| /* |
| * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include <crypto/aead.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/authenc.h> |
| #include <crypto/des.h> |
| #include <crypto/md5.h> |
| #include <crypto/sha.h> |
| #include <crypto/internal/skcipher.h> |
| #include <linux/clk.h> |
| #include <linux/crypto.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/scatterlist.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| |
| #include "picoxcell_crypto_regs.h" |
| |
| /* |
| * The threshold for the number of entries in the CMD FIFO available before |
| * the CMD0_CNT interrupt is raised. Increasing this value will reduce the |
| * number of interrupts raised to the CPU. |
| */ |
| #define CMD0_IRQ_THRESHOLD 1 |
| |
| /* |
| * The timeout period (in jiffies) for a PDU. When the the number of PDUs in |
| * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled. |
| * When there are packets in flight but lower than the threshold, we enable |
| * the timer and at expiry, attempt to remove any processed packets from the |
| * queue and if there are still packets left, schedule the timer again. |
| */ |
| #define PACKET_TIMEOUT 1 |
| |
| /* The priority to register each algorithm with. */ |
| #define SPACC_CRYPTO_ALG_PRIORITY 10000 |
| |
| #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16 |
| #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64 |
| #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64 |
| #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32 |
| #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32 |
| #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64 |
| #define SPACC_CRYPTO_L2_HASH_PG_SZ 64 |
| #define SPACC_CRYPTO_L2_MAX_CTXS 128 |
| #define SPACC_CRYPTO_L2_FIFO_SZ 128 |
| |
| #define MAX_DDT_LEN 16 |
| |
| /* DDT format. This must match the hardware DDT format exactly. */ |
| struct spacc_ddt { |
| dma_addr_t p; |
| u32 len; |
| }; |
| |
| /* |
| * Asynchronous crypto request structure. |
| * |
| * This structure defines a request that is either queued for processing or |
| * being processed. |
| */ |
| struct spacc_req { |
| struct list_head list; |
| struct spacc_engine *engine; |
| struct crypto_async_request *req; |
| int result; |
| bool is_encrypt; |
| unsigned ctx_id; |
| dma_addr_t src_addr, dst_addr; |
| struct spacc_ddt *src_ddt, *dst_ddt; |
| void (*complete)(struct spacc_req *req); |
| |
| /* AEAD specific bits. */ |
| u8 *giv; |
| size_t giv_len; |
| dma_addr_t giv_pa; |
| }; |
| |
| struct spacc_engine { |
| void __iomem *regs; |
| struct list_head pending; |
| int next_ctx; |
| spinlock_t hw_lock; |
| int in_flight; |
| struct list_head completed; |
| struct list_head in_progress; |
| struct tasklet_struct complete; |
| unsigned long fifo_sz; |
| void __iomem *cipher_ctx_base; |
| void __iomem *hash_key_base; |
| struct spacc_alg *algs; |
| unsigned num_algs; |
| struct list_head registered_algs; |
| size_t cipher_pg_sz; |
| size_t hash_pg_sz; |
| const char *name; |
| struct clk *clk; |
| struct device *dev; |
| unsigned max_ctxs; |
| struct timer_list packet_timeout; |
| unsigned stat_irq_thresh; |
| struct dma_pool *req_pool; |
| }; |
| |
| /* Algorithm type mask. */ |
| #define SPACC_CRYPTO_ALG_MASK 0x7 |
| |
| /* SPACC definition of a crypto algorithm. */ |
| struct spacc_alg { |
| unsigned long ctrl_default; |
| unsigned long type; |
| struct crypto_alg alg; |
| struct spacc_engine *engine; |
| struct list_head entry; |
| int key_offs; |
| int iv_offs; |
| }; |
| |
| /* Generic context structure for any algorithm type. */ |
| struct spacc_generic_ctx { |
| struct spacc_engine *engine; |
| int flags; |
| int key_offs; |
| int iv_offs; |
| }; |
| |
| /* Block cipher context. */ |
| struct spacc_ablk_ctx { |
| struct spacc_generic_ctx generic; |
| u8 key[AES_MAX_KEY_SIZE]; |
| u8 key_len; |
| /* |
| * The fallback cipher. If the operation can't be done in hardware, |
| * fallback to a software version. |
| */ |
| struct crypto_ablkcipher *sw_cipher; |
| }; |
| |
| /* AEAD cipher context. */ |
| struct spacc_aead_ctx { |
| struct spacc_generic_ctx generic; |
| u8 cipher_key[AES_MAX_KEY_SIZE]; |
| u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ]; |
| u8 cipher_key_len; |
| u8 hash_key_len; |
| struct crypto_aead *sw_cipher; |
| size_t auth_size; |
| u8 salt[AES_BLOCK_SIZE]; |
| }; |
| |
| static int spacc_ablk_submit(struct spacc_req *req); |
| |
| static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg) |
| { |
| return alg ? container_of(alg, struct spacc_alg, alg) : NULL; |
| } |
| |
| static inline int spacc_fifo_cmd_full(struct spacc_engine *engine) |
| { |
| u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET); |
| |
| return fifo_stat & SPA_FIFO_CMD_FULL; |
| } |
| |
| /* |
| * Given a cipher context, and a context number, get the base address of the |
| * context page. |
| * |
| * Returns the address of the context page where the key/context may |
| * be written. |
| */ |
| static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx, |
| unsigned indx, |
| bool is_cipher_ctx) |
| { |
| return is_cipher_ctx ? ctx->engine->cipher_ctx_base + |
| (indx * ctx->engine->cipher_pg_sz) : |
| ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz); |
| } |
| |
| /* The context pages can only be written with 32-bit accesses. */ |
| static inline void memcpy_toio32(u32 __iomem *dst, const void *src, |
| unsigned count) |
| { |
| const u32 *src32 = (const u32 *) src; |
| |
| while (count--) |
| writel(*src32++, dst++); |
| } |
| |
| static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx, |
| void __iomem *page_addr, const u8 *key, |
| size_t key_len, const u8 *iv, size_t iv_len) |
| { |
| void __iomem *key_ptr = page_addr + ctx->key_offs; |
| void __iomem *iv_ptr = page_addr + ctx->iv_offs; |
