| /***************************************************************************** |
| * sdladrv.c SDLA Support Module. Main module. |
| * |
| * This module is a library of common hardware-specific functions |
| * used by all Sangoma drivers. |
| * |
| * Author: Gideon Hack |
| * |
| * Copyright: (c) 1995-2000 Sangoma Technologies Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * ============================================================================ |
| * Mar 20, 2001 Nenad Corbic Added the auto_pci_cfg filed, to support |
| * the PCISLOT #0. |
| * Apr 04, 2000 Nenad Corbic Fixed the auto memory detection code. |
| * The memory test at address 0xC8000. |
| * Mar 09, 2000 Nenad Corbic Added Gideon's Bug Fix: clear pci |
| * interrupt flags on initial load. |
| * Jun 02, 1999 Gideon Hack Added support for the S514 adapter. |
| * Updates for Linux 2.2.X kernels. |
| * Sep 17, 1998 Jaspreet Singh Updates for linux 2.2.X kernels |
| * Dec 20, 1996 Gene Kozin Version 3.0.0. Complete overhaul. |
| * Jul 12, 1996 Gene Kozin Changes for Linux 2.0 compatibility. |
| * Jun 12, 1996 Gene Kozin Added support for S503 card. |
| * Apr 30, 1996 Gene Kozin SDLA hardware interrupt is acknowledged before |
| * calling protocolspecific ISR. |
| * Register I/O ports with Linux kernel. |
| * Miscellaneous bug fixes. |
| * Dec 20, 1995 Gene Kozin Fixed a bug in interrupt routine. |
| * Oct 14, 1995 Gene Kozin Initial version. |
| *****************************************************************************/ |
| |
| /***************************************************************************** |
| * Notes: |
| * ------ |
| * 1. This code is ment to be system-independent (as much as possible). To |
| * achive this, various macros are used to hide system-specific interfaces. |
| * To compile this code, one of the following constants must be defined: |
| * |
| * Platform Define |
| * -------- ------ |
| * Linux _LINUX_ |
| * SCO Unix _SCO_UNIX_ |
| * |
| * 2. Supported adapter types: |
| * |
| * S502A |
| * ES502A (S502E) |
| * S503 |
| * S507 |
| * S508 (S509) |
| * |
| * 3. S502A Notes: |
| * |
| * There is no separate DPM window enable/disable control in S502A. It |
| * opens immediately after a window number it written to the HMCR |
| * register. To close the window, HMCR has to be written a value |
| * ????1111b (e.g. 0x0F or 0xFF). |
| * |
| * S502A DPM window cannot be located at offset E000 (e.g. 0xAE000). |
| * |
| * There should be a delay of ??? before reading back S502A status |
| * register. |
| * |
| * 4. S502E Notes: |
| * |
| * S502E has a h/w bug: although default IRQ line state is HIGH, enabling |
| * interrupts by setting bit 1 of the control register (BASE) to '1' |
| * causes it to go LOW! Therefore, disabling interrupts by setting that |
| * bit to '0' causes low-to-high transition on IRQ line (ghosty |
| * interrupt). The same occurs when disabling CPU by resetting bit 0 of |
| * CPU control register (BASE+3) - see the next note. |
| * |
| * S502E CPU and DPM control is limited: |
| * |
| * o CPU cannot be stopped independently. Resetting bit 0 of the CPUi |
| * control register (BASE+3) shuts the board down entirely, including |
| * DPM; |
| * |
| * o DPM access cannot be controlled dynamically. Ones CPU is started, |
| * bit 1 of the control register (BASE) is used to enable/disable IRQ, |
| * so that access to shared memory cannot be disabled while CPU is |
| * running. |
| ****************************************************************************/ |
| |
| #define _LINUX_ |
| |
| #if defined(_LINUX_) /****** Linux *******************************/ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> /* printk(), and other useful stuff */ |
| #include <linux/stddef.h> /* offsetof(), etc. */ |
| #include <linux/errno.h> /* return codes */ |
| #include <linux/string.h> /* inline memset(), etc. */ |
| #include <linux/module.h> /* support for loadable modules */ |
| #include <linux/jiffies.h> /* for jiffies, HZ, etc. */ |
| #include <linux/sdladrv.h> /* API definitions */ |
| #include <linux/sdlasfm.h> /* SDLA firmware module definitions */ |
| #include <linux/sdlapci.h> /* SDLA PCI hardware definitions */ |
| #include <linux/pci.h> /* PCI defines and function prototypes */ |
| #include <asm/io.h> /* for inb(), outb(), etc. */ |
| |
| #define _INB(port) (inb(port)) |
| #define _OUTB(port, byte) (outb((byte),(port))) |
| #define SYSTEM_TICK jiffies |
| |
| #include <linux/init.h> |
| |
| |
