/* Read V'.H2 4 Byte at offset 0x28 */
if (read_write_v_h(hdcp_ctrl, ddc_data, hdcp_io, 0x28, "V' H2",
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA9, true))
goto error;
/* Read V'.H3 4 Byte at offset 0x2C */
if (read_write_v_h(hdcp_ctrl, ddc_data, hdcp_io, 0x2C, "V' H3",
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA10, true))
goto error;
/* Read V'.H4 4 Byte at offset 0x30 */
if (read_write_v_h(hdcp_ctrl, ddc_data, hdcp_io, 0x30, "V' H4",
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA11, true))
goto error;
} else {
/* Read V'.HO 4 Byte at offset 0x20 */
if (read_write_v_h(hdcp_ctrl, ddc_data, io, 0x20, "V' H0",
HDMI_HDCP_RCVPORT_DATA7, true))
goto error;
/* Read V'.H1 4 Byte at offset 0x24 */
if (read_write_v_h(hdcp_ctrl, ddc_data, io, 0x24, "V' H1",
HDMI_HDCP_RCVPORT_DATA8, true))
goto error;
/* Read V'.H2 4 Byte at offset 0x28 */
if (read_write_v_h(hdcp_ctrl, ddc_data, io, 0x28, "V' H2",
HDMI_HDCP_RCVPORT_DATA9, true))
goto error;
/* Read V'.H3 4 Byte at offset 0x2C */
if (read_write_v_h(hdcp_ctrl, ddc_data, io, 0x2C, "V' H3",
HDMI_HDCP_RCVPORT_DATA10, true))
goto error;
/* Read V'.H4 4 Byte at offset 0x30 */
if (read_write_v_h(hdcp_ctrl, ddc_data, io, 0x30, "V' H4",
HDMI_HDCP_RCVPORT_DATA11, true))
goto error;
}
error:
return rc;
}
static int hdmi_hdcp_authentication_part2(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
int rc, cnt, i;
struct hdmi_tx_ddc_data ddc_data;
u32 timeout_count, down_stream_devices = 0;
u32 repeater_cascade_depth = 0;
u8 buf[0xFF];
u8 *ksv_fifo = NULL;
u8 bcaps;
u16 bstatus, max_devs_exceeded = 0, max_cascade_exceeded = 0;
u32 link0_status;
u32 ksv_bytes;
struct mdss_io_data *io;
struct scm_hdcp_req scm_buf[SCM_HDCP_MAX_REG];
u32 phy_addr;
u32 ret = 0;
u32 resp = 0;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
rc = -EINVAL;
goto error;
}
phy_addr = hdcp_ctrl->init_data.phy_addr;
if (hdcp_ctrl->hdcp_state != HDCP_STATE_AUTHENTICATING) {
DEV_DBG("%s: %s: invalid state. returning\n", __func__,
HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
ksv_fifo = hdcp_ctrl->current_tp.ksv_list;
io = hdcp_ctrl->init_data.core_io;
memset(buf, 0, sizeof(buf));
memset(ksv_fifo, 0,
sizeof(hdcp_ctrl->current_tp.ksv_list));
/*
* Wait until READY bit is set in BCAPS, as per HDCP specifications
* maximum permitted time to check for READY bit is five seconds.
*/
timeout_count = 50;
do {
timeout_count--;
/* Read BCAPS at offset 0x40 */
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x40;
ddc_data.data_buf = &bcaps;
ddc_data.data_len = 1;
ddc_data.request_len = 1;
ddc_data.retry = 5;
ddc_data.what = "Bcaps";
ddc_data.retry_align = true;
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: BCAPS read failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
msleep(100);
} while (!(bcaps & BIT(5)) && timeout_count);
/* Read BSTATUS at offset 0x41 */
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x41;
ddc_data.data_buf = buf;
ddc_data.data_len = 2;
ddc_data.request_len = 2;
ddc_data.retry = 5;
ddc_data.what = "Bstatuss";
ddc_data.retry_align = true;
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: BSTATUS read failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
bstatus = buf[1];
bstatus = (bstatus << 8) | buf[0];
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
/* Write BSTATUS and BCAPS to HDCP registers */
scm_buf[0].addr = phy_addr + HDMI_HDCP_RCVPORT_DATA12;
scm_buf[0].val = bcaps | (bstatus << 8);
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W(hdcp_ctrl->init_data.hdcp_io,
HDCP_SEC_TZ_HV_HLOS_HDCP_RCVPORT_DATA12,
bcaps | (bstatus << 8));
} else {
DSS_REG_W(io, HDMI_HDCP_RCVPORT_DATA12, bcaps | (bstatus << 8));
}
down_stream_devices = bstatus & 0x7F;
if (down_stream_devices == 0) {
/*
* If no downstream devices are attached to the repeater
* then part II fails.