| |
| memcpy_toio32(key_ptr, key, key_len / 4); |
| memcpy_toio32(iv_ptr, iv, iv_len / 4); |
| } |
| |
| /* |
| * Load a context into the engines context memory. |
| * |
| * Returns the index of the context page where the context was loaded. |
| */ |
| static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx, |
| const u8 *ciph_key, size_t ciph_len, |
| const u8 *iv, size_t ivlen, const u8 *hash_key, |
| size_t hash_len) |
| { |
| unsigned indx = ctx->engine->next_ctx++; |
| void __iomem *ciph_page_addr, *hash_page_addr; |
| |
| ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1); |
| hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0); |
| |
| ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1; |
| spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv, |
| ivlen); |
| writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) | |
| (1 << SPA_KEY_SZ_CIPHER_OFFSET), |
| ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
| |
| if (hash_key) { |
| memcpy_toio32(hash_page_addr, hash_key, hash_len / 4); |
| writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET), |
| ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
| } |
| |
| return indx; |
| } |
| |
| /* Count the number of scatterlist entries in a scatterlist. */ |
| static int sg_count(struct scatterlist *sg_list, int nbytes) |
| { |
| struct scatterlist *sg = sg_list; |
| int sg_nents = 0; |
| |
| while (nbytes > 0) { |
| ++sg_nents; |
| nbytes -= sg->length; |
| sg = sg_next(sg); |
| } |
| |
| return sg_nents; |
| } |
| |
| static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len) |
| { |
| ddt->p = phys; |
| ddt->len = len; |
| } |
| |
| /* |
| * Take a crypto request and scatterlists for the data and turn them into DDTs |
| * for passing to the crypto engines. This also DMA maps the data so that the |
| * crypto engines can DMA to/from them. |
| */ |
| static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine, |
| struct scatterlist *payload, |
| unsigned nbytes, |
| enum dma_data_direction dir, |
| dma_addr_t *ddt_phys) |
| { |
| unsigned nents, mapped_ents; |
| struct scatterlist *cur; |
| struct spacc_ddt *ddt; |
| int i; |
| |
| nents = sg_count(payload, nbytes); |
| mapped_ents = dma_map_sg(engine->dev, payload, nents, dir); |
| |
| if (mapped_ents + 1 > MAX_DDT_LEN) |
| goto out; |
| |
| ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys); |
| if (!ddt) |
| goto out; |
| |
| for_each_sg(payload, cur, mapped_ents, i) |
| ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur)); |
| ddt_set(&ddt[mapped_ents], 0, 0); |
| |
| return ddt; |
| |
| out: |
| dma_unmap_sg(engine->dev, payload, nents, dir); |
| return NULL; |
| } |
| |
| static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv) |
| { |
| struct aead_request *areq = container_of(req->req, struct aead_request, |
| base); |
| struct spacc_engine *engine = req->engine; |
| struct spacc_ddt *src_ddt, *dst_ddt; |
| unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq)); |
| unsigned nents = sg_count(areq->src, areq->cryptlen); |
| dma_addr_t iv_addr; |
| struct scatterlist *cur; |
| int i, dst_ents, src_ents, assoc_ents; |
| u8 *iv = giv ? giv : areq->iv; |
| |
| src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr); |
| if (!src_ddt) |
| return -ENOMEM; |
| |
| dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr); |
| if (!dst_ddt) { |
| dma_pool_free(engine->req_pool, src_ddt, req->src_addr); |
| return -ENOMEM; |
| } |
| |
| req->src_ddt = src_ddt; |
| req->dst_ddt = dst_ddt; |
| |
| assoc_ents = dma_map_sg(engine->dev, areq->assoc, |
| sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
| if (areq->src != areq->dst) { |
| src_ents = dma_map_sg(engine->dev, areq->src, nents, |
| DMA_TO_DEVICE); |
| dst_ents = dma_map_sg(engine->dev, areq->dst, nents, |
| DMA_FROM_DEVICE); |
| } else { |
| src_ents = dma_map_sg(engine->dev, areq->src, nents, |
| DMA_BIDIRECTIONAL); |
| dst_ents = 0; |
| } |
| |
| /* |
| * Map the IV/GIV. For the GIV it needs to be bidirectional as it is |
| * formed by the crypto block and sent as the ESP IV for IPSEC. |
| */ |
| iv_addr = dma_map_single(engine->dev, iv, ivsize, |
| giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| req->giv_pa = iv_addr; |
| |
| /* |
| * Map the associated data. For decryption we don't copy the |
| * associated data. |
| */ |
| for_each_sg(areq->assoc, cur, assoc_ents, i) { |
| ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
| if (req->is_encrypt) |
| ddt_set(dst_ddt++, sg_dma_address(cur), |
| sg_dma_len(cur)); |
| } |
| ddt_set(src_ddt++, iv_addr, ivsize); |
| |
| if (giv || req->is_encrypt) |
| ddt_set(dst_ddt++, iv_addr, ivsize); |
| |
| /* |
| * Now map in the payload for the source and destination and terminate |
| * with the NULL pointers. |
| */ |
| for_each_sg(areq->src, cur, src_ents, i) { |
| ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
| if (areq->src == areq->dst) |
| ddt_set(dst_ddt++, sg_dma_address(cur), |
| sg_dma_len(cur)); |
| } |
| |
| for_each_sg(areq->dst, cur, dst_ents, i) |
| ddt_set(dst_ddt++, sg_dma_address(cur), |
| sg_dma_len(cur)); |
| |
| ddt_set(src_ddt, 0, 0); |
| ddt_set(dst_ddt, 0, 0); |
| |
| return 0; |
| } |
| |
| static void spacc_aead_free_ddts(struct spacc_req *req) |
| { |
| struct aead_request *areq = container_of(req->req, struct aead_request, |
| base); |
| struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg); |
| struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm); |
| struct spacc_engine *engine = aead_ctx->generic.engine; |
| unsigned ivsize = alg->alg.cra_aead.ivsize; |
| unsigned nents = sg_count(areq->src, areq->cryptlen); |
| |
| if (areq->src != areq->dst) { |
| dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE); |
| dma_unmap_sg(engine->dev, areq->dst, |