| #elif defined(_SCO_UNIX_) /****** SCO Unix ****************************/ |
| |
| #if !defined(INKERNEL) |
| #error This code MUST be compiled in kernel mode! |
| #endif |
| #include <sys/sdladrv.h> /* API definitions */ |
| #include <sys/sdlasfm.h> /* SDLA firmware module definitions */ |
| #include <sys/inline.h> /* for inb(), outb(), etc. */ |
| #define _INB(port) (inb(port)) |
| #define _OUTB(port, byte) (outb((port),(byte))) |
| #define SYSTEM_TICK lbolt |
| |
| #else |
| #error Unknown system type! |
| #endif |
| |
| #define MOD_VERSION 3 |
| #define MOD_RELEASE 0 |
| |
| #define SDLA_IODELAY 100 /* I/O Rd/Wr delay, 10 works for 486DX2-66 */ |
| #define EXEC_DELAY 20 /* shared memory access delay, mks */ |
| #define EXEC_TIMEOUT (HZ*2) /* command timeout, in ticks */ |
| |
| /* I/O port address range */ |
| #define S502A_IORANGE 3 |
| #define S502E_IORANGE 4 |
| #define S503_IORANGE 3 |
| #define S507_IORANGE 4 |
| #define S508_IORANGE 4 |
| |
| /* Maximum amount of memory */ |
| #define S502_MAXMEM 0x10000L |
| #define S503_MAXMEM 0x10000L |
| #define S507_MAXMEM 0x40000L |
| #define S508_MAXMEM 0x40000L |
| |
| /* Minimum amount of memory */ |
| #define S502_MINMEM 0x8000L |
| #define S503_MINMEM 0x8000L |
| #define S507_MINMEM 0x20000L |
| #define S508_MINMEM 0x20000L |
| #define NO_PORT -1 |
| |
| |
| |
| |
| |
| /****** Function Prototypes *************************************************/ |
| |
| /* Hardware-specific functions */ |
| static int sdla_detect (sdlahw_t* hw); |
| static int sdla_autodpm (sdlahw_t* hw); |
| static int sdla_setdpm (sdlahw_t* hw); |
| static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len); |
| static int sdla_init (sdlahw_t* hw); |
| static unsigned long sdla_memtest (sdlahw_t* hw); |
| static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo); |
| static unsigned char make_config_byte (sdlahw_t* hw); |
| static int sdla_start (sdlahw_t* hw, unsigned addr); |
| |
| static int init_s502a (sdlahw_t* hw); |
| static int init_s502e (sdlahw_t* hw); |
| static int init_s503 (sdlahw_t* hw); |
| static int init_s507 (sdlahw_t* hw); |
| static int init_s508 (sdlahw_t* hw); |
| |
| static int detect_s502a (int port); |
| static int detect_s502e (int port); |
| static int detect_s503 (int port); |
| static int detect_s507 (int port); |
| static int detect_s508 (int port); |
| static int detect_s514 (sdlahw_t* hw); |
| static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card); |
| |
| /* Miscellaneous functions */ |
| static void peek_by_4 (unsigned long src, void* buf, unsigned len); |
| static void poke_by_4 (unsigned long dest, void* buf, unsigned len); |
| static int calibrate_delay (int mks); |
| static int get_option_index (unsigned* optlist, unsigned optval); |
| static unsigned check_memregion (void* ptr, unsigned len); |
| static unsigned test_memregion (void* ptr, unsigned len); |
| static unsigned short checksum (unsigned char* buf, unsigned len); |
| static int init_pci_slot(sdlahw_t *); |
| |
| static int pci_probe(sdlahw_t *hw); |
| |
| /****** Global Data ********************************************************** |
| * Note: All data must be explicitly initialized!!! |
| */ |
| |
| static struct pci_device_id sdladrv_pci_tbl[] = { |
| { V3_VENDOR_ID, V3_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, }, |
| { } /* Terminating entry */ |
| }; |
| MODULE_DEVICE_TABLE(pci, sdladrv_pci_tbl); |
| |
| MODULE_LICENSE("GPL"); |
| |
| /* private data */ |
| static char modname[] = "sdladrv"; |
| static char fullname[] = "SDLA Support Module"; |
| static char copyright[] = "(c) 1995-1999 Sangoma Technologies Inc."; |
| static unsigned exec_idle; |
| |
| /* Hardware configuration options. |
| * These are arrays of configuration options used by verification routines. |
| * The first element of each array is its size (i.e. number of options). |
| */ |
| static unsigned s502_port_options[] = |
| { 4, 0x250, 0x300, 0x350, 0x360 } |
| ; |
| static unsigned s503_port_options[] = |
| { 8, 0x250, 0x254, 0x300, 0x304, 0x350, 0x354, 0x360, 0x364 } |
| ; |
| static unsigned s508_port_options[] = |
| { 8, 0x250, 0x270, 0x280, 0x300, 0x350, 0x360, 0x380, 0x390 } |
| ; |
| |
| static unsigned s502a_irq_options[] = { 0 }; |
| static unsigned s502e_irq_options[] = { 4, 2, 3, 5, 7 }; |
| static unsigned s503_irq_options[] = { 5, 2, 3, 4, 5, 7 }; |
| static unsigned s508_irq_options[] = { 8, 3, 4, 5, 7, 10, 11, 12, 15 }; |
| |
| static unsigned s502a_dpmbase_options[] = |
| { |
| 28, |
