| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #ifndef I915_GEM_REQUEST_H |
| #define I915_GEM_REQUEST_H |
| |
| #include <linux/fence.h> |
| |
| #include "i915_gem.h" |
| |
| /** |
| * Request queue structure. |
| * |
| * The request queue allows us to note sequence numbers that have been emitted |
| * and may be associated with active buffers to be retired. |
| * |
| * By keeping this list, we can avoid having to do questionable sequence |
| * number comparisons on buffer last_read|write_seqno. It also allows an |
| * emission time to be associated with the request for tracking how far ahead |
| * of the GPU the submission is. |
| * |
| * The requests are reference counted. |
| */ |
| struct drm_i915_gem_request { |
| struct fence fence; |
| spinlock_t lock; |
| |
| /** On Which ring this request was generated */ |
| struct drm_i915_private *i915; |
| |
| /** |
| * Context and ring buffer related to this request |
| * Contexts are refcounted, so when this request is associated with a |
| * context, we must increment the context's refcount, to guarantee that |
| * it persists while any request is linked to it. Requests themselves |
| * are also refcounted, so the request will only be freed when the last |
| * reference to it is dismissed, and the code in |
| * i915_gem_request_free() will then decrement the refcount on the |
| * context. |
| */ |
| struct i915_gem_context *ctx; |
| struct intel_engine_cs *engine; |
| struct intel_ring *ring; |
| struct intel_signal_node signaling; |
| |
| /** GEM sequence number associated with the previous request, |
| * when the HWS breadcrumb is equal to this the GPU is processing |
| * this request. |
| */ |
| u32 previous_seqno; |
| |
| /** Position in the ringbuffer of the start of the request */ |
| u32 head; |
| |
| /** |
| * Position in the ringbuffer of the start of the postfix. |
| * This is required to calculate the maximum available ringbuffer |
| * space without overwriting the postfix. |
| */ |
| u32 postfix; |
| |
| /** Position in the ringbuffer of the end of the whole request */ |
| u32 tail; |
| |
| /** Preallocate space in the ringbuffer for the emitting the request */ |
| u32 reserved_space; |
| |
| /** |
| * Context related to the previous request. |
| * As the contexts are accessed by the hardware until the switch is |
| * completed to a new context, the hardware may still be writing |
| * to the context object after the breadcrumb is visible. We must |
| * not unpin/unbind/prune that object whilst still active and so |
| * we keep the previous context pinned until the following (this) |
| * request is retired. |
| */ |
| struct i915_gem_context *previous_context; |
| |
| /** Batch buffer related to this request if any (used for |
| * error state dump only). |
| */ |
| struct drm_i915_gem_object *batch_obj; |
| |
| /** Time at which this request was emitted, in jiffies. */ |
| unsigned long emitted_jiffies; |
| |
| /** global list entry for this request */ |
| struct list_head list; |
| |
| struct drm_i915_file_private *file_priv; |
| /** file_priv list entry for this request */ |
| struct list_head client_list; |
| |
| /** process identifier submitting this request */ |
| struct pid *pid; |
| |
| /** |
| * The ELSP only accepts two elements at a time, so we queue |
| * context/tail pairs on a given queue (ring->execlist_queue) until the |
| * hardware is available. The queue serves a double purpose: we also use |
| * it to keep track of the up to 2 contexts currently in the hardware |
| * (usually one in execution and the other queued up by the GPU): We |
| * only remove elements from the head of the queue when the hardware |
| * informs us that an element has been completed. |
| * |