| sg_count(areq->dst, areq->cryptlen), |
| DMA_FROM_DEVICE); |
| } else |
| dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL); |
| |
| dma_unmap_sg(engine->dev, areq->assoc, |
| sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
| |
| dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL); |
| |
| dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr); |
| dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr); |
| } |
| |
| static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt, |
| dma_addr_t ddt_addr, struct scatterlist *payload, |
| unsigned nbytes, enum dma_data_direction dir) |
| { |
| unsigned nents = sg_count(payload, nbytes); |
| |
| dma_unmap_sg(req->engine->dev, payload, nents, dir); |
| dma_pool_free(req->engine->req_pool, ddt, ddt_addr); |
| } |
| |
| /* |
| * Set key for a DES operation in an AEAD cipher. This also performs weak key |
| * checking if required. |
| */ |
| static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key, |
| unsigned int len) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| u32 tmp[DES_EXPKEY_WORDS]; |
| |
| if (unlikely(!des_ekey(tmp, key)) && |
| (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) { |
| tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| return -EINVAL; |
| } |
| |
| memcpy(ctx->cipher_key, key, len); |
| ctx->cipher_key_len = len; |
| |
| return 0; |
| } |
| |
| /* Set the key for the AES block cipher component of the AEAD transform. */ |
| static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key, |
| unsigned int len) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| /* |
| * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
| * request for any other size (192 bits) then we need to do a software |
| * fallback. |
| */ |
| if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) { |
| /* |
| * Set the fallback transform to use the same request flags as |
| * the hardware transform. |
| */ |
| ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| ctx->sw_cipher->base.crt_flags |= |
| tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| return crypto_aead_setkey(ctx->sw_cipher, key, len); |
| } |
| |
| memcpy(ctx->cipher_key, key, len); |
| ctx->cipher_key_len = len; |
| |
| return 0; |
| } |
| |
| static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
| struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
| struct rtattr *rta = (void *)key; |
| struct crypto_authenc_key_param *param; |
| unsigned int authkeylen, enckeylen; |
| int err = -EINVAL; |
| |
| if (!RTA_OK(rta, keylen)) |
| goto badkey; |
| |
| if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| goto badkey; |
| |
| if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| goto badkey; |
| |
| param = RTA_DATA(rta); |
| enckeylen = be32_to_cpu(param->enckeylen); |
| |
| key += RTA_ALIGN(rta->rta_len); |
| keylen -= RTA_ALIGN(rta->rta_len); |
| |
| if (keylen < enckeylen) |
| goto badkey; |
| |
| authkeylen = keylen - enckeylen; |
| |
| if (enckeylen > AES_MAX_KEY_SIZE) |
| goto badkey; |
| |
| if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| SPA_CTRL_CIPH_ALG_AES) |
| err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen); |
| else |
| err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen); |
| |
| if (err) |
| goto badkey; |
| |
| memcpy(ctx->hash_ctx, key, authkeylen); |
| ctx->hash_key_len = authkeylen; |
| |
| return 0; |
| |
| badkey: |
| crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| static int spacc_aead_setauthsize(struct crypto_aead *tfm, |
| unsigned int authsize) |
| { |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); |
| |
| ctx->auth_size = authsize; |
| |
| return 0; |
| } |
| |
| /* |
| * Check if an AEAD request requires a fallback operation. Some requests can't |
| * be completed in hardware because the hardware may not support certain key |
| * sizes. In these cases we need to complete the request in software. |
| */ |
| static int spacc_aead_need_fallback(struct spacc_req *req) |
| { |
| struct aead_request *aead_req; |
| struct crypto_tfm *tfm = req->req->tfm; |
| struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| aead_req = container_of(req->req, struct aead_request, base); |
| /* |
| * If we have a non-supported key-length, then we need to do a |
| * software fallback. |
| */ |
| if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| SPA_CTRL_CIPH_ALG_AES && |
| ctx->cipher_key_len != AES_KEYSIZE_128 && |
| ctx->cipher_key_len != AES_KEYSIZE_256) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type, |
| bool is_encrypt) |
| { |
| struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req)); |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm); |
| int err; |
| |
| if (ctx->sw_cipher) { |
| /* |
| * Change the request to use the software fallback transform, |
| * and once the ciphering has completed, put the old transform |
| * back into the request. |
| */ |
| aead_request_set_tfm(req, ctx->sw_cipher); |
| err = is_encrypt ? crypto_aead_encrypt(req) : |
| crypto_aead_decrypt(req); |
| aead_request_set_tfm(req, __crypto_aead_cast(old_tfm)); |
| } else |
| err = -EINVAL; |
| |
| return err; |
| } |
| |
| static void spacc_aead_complete(struct spacc_req *req) |
| { |
| spacc_aead_free_ddts(req); |
| req->req->complete(req->req, req->result); |
| } |
| |
| static int spacc_aead_submit(struct spacc_req *req) |
| { |
| struct crypto_tfm *tfm = req->req->tfm; |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| struct spacc_engine *engine = ctx->generic.engine; |
| u32 ctrl, proc_len, assoc_len; |
| struct aead_request *aead_req = |
| container_of(req->req, struct aead_request, base); |
| |
| req->result = -EINPROGRESS; |
| req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key, |
| ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize, |