| 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, |
| 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, |
| 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, |
| 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, |
| }; |
| static unsigned s507_dpmbase_options[] = |
| { |
| 32, |
| 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, |
| 0xB0000, 0xB2000, 0xB4000, 0xB6000, 0xB8000, 0xBA000, 0xBC000, 0xBE000, |
| 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, |
| 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, |
| }; |
| static unsigned s508_dpmbase_options[] = /* incl. S502E and S503 */ |
| { |
| 32, |
| 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, |
| 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, |
| 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xDE000, |
| 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, |
| }; |
| |
| /* |
| static unsigned s502_dpmsize_options[] = { 2, 0x2000, 0x10000 }; |
| static unsigned s507_dpmsize_options[] = { 2, 0x2000, 0x4000 }; |
| static unsigned s508_dpmsize_options[] = { 1, 0x2000 }; |
| */ |
| |
| static unsigned s502a_pclk_options[] = { 2, 3600, 7200 }; |
| static unsigned s502e_pclk_options[] = { 5, 3600, 5000, 7200, 8000, 10000 }; |
| static unsigned s503_pclk_options[] = { 3, 7200, 8000, 10000 }; |
| static unsigned s507_pclk_options[] = { 1, 12288 }; |
| static unsigned s508_pclk_options[] = { 1, 16000 }; |
| |
| /* Host memory control register masks */ |
| static unsigned char s502a_hmcr[] = |
| { |
| 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, /* A0000 - AC000 */ |
| 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, /* C0000 - CC000 */ |
| 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, /* D0000 - DC000 */ |
| 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, /* E0000 - EC000 */ |
| }; |
| static unsigned char s502e_hmcr[] = |
| { |
| 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, /* A0000 - AE000 */ |
| 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, /* C0000 - CE000 */ |
| 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* D0000 - DE000 */ |
| 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, /* E0000 - EE000 */ |
| }; |
| static unsigned char s507_hmcr[] = |
| { |
| 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* A0000 - AE000 */ |
| 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, /* B0000 - BE000 */ |
| 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, /* C0000 - CE000 */ |
| 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, /* E0000 - EE000 */ |
| }; |
| static unsigned char s508_hmcr[] = |
| { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* A0000 - AE000 */ |
| 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* C0000 - CE000 */ |
| 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /* D0000 - DE000 */ |
| 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, /* E0000 - EE000 */ |
| }; |
| |
| static unsigned char s507_irqmask[] = |
| { |
| 0x00, 0x20, 0x40, 0x60, 0x80, 0xA0, 0xC0, 0xE0 |
| }; |
| |
| static int pci_slot_ar[MAX_S514_CARDS]; |
| |
| /******* Kernel Loadable Module Entry Points ********************************/ |
| |
| /*============================================================================ |
| * Module 'insert' entry point. |
| * o print announcement |
| * o initialize static data |
| * o calibrate SDLA shared memory access delay. |
| * |
| * Return: 0 Ok |
| * < 0 error. |
| * Context: process |
| */ |
| |
| static int __init sdladrv_init(void) |
| { |
| int i=0; |
| |
| printk(KERN_INFO "%s v%u.%u %s\n", |
| fullname, MOD_VERSION, MOD_RELEASE, copyright); |
| exec_idle = calibrate_delay(EXEC_DELAY); |
| #ifdef WANDEBUG |
| printk(KERN_DEBUG "%s: exec_idle = %d\n", modname, exec_idle); |
| #endif |
| |
| /* Initialize the PCI Card array, which |
| * will store flags, used to mark |
| * card initialization state */ |
| for (i=0; i<MAX_S514_CARDS; i++) |
| pci_slot_ar[i] = 0xFF; |
| |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Module 'remove' entry point. |
| * o release all remaining system resources |
| */ |
| static void __exit sdladrv_cleanup(void) |
| { |
| } |
| |
| module_init(sdladrv_init); |
| module_exit(sdladrv_cleanup); |
| |
| /******* Kernel APIs ********************************************************/ |
| |
| /*============================================================================ |
| * Set up adapter. |
| * o detect adapter type |
| * o verify hardware configuration options |