* todo: The other approach would be to continue PART II.
*/
DEV_ERR("%s: %s: No downstream devices\n", __func__,
HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
/* Cascaded repeater depth */
repeater_cascade_depth = (bstatus >> 8) & 0x7;
/*
* HDCP Compliance 1B-05:
* Check if no. of devices connected to repeater
* exceed max_devices_connected from bit 7 of Bstatus.
*/
max_devs_exceeded = (bstatus & BIT(7)) >> 7;
if (max_devs_exceeded == 0x01) {
DEV_ERR("%s: %s: no. of devs connected exceeds max allowed",
__func__, HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
/*
* HDCP Compliance 1B-06:
* Check if no. of cascade connected to repeater
* exceed max_cascade_connected from bit 11 of Bstatus.
*/
max_cascade_exceeded = (bstatus & BIT(11)) >> 11;
if (max_cascade_exceeded == 0x01) {
DEV_ERR("%s: %s: no. of cascade conn exceeds max allowed",
__func__, HDCP_STATE_NAME);
rc = -EINVAL;
goto error;
}
/*
* Read KSV FIFO over DDC
* Key Slection vector FIFO Used to pull downstream KSVs
* from HDCP Repeaters.
* All bytes (DEVICE_COUNT * 5) must be read in a single,
* auto incrementing access.
* All bytes read as 0x00 for HDCP Receivers that are not
* HDCP Repeaters (REPEATER == 0).
*/
ksv_bytes = 5 * down_stream_devices;
memset(&ddc_data, 0, sizeof(ddc_data));
ddc_data.dev_addr = 0x74;
ddc_data.offset = 0x43;
ddc_data.data_buf = ksv_fifo;
ddc_data.data_len = ksv_bytes;
ddc_data.request_len = ksv_bytes;
ddc_data.retry = 5;
ddc_data.what = "KSV FIFO";
hdcp_ctrl->init_data.ddc_ctrl->ddc_data = ddc_data;
cnt = 0;
do {
rc = hdmi_ddc_read(hdcp_ctrl->init_data.ddc_ctrl);
if (rc) {
DEV_ERR("%s: %s: KSV FIFO read failed\n", __func__,
HDCP_STATE_NAME);
/*
* HDCP Compliace Test case 1B-01:
* Wait here until all the ksv bytes have been
* read from the KSV FIFO register.
*/
msleep(25);
} else {
break;
}
cnt++;
} while (cnt != 20);
if (cnt == 20)
goto error;
rc = hdmi_hdcp_transfer_v_h(hdcp_ctrl);
if (rc)
goto error;
/*
* Write KSV FIFO to HDCP_SHA_DATA.
* This is done 1 byte at time starting with the LSB.