| ctx->hash_ctx, ctx->hash_key_len); |
| |
| /* Set the source and destination DDT pointers. */ |
| writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
| writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
| writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
| |
| assoc_len = aead_req->assoclen; |
| proc_len = aead_req->cryptlen + assoc_len; |
| |
| /* |
| * If we aren't generating an IV, then we need to include the IV in the |
| * associated data so that it is included in the hash. |
| */ |
| if (!req->giv) { |
| assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
| proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
| } else |
| proc_len += req->giv_len; |
| |
| /* |
| * If we are decrypting, we need to take the length of the ICV out of |
| * the processing length. |
| */ |
| if (!req->is_encrypt) |
| proc_len -= ctx->auth_size; |
| |
| writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
| writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
| writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET); |
| writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
| writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
| |
| ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
| (1 << SPA_CTRL_ICV_APPEND); |
| if (req->is_encrypt) |
| ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY); |
| else |
| ctrl |= (1 << SPA_CTRL_KEY_EXP); |
| |
| mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| |
| writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
| |
| return -EINPROGRESS; |
| } |
| |
| static int spacc_req_submit(struct spacc_req *req); |
| |
| static void spacc_push(struct spacc_engine *engine) |
| { |
| struct spacc_req *req; |
| |
| while (!list_empty(&engine->pending) && |
| engine->in_flight + 1 <= engine->fifo_sz) { |
| |
| ++engine->in_flight; |
| req = list_first_entry(&engine->pending, struct spacc_req, |
| list); |
| list_move_tail(&req->list, &engine->in_progress); |
| |
| req->result = spacc_req_submit(req); |
| } |
| } |
| |
| /* |
| * Setup an AEAD request for processing. This will configure the engine, load |
| * the context and then start the packet processing. |
| * |
| * @giv Pointer to destination address for a generated IV. If the |
| * request does not need to generate an IV then this should be set to NULL. |
| */ |
| static int spacc_aead_setup(struct aead_request *req, u8 *giv, |
| unsigned alg_type, bool is_encrypt) |
| { |
| struct crypto_alg *alg = req->base.tfm->__crt_alg; |
| struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
| struct spacc_req *dev_req = aead_request_ctx(req); |
| int err = -EINPROGRESS; |
| unsigned long flags; |
| unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| |
| dev_req->giv = giv; |
| dev_req->giv_len = ivsize; |
| dev_req->req = &req->base; |
| dev_req->is_encrypt = is_encrypt; |
| dev_req->result = -EBUSY; |
| dev_req->engine = engine; |
| dev_req->complete = spacc_aead_complete; |
| |
| if (unlikely(spacc_aead_need_fallback(dev_req))) |
| return spacc_aead_do_fallback(req, alg_type, is_encrypt); |
| |
| spacc_aead_make_ddts(dev_req, dev_req->giv); |
| |
| err = -EINPROGRESS; |
| spin_lock_irqsave(&engine->hw_lock, flags); |
| if (unlikely(spacc_fifo_cmd_full(engine)) || |
| engine->in_flight + 1 > engine->fifo_sz) { |
| if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
| err = -EBUSY; |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| goto out_free_ddts; |
| } |
| list_add_tail(&dev_req->list, &engine->pending); |
| } else { |
| list_add_tail(&dev_req->list, &engine->pending); |
| spacc_push(engine); |
| } |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| |
| goto out; |
| |
| out_free_ddts: |
| spacc_aead_free_ddts(dev_req); |
| out: |
| return err; |
| } |
| |
| static int spacc_aead_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| |
| return spacc_aead_setup(req, NULL, alg->type, 1); |
| } |
| |
| static int spacc_aead_givencrypt(struct aead_givcrypt_request *req) |
| { |
| struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); |
| struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
| size_t ivsize = crypto_aead_ivsize(tfm); |
| struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
| unsigned len; |
| __be64 seq; |
| |
| memcpy(req->areq.iv, ctx->salt, ivsize); |
| len = ivsize; |
| if (ivsize > sizeof(u64)) { |
| memset(req->giv, 0, ivsize - sizeof(u64)); |
| len = sizeof(u64); |
| } |
| seq = cpu_to_be64(req->seq); |
| memcpy(req->giv + ivsize - len, &seq, len); |
| |
| return spacc_aead_setup(&req->areq, req->giv, alg->type, 1); |
| } |
| |
| static int spacc_aead_decrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| |
| return spacc_aead_setup(req, NULL, alg->type, 0); |
| } |
| |
| /* |
| * Initialise a new AEAD context. This is responsible for allocating the |
| * fallback cipher and initialising the context. |
| */ |
| static int spacc_aead_cra_init(struct crypto_tfm *tfm) |
| { |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| struct spacc_engine *engine = spacc_alg->engine; |
| |
| ctx->generic.flags = spacc_alg->type; |
| ctx->generic.engine = engine; |
| ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0, |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->sw_cipher)) { |
| dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
| alg->cra_name); |
| ctx->sw_cipher = NULL; |
| } |
| ctx->generic.key_offs = spacc_alg->key_offs; |
| ctx->generic.iv_offs = spacc_alg->iv_offs; |
| |
| get_random_bytes(ctx->salt, sizeof(ctx->salt)); |
| |
| tfm->crt_aead.reqsize = sizeof(struct spacc_req); |
| |
| return 0; |
| } |
| |
| /* |
| * Destructor for an AEAD context. This is called when the transform is freed |
| * and must free the fallback cipher. |
| */ |