| * o check for hardware conflicts |
| * o set up adapter shared memory |
| * o test adapter memory |
| * o load firmware |
| * Return: 0 ok. |
| * < 0 error |
| */ |
| |
| EXPORT_SYMBOL(sdla_setup); |
| |
| int sdla_setup (sdlahw_t* hw, void* sfm, unsigned len) |
| { |
| unsigned* irq_opt = NULL; /* IRQ options */ |
| unsigned* dpmbase_opt = NULL; /* DPM window base options */ |
| unsigned* pclk_opt = NULL; /* CPU clock rate options */ |
| int err=0; |
| |
| if (sdla_detect(hw)) { |
| if(hw->type != SDLA_S514) |
| printk(KERN_INFO "%s: no SDLA card found at port 0x%X\n", |
| modname, hw->port); |
| return -EINVAL; |
| } |
| |
| if(hw->type != SDLA_S514) { |
| printk(KERN_INFO "%s: found S%04u card at port 0x%X.\n", |
| modname, hw->type, hw->port); |
| |
| hw->dpmsize = SDLA_WINDOWSIZE; |
| switch (hw->type) { |
| case SDLA_S502A: |
| hw->io_range = S502A_IORANGE; |
| irq_opt = s502a_irq_options; |
| dpmbase_opt = s502a_dpmbase_options; |
| pclk_opt = s502a_pclk_options; |
| break; |
| |
| case SDLA_S502E: |
| hw->io_range = S502E_IORANGE; |
| irq_opt = s502e_irq_options; |
| dpmbase_opt = s508_dpmbase_options; |
| pclk_opt = s502e_pclk_options; |
| break; |
| |
| case SDLA_S503: |
| hw->io_range = S503_IORANGE; |
| irq_opt = s503_irq_options; |
| dpmbase_opt = s508_dpmbase_options; |
| pclk_opt = s503_pclk_options; |
| break; |
| |
| case SDLA_S507: |
| hw->io_range = S507_IORANGE; |
| irq_opt = s508_irq_options; |
| dpmbase_opt = s507_dpmbase_options; |
| pclk_opt = s507_pclk_options; |
| break; |
| |
| case SDLA_S508: |
| hw->io_range = S508_IORANGE; |
| irq_opt = s508_irq_options; |
| dpmbase_opt = s508_dpmbase_options; |
| pclk_opt = s508_pclk_options; |
| break; |
| } |
| |
| /* Verify IRQ configuration options */ |
| if (!get_option_index(irq_opt, hw->irq)) { |
| printk(KERN_INFO "%s: IRQ %d is invalid!\n", |
| modname, hw->irq); |
| return -EINVAL; |
| } |
| |
| /* Verify CPU clock rate configuration options */ |
| if (hw->pclk == 0) |
| hw->pclk = pclk_opt[1]; /* use default */ |
| |
| else if (!get_option_index(pclk_opt, hw->pclk)) { |
| printk(KERN_INFO "%s: CPU clock %u is invalid!\n", |
| modname, hw->pclk); |
| return -EINVAL; |
| } |
| printk(KERN_INFO "%s: assuming CPU clock rate of %u kHz.\n", |
| modname, hw->pclk); |
| |
| /* Setup adapter dual-port memory window and test memory */ |
| if (hw->dpmbase == 0) { |
| err = sdla_autodpm(hw); |
| if (err) { |
| printk(KERN_INFO |
| "%s: can't find available memory region!\n", |
| modname); |
| return err; |
| } |
| } |
| else if (!get_option_index(dpmbase_opt, |
| virt_to_phys(hw->dpmbase))) { |
| printk(KERN_INFO |
| "%s: memory address 0x%lX is invalid!\n", |
| modname, virt_to_phys(hw->dpmbase)); |
| return -EINVAL; |
| } |
| else if (sdla_setdpm(hw)) { |
| printk(KERN_INFO |
| "%s: 8K memory region at 0x%lX is not available!\n", |
| modname, virt_to_phys(hw->dpmbase)); |
| return -EINVAL; |
| } |
| printk(KERN_INFO |
| "%s: dual-port memory window is set at 0x%lX.\n", |
| modname, virt_to_phys(hw->dpmbase)); |
| |
| |
| /* If we find memory in 0xE**** Memory region, |
| * warn the user to disable the SHADOW RAM. |
| * Since memory corruption can occur if SHADOW is |
| * enabled. This can causes random crashes ! */ |
| if (virt_to_phys(hw->dpmbase) >= 0xE0000){ |
| printk(KERN_WARNING "\n%s: !!!!!!!! WARNING !!!!!!!!\n",modname); |
| printk(KERN_WARNING "%s: WANPIPE is using 0x%lX memory region !!!\n", |
| modname, virt_to_phys(hw->dpmbase)); |
| printk(KERN_WARNING " Please disable the SHADOW RAM, otherwise\n"); |
| printk(KERN_WARNING " your system might crash randomly from time to time !\n"); |
| printk(KERN_WARNING "%s: !!!!!!!! WARNING !!!!!!!!\n\n",modname); |
| } |
| } |
| |
| else { |
| hw->memory = test_memregion((void*)hw->dpmbase, |
| MAX_SIZEOF_S514_MEMORY); |
| if(hw->memory < (256 * 1024)) { |
| printk(KERN_INFO |
| "%s: error in testing S514 memory (0x%lX)\n", |
| modname, hw->memory); |
| sdla_down(hw); |
| return -EINVAL; |
| } |
| } |
| |
| printk(KERN_INFO "%s: found %luK bytes of on-board memory\n", |
| modname, hw->memory / 1024); |
| |
| /* Load firmware. If loader fails then shut down adapter */ |
| err = sdla_load(hw, sfm, len); |
| if (err) sdla_down(hw); /* shutdown adapter */ |
| |
| return err; |
| } |
| |
| /*============================================================================ |
| * Shut down SDLA: disable shared memory access and interrupts, stop CPU, etc. |
| */ |
| |
| EXPORT_SYMBOL(sdla_down); |
| |