| * All accesses to the queue are mediated by a spinlock |
| * (ring->execlist_lock). |
| */ |
| |
| /** Execlist link in the submission queue.*/ |
| struct list_head execlist_link; |
| |
| /** Execlists no. of times this request has been sent to the ELSP */ |
| int elsp_submitted; |
| |
| /** Execlists context hardware id. */ |
| unsigned int ctx_hw_id; |
| }; |
| |
| extern const struct fence_ops i915_fence_ops; |
| |
| static inline bool fence_is_i915(struct fence *fence) |
| { |
| return fence->ops == &i915_fence_ops; |
| } |
| |
| struct drm_i915_gem_request * __must_check |
| i915_gem_request_alloc(struct intel_engine_cs *engine, |
| struct i915_gem_context *ctx); |
| int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, |
| struct drm_file *file); |
| void i915_gem_request_retire_upto(struct drm_i915_gem_request *req); |
| |
| static inline u32 |
| i915_gem_request_get_seqno(struct drm_i915_gem_request *req) |
| { |
| return req ? req->fence.seqno : 0; |
| } |
| |
| static inline struct intel_engine_cs * |
| i915_gem_request_get_engine(struct drm_i915_gem_request *req) |
| { |
| return req ? req->engine : NULL; |
| } |
| |
| static inline struct drm_i915_gem_request * |
| to_request(struct fence *fence) |
| { |
| /* We assume that NULL fence/request are interoperable */ |
| BUILD_BUG_ON(offsetof(struct drm_i915_gem_request, fence) != 0); |
| GEM_BUG_ON(fence && !fence_is_i915(fence)); |
| return container_of(fence, struct drm_i915_gem_request, fence); |
| } |
| |
| static inline struct drm_i915_gem_request * |
| i915_gem_request_get(struct drm_i915_gem_request *req) |
| { |
| return to_request(fence_get(&req->fence)); |
| } |
| |
| static inline void |
| i915_gem_request_put(struct drm_i915_gem_request *req) |
| { |
| fence_put(&req->fence); |
| } |
| |
| static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, |
| struct drm_i915_gem_request *src) |
| { |
| if (src) |
| i915_gem_request_get(src); |
| |
| if (*pdst) |
| i915_gem_request_put(*pdst); |
| |
| *pdst = src; |
| } |
| |
| void __i915_add_request(struct drm_i915_gem_request *req, |
| struct drm_i915_gem_object *batch_obj, |
| bool flush_caches); |
| #define i915_add_request(req) \ |
| __i915_add_request(req, NULL, true) |
| #define i915_add_request_no_flush(req) \ |
| __i915_add_request(req, NULL, false) |
| |
| struct intel_rps_client; |
| #define NO_WAITBOOST ERR_PTR(-1) |
| #define IS_RPS_CLIENT(p) (!IS_ERR(p)) |
| #define IS_RPS_USER(p) (!IS_ERR_OR_NULL(p)) |
| |
| int __i915_wait_request(struct drm_i915_gem_request *req, |
| bool interruptible, |
| s64 *timeout, |
| struct intel_rps_client *rps); |
| int __must_check i915_wait_request(struct drm_i915_gem_request *req); |
| |
| static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine); |
| |
| /** |
| * Returns true if seq1 is later than seq2. |
| */ |
| static inline bool i915_seqno_passed(u32 seq1, u32 seq2) |
| { |
| return (s32)(seq1 - seq2) >= 0; |
| } |
| |
| static inline bool |
| i915_gem_request_started(const struct drm_i915_gem_request *req) |
| { |
| return i915_seqno_passed(intel_engine_get_seqno(req->engine), |
| req->previous_seqno); |
| } |
| |
| static inline bool |
| i915_gem_request_completed(const struct drm_i915_gem_request *req) |
| { |
| return i915_seqno_passed(intel_engine_get_seqno(req->engine), |
| req->fence.seqno); |
| } |
| |
| bool __i915_spin_request(const struct drm_i915_gem_request *request, |
| int state, unsigned long timeout_us); |
| static inline bool i915_spin_request(const struct drm_i915_gem_request *request, |
| int state, unsigned long timeout_us) |
| { |
| return (i915_gem_request_started(request) && |
| __i915_spin_request(request, state, timeout_us)); |
| } |
| |
| #endif /* I915_GEM_REQUEST_H */ |