| static void spacc_aead_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (ctx->sw_cipher) |
| crypto_free_aead(ctx->sw_cipher); |
| ctx->sw_cipher = NULL; |
| } |
| |
| /* |
| * Set the DES key for a block cipher transform. This also performs weak key |
| * checking if the transform has requested it. |
| */ |
| static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int len) |
| { |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| u32 tmp[DES_EXPKEY_WORDS]; |
| |
| if (len > DES3_EDE_KEY_SIZE) { |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| if (unlikely(!des_ekey(tmp, key)) && |
| (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) { |
| tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| return -EINVAL; |
| } |
| |
| memcpy(ctx->key, key, len); |
| ctx->key_len = len; |
| |
| return 0; |
| } |
| |
| /* |
| * Set the key for an AES block cipher. Some key lengths are not supported in |
| * hardware so this must also check whether a fallback is needed. |
| */ |
| static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int len) |
| { |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| int err = 0; |
| |
| if (len > AES_MAX_KEY_SIZE) { |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| /* |
| * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
| * request for any other size (192 bits) then we need to do a software |
| * fallback. |
| */ |
| if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && |
| ctx->sw_cipher) { |
| /* |
| * Set the fallback transform to use the same request flags as |
| * the hardware transform. |
| */ |
| ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| ctx->sw_cipher->base.crt_flags |= |
| cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK; |
| |
| err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len); |
| if (err) |
| goto sw_setkey_failed; |
| } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && |
| !ctx->sw_cipher) |
| err = -EINVAL; |
| |
| memcpy(ctx->key, key, len); |
| ctx->key_len = len; |
| |
| sw_setkey_failed: |
| if (err && ctx->sw_cipher) { |
| tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| tfm->crt_flags |= |
| ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK; |
| } |
| |
| return err; |
| } |
| |
| static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher, |
| const u8 *key, unsigned int len) |
| { |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| int err = 0; |
| |
| if (len > AES_MAX_KEY_SIZE) { |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memcpy(ctx->key, key, len); |
| ctx->key_len = len; |
| |
| out: |
| return err; |
| } |
| |
| static int spacc_ablk_need_fallback(struct spacc_req *req) |
| { |
| struct spacc_ablk_ctx *ctx; |
| struct crypto_tfm *tfm = req->req->tfm; |
| struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| |
| ctx = crypto_tfm_ctx(tfm); |
| |
| return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| SPA_CTRL_CIPH_ALG_AES && |
| ctx->key_len != AES_KEYSIZE_128 && |
| ctx->key_len != AES_KEYSIZE_256; |
| } |
| |
| static void spacc_ablk_complete(struct spacc_req *req) |
| { |
| struct ablkcipher_request *ablk_req = |
| container_of(req->req, struct ablkcipher_request, base); |
| |
| if (ablk_req->src != ablk_req->dst) { |
| spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src, |
| ablk_req->nbytes, DMA_TO_DEVICE); |
| spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
| ablk_req->nbytes, DMA_FROM_DEVICE); |
| } else |
| spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
| ablk_req->nbytes, DMA_BIDIRECTIONAL); |
| |
| req->req->complete(req->req, req->result); |
| } |
| |
| static int spacc_ablk_submit(struct spacc_req *req) |
| { |
| struct crypto_tfm *tfm = req->req->tfm; |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req); |
| struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| struct spacc_engine *engine = ctx->generic.engine; |
| u32 ctrl; |
| |
| req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key, |
| ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize, |
| NULL, 0); |
| |
| writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
| writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
| writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
| |
| writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
| writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
| writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
| writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
| |
| ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
| (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) : |
| (1 << SPA_CTRL_KEY_EXP)); |
| |
| mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| |
| writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
| |
| return -EINPROGRESS; |
| } |
| |
| static int spacc_ablk_do_fallback(struct ablkcipher_request *req, |
| unsigned alg_type, bool is_encrypt) |
| { |
| struct crypto_tfm *old_tfm = |
| crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm); |
| int err; |
| |
| if (!ctx->sw_cipher) |
| return -EINVAL; |
| |
| /* |
| * Change the request to use the software fallback transform, and once |
| * the ciphering has completed, put the old transform back into the |
| * request. |
| */ |
| ablkcipher_request_set_tfm(req, ctx->sw_cipher); |
| err = is_encrypt ? crypto_ablkcipher_encrypt(req) : |
| crypto_ablkcipher_decrypt(req); |
| ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm)); |
| |
| return err; |
| } |
| |
| static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, |
| bool is_encrypt) |
| { |
| struct crypto_alg *alg = req->base.tfm->__crt_alg; |
| struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
| struct spacc_req *dev_req = ablkcipher_request_ctx(req); |
| unsigned long flags; |
| int err = -ENOMEM; |
| |