| int sdla_down (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int i; |
| unsigned char CPU_no; |
| u32 int_config, int_status; |
| |
| if(!port && (hw->type != SDLA_S514)) |
| return -EFAULT; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| _OUTB(port, 0x08); /* halt CPU */ |
| _OUTB(port, 0x08); |
| _OUTB(port, 0x08); |
| hw->regs[0] = 0x08; |
| _OUTB(port + 1, 0xFF); /* close memory window */ |
| hw->regs[1] = 0xFF; |
| break; |
| |
| case SDLA_S502E: |
| _OUTB(port + 3, 0); /* stop CPU */ |
| _OUTB(port, 0); /* reset board */ |
| for (i = 0; i < S502E_IORANGE; ++i) |
| hw->regs[i] = 0 |
| ; |
| break; |
| |
| case SDLA_S503: |
| case SDLA_S507: |
| case SDLA_S508: |
| _OUTB(port, 0); /* reset board logic */ |
| hw->regs[0] = 0; |
| break; |
| |
| case SDLA_S514: |
| /* halt the adapter */ |
| *(char *)hw->vector = S514_CPU_HALT; |
| CPU_no = hw->S514_cpu_no[0]; |
| |
| /* disable the PCI IRQ and disable memory access */ |
| pci_read_config_dword(hw->pci_dev, PCI_INT_CONFIG, &int_config); |
| int_config &= (CPU_no == S514_CPU_A) ? ~PCI_DISABLE_IRQ_CPU_A : ~PCI_DISABLE_IRQ_CPU_B; |
| pci_write_config_dword(hw->pci_dev, PCI_INT_CONFIG, int_config); |
| read_S514_int_stat(hw, &int_status); |
| S514_intack(hw, int_status); |
| if(CPU_no == S514_CPU_A) |
| pci_write_config_dword(hw->pci_dev, PCI_MAP0_DWORD, |
| PCI_CPU_A_MEM_DISABLE); |
| else |
| pci_write_config_dword(hw->pci_dev, PCI_MAP1_DWORD, |
| PCI_CPU_B_MEM_DISABLE); |
| |
| /* free up the allocated virtual memory */ |
| iounmap((void *)hw->dpmbase); |
| iounmap((void *)hw->vector); |
| break; |
| |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Map shared memory window into SDLA address space. |
| */ |
| |
| EXPORT_SYMBOL(sdla_mapmem); |
| |
| int sdla_mapmem (sdlahw_t* hw, unsigned long addr) |
| { |
| unsigned port = hw->port; |
| register int tmp; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| case SDLA_S502E: |
| if (addr < S502_MAXMEM) { /* verify parameter */ |
| tmp = addr >> 13; /* convert to register mask */ |
| _OUTB(port + 2, tmp); |
| hw->regs[2] = tmp; |
| } |
| else return -EINVAL; |
| break; |
| |
| case SDLA_S503: |
| if (addr < S503_MAXMEM) { /* verify parameter */ |
| tmp = (hw->regs[0] & 0x8F) | ((addr >> 9) & 0x70); |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; |
| } |
| else return -EINVAL; |
| break; |
| |
| case SDLA_S507: |
| if (addr < S507_MAXMEM) { |
| if (!(_INB(port) & 0x02)) |
| return -EIO; |
| tmp = addr >> 13; /* convert to register mask */ |
| _OUTB(port + 2, tmp); |
| hw->regs[2] = tmp; |
| } |
| else return -EINVAL; |
| break; |
| |
| case SDLA_S508: |
| if (addr < S508_MAXMEM) { |
| tmp = addr >> 13; /* convert to register mask */ |
| _OUTB(port + 2, tmp); |
| hw->regs[2] = tmp; |
| } |
| else return -EINVAL; |
| break; |
| |
| case SDLA_S514: |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| hw->vector = addr & 0xFFFFE000L; |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Enable interrupt generation. |
| */ |
| |
| EXPORT_SYMBOL(sdla_inten); |
| |
| int sdla_inten (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| switch (hw->type) { |
| case SDLA_S502E: |
| /* Note thar interrupt control operations on S502E are allowed |
| * only if CPU is enabled (bit 0 of status register is set). |
| */ |
| if (_INB(port) & 0x01) { |
| _OUTB(port, 0x02); /* bit1 = 1, bit2 = 0 */ |
| _OUTB(port, 0x06); /* bit1 = 1, bit2 = 1 */ |
| hw->regs[0] = 0x06; |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S503: |
| tmp = hw->regs[0] | 0x04; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (!(_INB(port) & 0x02)) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S508: |
| tmp = hw->regs[0] | 0x10; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (!(_INB(port + 1) & 0x10)) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S502A: |
| case SDLA_S507: |
| break; |
| |
| case SDLA_S514: |
| break; |
| |
| default: |
| return -EINVAL; |
| |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Disable interrupt generation. |
| */ |
| |
| EXPORT_SYMBOL(sdla_intde); |
| |
| int sdla_intde (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| switch (hw->type) { |
| case SDLA_S502E: |
| /* Notes: |
| * 1) interrupt control operations are allowed only if CPU is |
| * enabled (bit 0 of status register is set). |
| * 2) disabling interrupts using bit 1 of control register |
| * causes IRQ line go high, therefore we are going to use |
| * 0x04 instead: lower it to inhibit interrupts to PC. |
| */ |