* On the very last byte write, the HDCP_SHA_DATA_DONE bit[0]
*/
/* First, reset SHA engine */
/* Next, enable SHA engine, SEL=DIGA_HDCP */
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + HDMI_HDCP_SHA_CTRL;
scm_buf[0].val = HDCP_REG_ENABLE;
scm_buf[1].addr = phy_addr + HDMI_HDCP_SHA_CTRL;
scm_buf[1].val = HDCP_REG_DISABLE;
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W(hdcp_ctrl->init_data.hdcp_io,
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_CTRL,
HDCP_REG_ENABLE);
DSS_REG_W(hdcp_ctrl->init_data.hdcp_io,
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_CTRL,
HDCP_REG_DISABLE);
} else {
DSS_REG_W(io, HDMI_HDCP_SHA_CTRL, HDCP_REG_ENABLE);
DSS_REG_W(io, HDMI_HDCP_SHA_CTRL, HDCP_REG_DISABLE);
}
for (i = 0; i < ksv_bytes - 1; i++) {
/* Write KSV byte and do not set DONE bit[0] */
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + HDMI_HDCP_SHA_DATA;
scm_buf[0].val = ksv_fifo[i] << 16;
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io,
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_DATA,
ksv_fifo[i] << 16);
} else {
DSS_REG_W_ND(io, HDMI_HDCP_SHA_DATA, ksv_fifo[i] << 16);
}
/*
* Once 64 bytes have been written, we need to poll for
* HDCP_SHA_BLOCK_DONE before writing any further
*/
if (i && !((i + 1) % 64)) {
timeout_count = 100;
while (!(DSS_REG_R(io, HDMI_HDCP_SHA_STATUS) & BIT(0))
&& (--timeout_count)) {
DEV_DBG("%s: %s: Wrote 64 bytes KSV FIFO\n",
__func__, HDCP_STATE_NAME);
DEV_DBG("%s: %s: HDCP_SHA_STATUS=%08x\n",
__func__, HDCP_STATE_NAME,
DSS_REG_R(io, HDMI_HDCP_SHA_STATUS));
msleep(20);
}
if (!timeout_count) {
rc = -ETIMEDOUT;
DEV_ERR("%s: %s: Write KSV FIFO timedout",
__func__, HDCP_STATE_NAME);
goto error;
}
}
}
/* Write l to DONE bit[0] */
if (hdcp_ctrl->tz_hdcp) {
memset(scm_buf, 0x00, sizeof(scm_buf));
scm_buf[0].addr = phy_addr + HDMI_HDCP_SHA_DATA;
scm_buf[0].val = (ksv_fifo[ksv_bytes - 1] << 16) | 0x1;
ret = hdcp_scm_call(scm_buf, &resp);
if (ret || resp) {
DEV_ERR("%s: error: scm_call ret = %d, resp = %d\n",
__func__, ret, resp);
rc = -EINVAL;
goto error;
}
} else if (hdcp_ctrl->hdmi_tx_ver_4) {
DSS_REG_W_ND(hdcp_ctrl->init_data.hdcp_io,
HDCP_SEC_TZ_HV_HLOS_HDCP_SHA_DATA,
(ksv_fifo[ksv_bytes - 1] << 16) | 0x1);
} else {
DSS_REG_W_ND(io, HDMI_HDCP_SHA_DATA,
(ksv_fifo[ksv_bytes - 1] << 16) | 0x1);
}
/* Now wait for HDCP_SHA_COMP_DONE */
timeout_count = 100;
while ((0x10 != (DSS_REG_R(io, HDMI_HDCP_SHA_STATUS)
& 0xFFFFFF10)) && --timeout_count)
msleep(20);
if (!timeout_count) {
rc = -ETIMEDOUT;
DEV_ERR("%s: %s: SHA computation timedout", __func__,
HDCP_STATE_NAME);
goto error;
}
/* Wait for V_MATCHES */
timeout_count = 100;
link0_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
while (((link0_status & BIT(20)) != BIT(20)) && --timeout_count) {
DEV_DBG("%s: %s: Waiting for V_MATCHES(%d). l0_status=0x%08x\n",
__func__, HDCP_STATE_NAME, timeout_count, link0_status);
msleep(20);
link0_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
}
if (!timeout_count) {
rc = -ETIMEDOUT;
DEV_ERR("%s: %s: HDCP V Match timedout", __func__,
HDCP_STATE_NAME);
goto error;
}
error:
if (rc)
DEV_ERR("%s: %s: Authentication Part II failed\n", __func__,
hdcp_ctrl ? HDCP_STATE_NAME : "???");
else
DEV_INFO("%s: %s: Authentication Part II successful\n",
__func__, HDCP_STATE_NAME);
if (!hdcp_ctrl) {