| dev_req->req = &req->base; |
| dev_req->is_encrypt = is_encrypt; |
| dev_req->engine = engine; |
| dev_req->complete = spacc_ablk_complete; |
| dev_req->result = -EINPROGRESS; |
| |
| if (unlikely(spacc_ablk_need_fallback(dev_req))) |
| return spacc_ablk_do_fallback(req, alg_type, is_encrypt); |
| |
| /* |
| * Create the DDT's for the engine. If we share the same source and |
| * destination then we can optimize by reusing the DDT's. |
| */ |
| if (req->src != req->dst) { |
| dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src, |
| req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr); |
| if (!dev_req->src_ddt) |
| goto out; |
| |
| dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
| req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr); |
| if (!dev_req->dst_ddt) |
| goto out_free_src; |
| } else { |
| dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
| req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr); |
| if (!dev_req->dst_ddt) |
| goto out; |
| |
| dev_req->src_ddt = NULL; |
| dev_req->src_addr = dev_req->dst_addr; |
| } |
| |
| err = -EINPROGRESS; |
| spin_lock_irqsave(&engine->hw_lock, flags); |
| /* |
| * Check if the engine will accept the operation now. If it won't then |
| * we either stick it on the end of a pending list if we can backlog, |
| * or bailout with an error if not. |
| */ |
| if (unlikely(spacc_fifo_cmd_full(engine)) || |
| engine->in_flight + 1 > engine->fifo_sz) { |
| if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
| err = -EBUSY; |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| goto out_free_ddts; |
| } |
| list_add_tail(&dev_req->list, &engine->pending); |
| } else { |
| list_add_tail(&dev_req->list, &engine->pending); |
| spacc_push(engine); |
| } |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| |
| goto out; |
| |
| out_free_ddts: |
| spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst, |
| req->nbytes, req->src == req->dst ? |
| DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); |
| out_free_src: |
| if (req->src != req->dst) |
| spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr, |
| req->src, req->nbytes, DMA_TO_DEVICE); |
| out: |
| return err; |
| } |
| |
| static int spacc_ablk_cra_init(struct crypto_tfm *tfm) |
| { |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| struct spacc_engine *engine = spacc_alg->engine; |
| |
| ctx->generic.flags = spacc_alg->type; |
| ctx->generic.engine = engine; |
| if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0, |
| CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->sw_cipher)) { |
| dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
| alg->cra_name); |
| ctx->sw_cipher = NULL; |
| } |
| } |
| ctx->generic.key_offs = spacc_alg->key_offs; |
| ctx->generic.iv_offs = spacc_alg->iv_offs; |
| |
| tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req); |
| |
| return 0; |
| } |
| |
| static void spacc_ablk_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| if (ctx->sw_cipher) |
| crypto_free_ablkcipher(ctx->sw_cipher); |
| ctx->sw_cipher = NULL; |
| } |
| |
| static int spacc_ablk_encrypt(struct ablkcipher_request *req) |
| { |
| struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| |
| return spacc_ablk_setup(req, alg->type, 1); |
| } |
| |
| static int spacc_ablk_decrypt(struct ablkcipher_request *req) |
| { |
| struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| |
| return spacc_ablk_setup(req, alg->type, 0); |
| } |
| |
| static inline int spacc_fifo_stat_empty(struct spacc_engine *engine) |
| { |
| return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) & |
| SPA_FIFO_STAT_EMPTY; |
| } |
| |
| static void spacc_process_done(struct spacc_engine *engine) |
| { |
| struct spacc_req *req; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&engine->hw_lock, flags); |
| |
| while (!spacc_fifo_stat_empty(engine)) { |
| req = list_first_entry(&engine->in_progress, struct spacc_req, |
| list); |
| list_move_tail(&req->list, &engine->completed); |
| --engine->in_flight; |
| |
| /* POP the status register. */ |
| writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET); |
| req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) & |
| SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET; |
| |
| /* |
| * Convert the SPAcc error status into the standard POSIX error |
| * codes. |
| */ |
| if (unlikely(req->result)) { |
| switch (req->result) { |
| case SPA_STATUS_ICV_FAIL: |
| req->result = -EBADMSG; |
| break; |
| |
| case SPA_STATUS_MEMORY_ERROR: |
| dev_warn(engine->dev, |
| "memory error triggered\n"); |
| req->result = -EFAULT; |
| break; |
| |
| case SPA_STATUS_BLOCK_ERROR: |
| dev_warn(engine->dev, |
| "block error triggered\n"); |
| req->result = -EIO; |
| break; |
| } |
| } |
| } |
| |
| tasklet_schedule(&engine->complete); |
| |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| } |
| |
| static irqreturn_t spacc_spacc_irq(int irq, void *dev) |
| { |
| struct spacc_engine *engine = (struct spacc_engine *)dev; |
| u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
| |
| writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
| spacc_process_done(engine); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void spacc_packet_timeout(unsigned long data) |
| { |
| struct spacc_engine *engine = (struct spacc_engine *)data; |
| |
| spacc_process_done(engine); |
| } |
| |
| static int spacc_req_submit(struct spacc_req *req) |
| { |
| struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| |
| if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags)) |
| return spacc_aead_submit(req); |
| else |
| return spacc_ablk_submit(req); |
| } |
| |
| static void spacc_spacc_complete(unsigned long data) |
| { |
| struct spacc_engine *engine = (struct spacc_engine *)data; |
| struct spacc_req *req, *tmp; |