| if (_INB(port) & 0x01) { |
| _OUTB(port, hw->regs[0] & ~0x04); |
| hw->regs[0] &= ~0x04; |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S503: |
| tmp = hw->regs[0] & ~0x04; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) & 0x02) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S508: |
| tmp = hw->regs[0] & ~0x10; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) & 0x10) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S502A: |
| case SDLA_S507: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Acknowledge SDLA hardware interrupt. |
| */ |
| |
| EXPORT_SYMBOL(sdla_intack); |
| |
| int sdla_intack (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp; |
| |
| switch (hw->type) { |
| case SDLA_S502E: |
| /* To acknoledge hardware interrupt we have to toggle bit 3 of |
| * control register: \_/ |
| * Note that interrupt control operations on S502E are allowed |
| * only if CPU is enabled (bit 1 of status register is set). |
| */ |
| if (_INB(port) & 0x01) { |
| tmp = hw->regs[0] & ~0x04; |
| _OUTB(port, tmp); |
| tmp |= 0x04; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S503: |
| if (_INB(port) & 0x04) { |
| tmp = hw->regs[0] & ~0x08; |
| _OUTB(port, tmp); |
| tmp |= 0x08; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; |
| } |
| break; |
| |
| case SDLA_S502A: |
| case SDLA_S507: |
| case SDLA_S508: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| |
| /*============================================================================ |
| * Acknowledge S514 hardware interrupt. |
| */ |
| |
| EXPORT_SYMBOL(S514_intack); |
| |
| void S514_intack (sdlahw_t* hw, u32 int_status) |
| { |
| pci_write_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status); |
| } |
| |
| |
| /*============================================================================ |
| * Read the S514 hardware interrupt status. |
| */ |
| |
| EXPORT_SYMBOL(read_S514_int_stat); |
| |
| void read_S514_int_stat (sdlahw_t* hw, u32* int_status) |
| { |
| pci_read_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status); |
| } |
| |
| |
| /*============================================================================ |
| * Generate an interrupt to adapter's CPU. |
| */ |
| |
| EXPORT_SYMBOL(sdla_intr); |
| |
| int sdla_intr (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| if (!(_INB(port) & 0x40)) { |
| _OUTB(port, 0x10); /* issue NMI to CPU */ |
| hw->regs[0] = 0x10; |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S507: |
| if ((_INB(port) & 0x06) == 0x06) { |
| _OUTB(port + 3, 0); |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S508: |
| if (_INB(port + 1) & 0x02) { |
| _OUTB(port, 0x08); |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S502E: |
| case SDLA_S503: |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Execute Adapter Command. |
| * o Set exec flag. |
| * o Busy-wait until flag is reset. |
| * o Return number of loops made, or 0 if command timed out. |
| */ |
| |
| EXPORT_SYMBOL(sdla_exec); |
| |
| int sdla_exec (void* opflag) |
| { |
| volatile unsigned char* flag = opflag; |
| unsigned long tstop; |
| int nloops; |
| |
| if(readb(flag) != 0x00) { |
| printk(KERN_INFO |
| "WANPIPE: opp flag set on entry to sdla_exec\n"); |
| return 0; |
| } |
| |
| writeb(0x01, flag); |
| |
| tstop = SYSTEM_TICK + EXEC_TIMEOUT; |
| |
| for (nloops = 1; (readb(flag) == 0x01); ++ nloops) { |
| unsigned delay = exec_idle; |
| while (-- delay); /* delay */ |
| if (SYSTEM_TICK > tstop) return 0; /* time is up! */ |
| } |
| return nloops; |
| } |
| |
| /*============================================================================ |
| * Read absolute adapter memory. |
| * Transfer data from adapter's memory to data buffer. |
| * |
| * Note: |
| * Care should be taken when crossing dual-port memory window boundary. |
| * This function is not atomic, so caller must disable interrupt if |
| * interrupt routines are accessing adapter shared memory. |
| */ |
| |
| EXPORT_SYMBOL(sdla_peek); |
| |
| int sdla_peek (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) |
| { |
| |
| if (addr + len > hw->memory) /* verify arguments */ |
| return -EINVAL; |
| |
| if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */ |
| peek_by_4 ((unsigned long)hw->dpmbase + addr, buf, len); |
| return 0; |
| } |
| |
| else { /* copy data for the S508 adapter */ |
| unsigned long oldvec = hw->vector; |
| unsigned winsize = hw->dpmsize; |
| unsigned curpos, curlen; /* current offset and block size */ |
| unsigned long curvec; /* current DPM window vector */ |