DEV_ERR("%s: hdcp_ctrl null. Topology not updated\n",
__func__);
return rc;
}
/* Update topology information */
hdcp_ctrl->current_tp.dev_count = down_stream_devices;
hdcp_ctrl->current_tp.max_cascade_exceeded = max_cascade_exceeded;
hdcp_ctrl->current_tp.max_dev_exceeded = max_devs_exceeded;
hdcp_ctrl->current_tp.depth = repeater_cascade_depth;
return rc;
} /* hdmi_hdcp_authentication_part2 */
static void hdmi_hdcp_cache_topology(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
memcpy((void *)&hdcp_ctrl->cached_tp,
(void *) &hdcp_ctrl->current_tp,
sizeof(hdcp_ctrl->cached_tp));
}
static void hdmi_hdcp_notify_topology(struct hdmi_hdcp_ctrl *hdcp_ctrl)
{
char a[16], b[16];
char *envp[] = {
[0] = "HDCP_MGR_EVENT=MSG_READY",
[1] = a,
[2] = b,
NULL,
};
snprintf(envp[1], 16, "%d", (int)DOWN_CHECK_TOPOLOGY);
snprintf(envp[2], 16, "%d", (int)HDCP_V1_TX);
kobject_uevent_env(hdcp_ctrl->init_data.sysfs_kobj, KOBJ_CHANGE, envp);
DEV_DBG("%s Event Sent: %s msgID = %s srcID = %s\n", __func__,
envp[0], envp[1], envp[2]);
}
static void hdmi_hdcp_int_work(struct work_struct *work)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work,
struct hdmi_hdcp_ctrl, hdcp_int_work);
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
mutex_lock(hdcp_ctrl->init_data.mutex);
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAIL;
mutex_unlock(hdcp_ctrl->init_data.mutex);
if (hdcp_ctrl->init_data.notify_status) {
hdcp_ctrl->init_data.notify_status(
hdcp_ctrl->init_data.cb_data,
hdcp_ctrl->hdcp_state);
}
} /* hdmi_hdcp_int_work */
static void hdmi_hdcp_auth_work(struct work_struct *work)
{
int rc;
struct delayed_work *dw = to_delayed_work(work);
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(dw,
struct hdmi_hdcp_ctrl, hdcp_auth_work);
struct mdss_io_data *io;
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
if (hdcp_ctrl->hdcp_state != HDCP_STATE_AUTHENTICATING) {
DEV_DBG("%s: %s: invalid state. returning\n", __func__,
HDCP_STATE_NAME);
return;
}
io = hdcp_ctrl->init_data.core_io;
/* Enabling Software DDC */
DSS_REG_W_ND(io, HDMI_DDC_ARBITRATION, DSS_REG_R(io,
HDMI_DDC_ARBITRATION) & ~(BIT(4)));
rc = hdmi_hdcp_authentication_part1(hdcp_ctrl);
if (rc) {
DEV_DBG("%s: %s: HDCP Auth Part I failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
if (hdcp_ctrl->current_tp.ds_type == DS_REPEATER) {
rc = hdmi_hdcp_authentication_part2(hdcp_ctrl);
if (rc) {
DEV_DBG("%s: %s: HDCP Auth Part II failed\n", __func__,
HDCP_STATE_NAME);
goto error;
}
} else {
DEV_INFO("%s: Downstream device is not a repeater\n", __func__);
}
/* Disabling software DDC before going into part3 to make sure
* there is no Arbitration between software and hardware for DDCi
*/
DSS_REG_W_ND(io, HDMI_DDC_ARBITRATION, DSS_REG_R(io,
HDMI_DDC_ARBITRATION) | (BIT(4)));
error:
/*
* Ensure that the state did not change during authentication.
* If it did, it means that deauthenticate/reauthenticate was
* called. In that case, this function need not notify HDMI Tx
* of the result
*/
mutex_lock(hdcp_ctrl->init_data.mutex);
if (hdcp_ctrl->hdcp_state == HDCP_STATE_AUTHENTICATING) {
if (rc) {
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAIL;
} else {
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATED;
hdcp_ctrl->auth_retries = 0;
hdmi_hdcp_cache_topology(hdcp_ctrl);
hdmi_hdcp_notify_topology(hdcp_ctrl);