| unsigned long flags; |
| LIST_HEAD(completed); |
| |
| spin_lock_irqsave(&engine->hw_lock, flags); |
| |
| list_splice_init(&engine->completed, &completed); |
| spacc_push(engine); |
| if (engine->in_flight) |
| mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| |
| spin_unlock_irqrestore(&engine->hw_lock, flags); |
| |
| list_for_each_entry_safe(req, tmp, &completed, list) { |
| list_del(&req->list); |
| req->complete(req); |
| } |
| } |
| |
| #ifdef CONFIG_PM |
| static int spacc_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct spacc_engine *engine = platform_get_drvdata(pdev); |
| |
| /* |
| * We only support standby mode. All we have to do is gate the clock to |
| * the spacc. The hardware will preserve state until we turn it back |
| * on again. |
| */ |
| clk_disable(engine->clk); |
| |
| return 0; |
| } |
| |
| static int spacc_resume(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct spacc_engine *engine = platform_get_drvdata(pdev); |
| |
| return clk_enable(engine->clk); |
| } |
| |
| static const struct dev_pm_ops spacc_pm_ops = { |
| .suspend = spacc_suspend, |
| .resume = spacc_resume, |
| }; |
| #endif /* CONFIG_PM */ |
| |
| static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev) |
| { |
| return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL; |
| } |
| |
| static ssize_t spacc_stat_irq_thresh_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct spacc_engine *engine = spacc_dev_to_engine(dev); |
| |
| return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh); |
| } |
| |
| static ssize_t spacc_stat_irq_thresh_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t len) |
| { |
| struct spacc_engine *engine = spacc_dev_to_engine(dev); |
| unsigned long thresh; |
| |
| if (strict_strtoul(buf, 0, &thresh)) |
| return -EINVAL; |
| |
| thresh = clamp(thresh, 1UL, engine->fifo_sz - 1); |
| |
| engine->stat_irq_thresh = thresh; |
| writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
| engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
| |
| return len; |
| } |
| static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show, |
| spacc_stat_irq_thresh_store); |
| |
| static struct spacc_alg ipsec_engine_algs[] = { |
| { |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC, |
| .key_offs = 0, |
| .iv_offs = AES_MAX_KEY_SIZE, |
| .alg = { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_aes_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = 0, |
| .iv_offs = AES_MAX_KEY_SIZE, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB, |
| .alg = { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_aes_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
| .alg = { |
| .cra_name = "cbc(des)", |
| .cra_driver_name = "cbc-des-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_des_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
| .alg = { |
| .cra_name = "ecb(des)", |
| .cra_driver_name = "ecb-des-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_des_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
| .alg = { |
| .cra_name = "cbc(des3_ede)", |
| .cra_driver_name = "cbc-des3-ede-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_des_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
| .alg = { |
| .cra_name = "ecb(des3_ede)", |
| .cra_driver_name = "ecb-des3-ede-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_des_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| { |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
| .key_offs = 0, |
| .iv_offs = AES_MAX_KEY_SIZE, |
| .alg = { |
| .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| { |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_SHA256 | |
| SPA_CTRL_HASH_MODE_HMAC, |
| .key_offs = 0, |
| .iv_offs = AES_MAX_KEY_SIZE, |
| .alg = { |
| .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = 0, |
| .iv_offs = AES_MAX_KEY_SIZE, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
| .alg = { |
| .cra_name = "authenc(hmac(md5),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
| .alg = { |
| .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_SHA256 | |
| SPA_CTRL_HASH_MODE_HMAC, |
| .alg = { |
| .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| { |
| .key_offs = DES_BLOCK_SIZE, |
| .iv_offs = 0, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
| SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
| .alg = { |
| .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| .cra_type = &crypto_aead_type, |
| .cra_module = THIS_MODULE, |
| .cra_aead = { |
| .setkey = spacc_aead_setkey, |
| .setauthsize = spacc_aead_setauthsize, |
| .encrypt = spacc_aead_encrypt, |
| .decrypt = spacc_aead_decrypt, |
| .givencrypt = spacc_aead_givencrypt, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .cra_init = spacc_aead_cra_init, |
| .cra_exit = spacc_aead_cra_exit, |
| }, |
| }, |
| }; |
| |
| static struct spacc_alg l2_engine_algs[] = { |
| { |
| .key_offs = 0, |
| .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN, |
| .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI | |
| SPA_CTRL_CIPH_MODE_F8, |
| .alg = { |
| .cra_name = "f8(kasumi)", |
| .cra_driver_name = "f8-kasumi-picoxcell", |
| .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = 8, |
| .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_ablkcipher = { |
| .setkey = spacc_kasumi_f8_setkey, |
| .encrypt = spacc_ablk_encrypt, |
| .decrypt = spacc_ablk_decrypt, |
| .min_keysize = 16, |
| .max_keysize = 16, |
| .ivsize = 8, |
| }, |
| .cra_init = spacc_ablk_cra_init, |
| .cra_exit = spacc_ablk_cra_exit, |
| }, |
| }, |
| }; |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id spacc_of_id_table[] = { |
| { .compatible = "picochip,spacc-ipsec" }, |
| { .compatible = "picochip,spacc-l2" }, |
| {} |
| }; |
| #else /* CONFIG_OF */ |
| #define spacc_of_id_table NULL |