| int err = 0; |
| |
| while (len && !err) { |
| curpos = addr % winsize; /* current window offset */ |
| curvec = addr - curpos; /* current window vector */ |
| curlen = (len > (winsize - curpos)) ? |
| (winsize - curpos) : len; |
| /* Relocate window and copy block of data */ |
| err = sdla_mapmem(hw, curvec); |
| peek_by_4 ((unsigned long)hw->dpmbase + curpos, buf, |
| curlen); |
| addr += curlen; |
| buf = (char*)buf + curlen; |
| len -= curlen; |
| } |
| |
| /* Restore DPM window position */ |
| sdla_mapmem(hw, oldvec); |
| return err; |
| } |
| } |
| |
| |
| /*============================================================================ |
| * Read data from adapter's memory to a data buffer in 4-byte chunks. |
| * Note that we ensure that the SDLA memory address is on a 4-byte boundary |
| * before we begin moving the data in 4-byte chunks. |
| */ |
| |
| static void peek_by_4 (unsigned long src, void* buf, unsigned len) |
| { |
| |
| /* byte copy data until we get to a 4-byte boundary */ |
| while (len && (src & 0x03)) { |
| *(char *)buf ++ = readb(src ++); |
| len --; |
| } |
| |
| /* copy data in 4-byte chunks */ |
| while (len >= 4) { |
| *(unsigned long *)buf = readl(src); |
| buf += 4; |
| src += 4; |
| len -= 4; |
| } |
| |
| /* byte copy any remaining data */ |
| while (len) { |
| *(char *)buf ++ = readb(src ++); |
| len --; |
| } |
| } |
| |
| |
| /*============================================================================ |
| * Write Absolute Adapter Memory. |
| * Transfer data from data buffer to adapter's memory. |
| * |
| * Note: |
| * Care should be taken when crossing dual-port memory window boundary. |
| * This function is not atomic, so caller must disable interrupt if |
| * interrupt routines are accessing adapter shared memory. |
| */ |
| |
| EXPORT_SYMBOL(sdla_poke); |
| |
| int sdla_poke (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) |
| { |
| |
| if (addr + len > hw->memory) /* verify arguments */ |
| return -EINVAL; |
| |
| if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */ |
| poke_by_4 ((unsigned long)hw->dpmbase + addr, buf, len); |
| return 0; |
| } |
| |
| else { /* copy data for the S508 adapter */ |
| unsigned long oldvec = hw->vector; |
| unsigned winsize = hw->dpmsize; |
| unsigned curpos, curlen; /* current offset and block size */ |
| unsigned long curvec; /* current DPM window vector */ |
| int err = 0; |
| |
| while (len && !err) { |
| curpos = addr % winsize; /* current window offset */ |
| curvec = addr - curpos; /* current window vector */ |
| curlen = (len > (winsize - curpos)) ? |
| (winsize - curpos) : len; |
| /* Relocate window and copy block of data */ |
| sdla_mapmem(hw, curvec); |
| poke_by_4 ((unsigned long)hw->dpmbase + curpos, buf, |
| curlen); |
| addr += curlen; |
| buf = (char*)buf + curlen; |
| len -= curlen; |
| } |
| |
| /* Restore DPM window position */ |
| sdla_mapmem(hw, oldvec); |
| return err; |
| } |
| } |
| |
| |
| /*============================================================================ |
| * Write from a data buffer to adapter's memory in 4-byte chunks. |
| * Note that we ensure that the SDLA memory address is on a 4-byte boundary |
| * before we begin moving the data in 4-byte chunks. |
| */ |
| |
| static void poke_by_4 (unsigned long dest, void* buf, unsigned len) |
| { |
| |
| /* byte copy data until we get to a 4-byte boundary */ |
| while (len && (dest & 0x03)) { |
| writeb (*(char *)buf ++, dest ++); |
| len --; |
| } |
| |
| /* copy data in 4-byte chunks */ |
| while (len >= 4) { |
| writel (*(unsigned long *)buf, dest); |
| dest += 4; |
| buf += 4; |
| len -= 4; |
| } |
| |
| /* byte copy any remaining data */ |
| while (len) { |
| writeb (*(char *)buf ++ , dest ++); |
| len --; |
| } |
| } |
| |
| |
| #ifdef DONT_COMPIPLE_THIS |
| #endif /* DONT_COMPIPLE_THIS */ |
| |
| /****** Hardware-Specific Functions *****************************************/ |
| |
| /*============================================================================ |
| * Detect adapter type. |
| * o if adapter type is specified then call detection routine for that adapter |
| * type. Otherwise call detection routines for every adapter types until |
| * adapter is detected. |
| * |
| * Notes: |
| * 1) Detection tests are destructive! Adapter will be left in shutdown state |
| * after the test. |
| */ |
| static int sdla_detect (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int err = 0; |
| |
| if (!port && (hw->type != SDLA_S514)) |