}
mutex_unlock(hdcp_ctrl->init_data.mutex);
/* Notify HDMI Tx controller of the result */
DEV_DBG("%s: %s: Notifying HDMI Tx of auth result\n",
__func__, HDCP_STATE_NAME);
if (hdcp_ctrl->init_data.notify_status) {
hdcp_ctrl->init_data.notify_status(
hdcp_ctrl->init_data.cb_data,
hdcp_ctrl->hdcp_state);
}
} else {
DEV_DBG("%s: %s: HDCP state changed during authentication\n",
__func__, HDCP_STATE_NAME);
mutex_unlock(hdcp_ctrl->init_data.mutex);
}
} /* hdmi_hdcp_auth_work */
int hdmi_hdcp_authenticate(void *input)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = (struct hdmi_hdcp_ctrl *)input;
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
if (hdcp_ctrl->hdcp_state != HDCP_STATE_INACTIVE) {
DEV_DBG("%s: %s: already active or activating. returning\n",
__func__, HDCP_STATE_NAME);
return 0;
}
DEV_DBG("%s: %s: Queuing work to start HDCP authentication", __func__,
HDCP_STATE_NAME);
if (!hdmi_hdcp_load_keys(input))
queue_delayed_work(hdcp_ctrl->init_data.workq,
&hdcp_ctrl->hdcp_auth_work, HZ/2);
else
queue_work(hdcp_ctrl->init_data.workq,
&hdcp_ctrl->hdcp_int_work);
return 0;
} /* hdmi_hdcp_authenticate */
int hdmi_hdcp_reauthenticate(void *input)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = (struct hdmi_hdcp_ctrl *)input;
struct mdss_io_data *io;
u32 hdmi_hw_version;
u32 ret = 0;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
io = hdcp_ctrl->init_data.core_io;
if (hdcp_ctrl->hdcp_state != HDCP_STATE_AUTH_FAIL) {
DEV_DBG("%s: %s: invalid state. returning\n", __func__,
HDCP_STATE_NAME);
return 0;
}
hdmi_hw_version = DSS_REG_R(io, HDMI_VERSION);
if (hdmi_hw_version >= 0x30030000) {
DSS_REG_W(io, HDMI_CTRL_SW_RESET, BIT(1));
DSS_REG_W(io, HDMI_CTRL_SW_RESET, 0);
}
/* Disable HDCP interrupts */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, 0);
DSS_REG_W(io, HDMI_HDCP_RESET, BIT(0));
/* Wait to be clean on DDC HW engine */
hdmi_hdcp_hw_ddc_clean(hdcp_ctrl);
/* Disable encryption and disable the HDCP block */
DSS_REG_W(io, HDMI_HDCP_CTRL, 0);
if (!hdmi_hdcp_load_keys(input))
queue_delayed_work(hdcp_ctrl->init_data.workq,
&hdcp_ctrl->hdcp_auth_work, HZ/2);
else
queue_work(hdcp_ctrl->init_data.workq,
&hdcp_ctrl->hdcp_int_work);
return ret;
} /* hdmi_hdcp_reauthenticate */
void hdmi_hdcp_off(void *input)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = (struct hdmi_hdcp_ctrl *)input;
struct mdss_io_data *io;
int rc = 0;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
io = hdcp_ctrl->init_data.core_io;
if (hdcp_ctrl->hdcp_state == HDCP_STATE_INACTIVE) {
DEV_DBG("%s: %s: inactive. returning\n", __func__,
HDCP_STATE_NAME);
return;
}
/*
* Disable HDCP interrupts.
* Also, need to set the state to inactive here so that any ongoing
* reauth works will know that the HDCP session has been turned off.
*/
mutex_lock(hdcp_ctrl->init_data.mutex);
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, 0);
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
mutex_unlock(hdcp_ctrl->init_data.mutex);
/*
* Cancel any pending auth/reauth attempts.
* If one is ongoing, this will wait for it to finish.
* No more reauthentiaction attempts will be scheduled since we
* set the currect state to inactive.
*/
rc = cancel_delayed_work_sync(&hdcp_ctrl->hdcp_auth_work);
if (rc)
DEV_DBG("%s: %s: Deleted hdcp auth work\n", __func__,
HDCP_STATE_NAME);