| #endif /* CONFIG_OF */ |
| |
| static bool spacc_is_compatible(struct platform_device *pdev, |
| const char *spacc_type) |
| { |
| const struct platform_device_id *platid = platform_get_device_id(pdev); |
| |
| if (platid && !strcmp(platid->name, spacc_type)) |
| return true; |
| |
| #ifdef CONFIG_OF |
| if (of_device_is_compatible(pdev->dev.of_node, spacc_type)) |
| return true; |
| #endif /* CONFIG_OF */ |
| |
| return false; |
| } |
| |
| static int __devinit spacc_probe(struct platform_device *pdev) |
| { |
| int i, err, ret = -EINVAL; |
| struct resource *mem, *irq; |
| struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine), |
| GFP_KERNEL); |
| if (!engine) |
| return -ENOMEM; |
| |
| if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) { |
| engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS; |
| engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ; |
| engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ; |
| engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ; |
| engine->algs = ipsec_engine_algs; |
| engine->num_algs = ARRAY_SIZE(ipsec_engine_algs); |
| } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) { |
| engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS; |
| engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ; |
| engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ; |
| engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ; |
| engine->algs = l2_engine_algs; |
| engine->num_algs = ARRAY_SIZE(l2_engine_algs); |
| } else { |
| return -EINVAL; |
| } |
| |
| engine->name = dev_name(&pdev->dev); |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!mem || !irq) { |
| dev_err(&pdev->dev, "no memory/irq resource for engine\n"); |
| return -ENXIO; |
| } |
| |
| if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem), |
| engine->name)) |
| return -ENOMEM; |
| |
| engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem)); |
| if (!engine->regs) { |
| dev_err(&pdev->dev, "memory map failed\n"); |
| return -ENOMEM; |
| } |
| |
| if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0, |
| engine->name, engine)) { |
| dev_err(engine->dev, "failed to request IRQ\n"); |
| return -EBUSY; |
| } |
| |
| engine->dev = &pdev->dev; |
| engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET; |
| engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET; |
| |
| engine->req_pool = dmam_pool_create(engine->name, engine->dev, |
| MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K); |
| if (!engine->req_pool) |
| return -ENOMEM; |
| |
| spin_lock_init(&engine->hw_lock); |
| |
| engine->clk = clk_get(&pdev->dev, "ref"); |
| if (IS_ERR(engine->clk)) { |
| dev_info(&pdev->dev, "clk unavailable\n"); |
| device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| return PTR_ERR(engine->clk); |
| } |
| |
| if (clk_enable(engine->clk)) { |
| dev_info(&pdev->dev, "unable to enable clk\n"); |
| clk_put(engine->clk); |
| return -EIO; |
| } |
| |
| err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| if (err) { |
| clk_disable(engine->clk); |
| clk_put(engine->clk); |
| return err; |
| } |
| |
| |
| /* |
| * Use an IRQ threshold of 50% as a default. This seems to be a |
| * reasonable trade off of latency against throughput but can be |
| * changed at runtime. |
| */ |
| engine->stat_irq_thresh = (engine->fifo_sz / 2); |
| |
| /* |
| * Configure the interrupts. We only use the STAT_CNT interrupt as we |
| * only submit a new packet for processing when we complete another in |
| * the queue. This minimizes time spent in the interrupt handler. |
| */ |
| writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
| engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
| writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN, |
| engine->regs + SPA_IRQ_EN_REG_OFFSET); |
| |
| setup_timer(&engine->packet_timeout, spacc_packet_timeout, |
| (unsigned long)engine); |
| |
| INIT_LIST_HEAD(&engine->pending); |
| INIT_LIST_HEAD(&engine->completed); |
| INIT_LIST_HEAD(&engine->in_progress); |
| engine->in_flight = 0; |
| tasklet_init(&engine->complete, spacc_spacc_complete, |
| (unsigned long)engine); |
| |
| platform_set_drvdata(pdev, engine); |
| |
| INIT_LIST_HEAD(&engine->registered_algs); |
| for (i = 0; i < engine->num_algs; ++i) { |
| engine->algs[i].engine = engine; |
| err = crypto_register_alg(&engine->algs[i].alg); |
| if (!err) { |
| list_add_tail(&engine->algs[i].entry, |
| &engine->registered_algs); |
| ret = 0; |
| } |
| if (err) |
| dev_err(engine->dev, "failed to register alg \"%s\"\n", |
| engine->algs[i].alg.cra_name); |
| else |
| dev_dbg(engine->dev, "registered alg \"%s\"\n", |
| engine->algs[i].alg.cra_name); |
| } |
| |
| return ret; |
| } |
| |
| static int __devexit spacc_remove(struct platform_device *pdev) |
| { |
| struct spacc_alg *alg, *next; |
| struct spacc_engine *engine = platform_get_drvdata(pdev); |
| |
| del_timer_sync(&engine->packet_timeout); |
| device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| |
| list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) { |
| list_del(&alg->entry); |
| crypto_unregister_alg(&alg->alg); |
| } |
| |
| clk_disable(engine->clk); |
| clk_put(engine->clk); |
| |
| return 0; |
| } |
| |
| static const struct platform_device_id spacc_id_table[] = { |
| { "picochip,spacc-ipsec", }, |
| { "picochip,spacc-l2", }, |
| }; |
| |
| static struct platform_driver spacc_driver = { |
| .probe = spacc_probe, |
| .remove = __devexit_p(spacc_remove), |
| .driver = { |
| .name = "picochip,spacc", |
| #ifdef CONFIG_PM |
| .pm = &spacc_pm_ops, |
| #endif /* CONFIG_PM */ |
| .of_match_table = spacc_of_id_table, |
| }, |
| .id_table = spacc_id_table, |
| }; |
| |
| module_platform_driver(spacc_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Jamie Iles"); |