rc = cancel_work_sync(&hdcp_ctrl->hdcp_int_work);
if (rc)
DEV_DBG("%s: %s: Deleted hdcp int work\n", __func__,
HDCP_STATE_NAME);
DSS_REG_W(io, HDMI_HDCP_RESET, BIT(0));
/* Disable encryption and disable the HDCP block */
DSS_REG_W(io, HDMI_HDCP_CTRL, 0);
DEV_DBG("%s: %s: HDCP: Off\n", __func__, HDCP_STATE_NAME);
} /* hdmi_hdcp_off */
int hdmi_hdcp_isr(void *input)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = (struct hdmi_hdcp_ctrl *)input;
int rc = 0;
struct mdss_io_data *io;
u32 hdcp_int_val;
if (!hdcp_ctrl || !hdcp_ctrl->init_data.core_io) {
DEV_ERR("%s: invalid input\n", __func__);
rc = -EINVAL;
goto error;
}
io = hdcp_ctrl->init_data.core_io;
hdcp_int_val = DSS_REG_R(io, HDMI_HDCP_INT_CTRL);
/* Ignore HDCP interrupts if HDCP is disabled */
if (hdcp_ctrl->hdcp_state == HDCP_STATE_INACTIVE) {
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, HDCP_INT_CLR);
return 0;
}
if (hdcp_int_val & BIT(0)) {
/* AUTH_SUCCESS_INT */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, (hdcp_int_val | BIT(1)));
DEV_INFO("%s: %s: AUTH_SUCCESS_INT received\n", __func__,
HDCP_STATE_NAME);
if (hdcp_ctrl->hdcp_state == HDCP_STATE_AUTHENTICATING)
complete_all(&hdcp_ctrl->r0_checked);
}
if (hdcp_int_val & BIT(4)) {
/* AUTH_FAIL_INT */
u32 link_status = DSS_REG_R(io, HDMI_HDCP_LINK0_STATUS);
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, (hdcp_int_val | BIT(5)));
DEV_INFO("%s: %s: AUTH_FAIL_INT rcvd, LINK0_STATUS=0x%08x\n",
__func__, HDCP_STATE_NAME, link_status);
if (hdcp_ctrl->hdcp_state == HDCP_STATE_AUTHENTICATED) {
/* Inform HDMI Tx of the failure */
queue_work(hdcp_ctrl->init_data.workq,
&hdcp_ctrl->hdcp_int_work);
/* todo: print debug log with auth fail reason */
} else if (hdcp_ctrl->hdcp_state == HDCP_STATE_AUTHENTICATING) {
complete_all(&hdcp_ctrl->r0_checked);
}
/* Clear AUTH_FAIL_INFO as well */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, (hdcp_int_val | BIT(7)));
}
if (hdcp_int_val & BIT(8)) {
/* DDC_XFER_REQ_INT */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, (hdcp_int_val | BIT(9)));
DEV_INFO("%s: %s: DDC_XFER_REQ_INT received\n", __func__,
HDCP_STATE_NAME);
}
if (hdcp_int_val & BIT(12)) {
/* DDC_XFER_DONE_INT */
DSS_REG_W(io, HDMI_HDCP_INT_CTRL, (hdcp_int_val | BIT(13)));
DEV_INFO("%s: %s: DDC_XFER_DONE received\n", __func__,
HDCP_STATE_NAME);
}
error:
return rc;
} /* hdmi_hdcp_isr */
static ssize_t hdmi_hdcp_sysfs_rda_status(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret;
struct hdmi_hdcp_ctrl *hdcp_ctrl =
hdmi_get_featuredata_from_sysfs_dev(dev, HDMI_TX_FEAT_HDCP);
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
mutex_lock(hdcp_ctrl->init_data.mutex);
ret = snprintf(buf, PAGE_SIZE, "%d\n", hdcp_ctrl->hdcp_state);
DEV_DBG("%s: '%d'\n", __func__, hdcp_ctrl->hdcp_state);
mutex_unlock(hdcp_ctrl->init_data.mutex);
return ret;
} /* hdmi_hdcp_sysfs_rda_hdcp*/
static ssize_t hdmi_hdcp_sysfs_rda_tp(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret = 0;
struct hdmi_hdcp_ctrl *hdcp_ctrl =
hdmi_get_featuredata_from_sysfs_dev(dev, HDMI_TX_FEAT_HDCP);
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
switch (hdcp_ctrl->tp_msgid) {
case DOWN_CHECK_TOPOLOGY:
case DOWN_REQUEST_TOPOLOGY:
buf[MSG_ID_IDX] = hdcp_ctrl->tp_msgid;
buf[RET_CODE_IDX] = HDCP_AUTHED;
ret = HEADER_LEN;
memcpy(buf + HEADER_LEN, &hdcp_ctrl->cached_tp,
sizeof(struct HDCP_V2V1_MSG_TOPOLOGY));
ret += sizeof(struct HDCP_V2V1_MSG_TOPOLOGY);
/* clear the flag once data is read back to user space*/
hdcp_ctrl->tp_msgid = -1;
break;
default:
ret = -EINVAL;
}
return ret;
} /* hdmi_hdcp_sysfs_rda_tp*/
static ssize_t hdmi_hdcp_sysfs_wta_tp(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int msgid = 0;
ssize_t ret = count;
struct hdmi_hdcp_ctrl *hdcp_ctrl =
hdmi_get_featuredata_from_sysfs_dev(dev, HDMI_TX_FEAT_HDCP);
if (!hdcp_ctrl || !buf) {
DEV_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
msgid = buf[0];
switch (msgid) {
case DOWN_CHECK_TOPOLOGY:
case DOWN_REQUEST_TOPOLOGY:
hdcp_ctrl->tp_msgid = msgid;
break;
/* more cases added here */
default:
ret = -EINVAL;
}
return ret;
} /* hdmi_tx_sysfs_wta_hpd */
static DEVICE_ATTR(status, 0444, hdmi_hdcp_sysfs_rda_status, NULL);
static DEVICE_ATTR(tp, 0644, hdmi_hdcp_sysfs_rda_tp,
hdmi_hdcp_sysfs_wta_tp);
static struct attribute *hdmi_hdcp_fs_attrs[] = {
&dev_attr_status.attr,
&dev_attr_tp.attr,
NULL,
};
static struct attribute_group hdmi_hdcp_fs_attr_group = {
.name = "hdcp",
.attrs = hdmi_hdcp_fs_attrs,
};
void hdmi_hdcp_deinit(void *input)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = (struct hdmi_hdcp_ctrl *)input;
if (!hdcp_ctrl) {
DEV_ERR("%s: invalid input\n", __func__);
return;
}
sysfs_remove_group(hdcp_ctrl->init_data.sysfs_kobj,
&hdmi_hdcp_fs_attr_group);
kfree(hdcp_ctrl);
} /* hdmi_hdcp_deinit */
void *hdmi_hdcp_init(struct hdmi_hdcp_init_data *init_data)
{
struct hdmi_hdcp_ctrl *hdcp_ctrl = NULL;
int ret;
static struct hdmi_hdcp_ops ops = {
.hdmi_hdcp_isr = hdmi_hdcp_isr,
.hdmi_hdcp_reauthenticate = hdmi_hdcp_reauthenticate,
.hdmi_hdcp_authenticate = hdmi_hdcp_authenticate,
.hdmi_hdcp_off = hdmi_hdcp_off
};
if (!init_data || !init_data->core_io || !init_data->qfprom_io ||
!init_data->mutex || !init_data->ddc_ctrl ||
!init_data->notify_status || !init_data->workq ||
!init_data->cb_data) {
DEV_ERR("%s: invalid input\n", __func__);
goto error;
}
if (init_data->hdmi_tx_ver >= HDMI_TX_VERSION_4
&& !init_data->hdcp_io) {
DEV_ERR("%s: hdcp_io required for HDMI Tx Ver 4\n", __func__);
goto error;
}
hdcp_ctrl = kzalloc(sizeof(*hdcp_ctrl), GFP_KERNEL);
if (!hdcp_ctrl) {
DEV_ERR("%s: Out of memory\n", __func__);
goto error;
}
hdcp_ctrl->init_data = *init_data;
hdcp_ctrl->ops = &ops;
hdcp_ctrl->hdmi_tx_ver_4 =
(init_data->hdmi_tx_ver >= HDMI_TX_VERSION_4);
if (sysfs_create_group(init_data->sysfs_kobj,
&hdmi_hdcp_fs_attr_group)) {
DEV_ERR("%s: hdcp sysfs group creation failed\n", __func__);
goto error;
}
INIT_DELAYED_WORK(&hdcp_ctrl->hdcp_auth_work, hdmi_hdcp_auth_work);
INIT_WORK(&hdcp_ctrl->hdcp_int_work, hdmi_hdcp_int_work);
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
init_completion(&hdcp_ctrl->r0_checked);
if (!hdcp_ctrl->hdmi_tx_ver_4) {
ret = scm_is_call_available(SCM_SVC_HDCP, SCM_CMD_HDCP);
if (ret <= 0) {
DEV_ERR("%s: secure hdcp service unavailable, ret = %d",
__func__, ret);
} else {
DEV_DBG("%s: tz_hdcp = 1\n", __func__);
hdcp_ctrl->tz_hdcp = 1;
}
}
DEV_DBG("%s: HDCP module initialized. HDCP_STATE=%s", __func__,
HDCP_STATE_NAME);
error:
return (void *)hdcp_ctrl;
} /* hdmi_hdcp_init */
struct hdmi_hdcp_ops *hdmi_hdcp_start(void *input)
{
return ((struct hdmi_hdcp_ctrl *)input)->ops;
}