| return -EFAULT; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| if (!detect_s502a(port)) err = -ENODEV; |
| break; |
| |
| case SDLA_S502E: |
| if (!detect_s502e(port)) err = -ENODEV; |
| break; |
| |
| case SDLA_S503: |
| if (!detect_s503(port)) err = -ENODEV; |
| break; |
| |
| case SDLA_S507: |
| if (!detect_s507(port)) err = -ENODEV; |
| break; |
| |
| case SDLA_S508: |
| if (!detect_s508(port)) err = -ENODEV; |
| break; |
| |
| case SDLA_S514: |
| if (!detect_s514(hw)) err = -ENODEV; |
| break; |
| |
| default: |
| if (detect_s502a(port)) |
| hw->type = SDLA_S502A; |
| else if (detect_s502e(port)) |
| hw->type = SDLA_S502E; |
| else if (detect_s503(port)) |
| hw->type = SDLA_S503; |
| else if (detect_s507(port)) |
| hw->type = SDLA_S507; |
| else if (detect_s508(port)) |
| hw->type = SDLA_S508; |
| else err = -ENODEV; |
| } |
| return err; |
| } |
| |
| /*============================================================================ |
| * Autoselect memory region. |
| * o try all available DMP address options from the top down until success. |
| */ |
| static int sdla_autodpm (sdlahw_t* hw) |
| { |
| int i, err = -EINVAL; |
| unsigned* opt; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| opt = s502a_dpmbase_options; |
| break; |
| |
| case SDLA_S502E: |
| case SDLA_S503: |
| case SDLA_S508: |
| opt = s508_dpmbase_options; |
| break; |
| |
| case SDLA_S507: |
| opt = s507_dpmbase_options; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Start testing from 8th position, address |
| * 0xC8000 from the 508 address table. |
| * We don't want to test A**** addresses, since |
| * they are usually used for Video */ |
| for (i = 8; i <= opt[0] && err; i++) { |
| hw->dpmbase = phys_to_virt(opt[i]); |
| err = sdla_setdpm(hw); |
| } |
| return err; |
| } |
| |
| /*============================================================================ |
| * Set up adapter dual-port memory window. |
| * o shut down adapter |
| * o make sure that no physical memory exists in this region, i.e entire |
| * region reads 0xFF and is not writable when adapter is shut down. |
| * o initialize adapter hardware |
| * o make sure that region is usable with SDLA card, i.e. we can write to it |
| * when adapter is configured. |
| */ |
| static int sdla_setdpm (sdlahw_t* hw) |
| { |
| int err; |
| |
| /* Shut down card and verify memory region */ |
| sdla_down(hw); |
| if (check_memregion(hw->dpmbase, hw->dpmsize)) |
| return -EINVAL; |
| |
| /* Initialize adapter and test on-board memory segment by segment. |
| * If memory size appears to be less than shared memory window size, |
| * assume that memory region is unusable. |
| */ |
| err = sdla_init(hw); |
| if (err) return err; |
| |
| if (sdla_memtest(hw) < hw->dpmsize) { /* less than window size */ |
| sdla_down(hw); |
| return -EIO; |
| } |
| sdla_mapmem(hw, 0L); /* set window vector at bottom */ |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Load adapter from the memory image of the SDLA firmware module. |
| * o verify firmware integrity and compatibility |
| * o start adapter up |
| */ |
| static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len) |
| { |
| |
| int i; |
| |
| /* Verify firmware signature */ |
| if (strcmp(sfm->signature, SFM_SIGNATURE)) { |
| printk(KERN_INFO "%s: not SDLA firmware!\n", |
| modname); |
| return -EINVAL; |
| } |
| |
| /* Verify firmware module format version */ |
| if (sfm->version != SFM_VERSION) { |
| printk(KERN_INFO |
| "%s: firmware format %u rejected! Expecting %u.\n", |
| modname, sfm->version, SFM_VERSION); |
| return -EINVAL; |
| } |
| |
| /* Verify firmware module length and checksum */ |
| if ((len - offsetof(sfm_t, image) != sfm->info.codesize) || |
| (checksum((void*)&sfm->info, |
| sizeof(sfm_info_t) + sfm->info.codesize) != sfm->checksum)) { |
| printk(KERN_INFO "%s: firmware corrupted!\n", modname); |
| return -EINVAL; |
| } |
| |
| /* Announce */ |
| printk(KERN_INFO "%s: loading %s (ID=%u)...\n", modname, |
| (sfm->descr[0] != '\0') ? sfm->descr : "unknown firmware", |
| sfm->info.codeid); |
| |
| if(hw->type == SDLA_S514) |
| printk(KERN_INFO "%s: loading S514 adapter, CPU %c\n", |
| modname, hw->S514_cpu_no[0]); |
| |
| /* Scan through the list of compatible adapters and make sure our |
| * adapter type is listed. |
| */ |
| for (i = 0; |
| (i < SFM_MAX_SDLA) && (sfm->info.adapter[i] != hw->type); |
| ++i); |
| |
| if (i == SFM_MAX_SDLA) { |
| printk(KERN_INFO "%s: firmware is not compatible with S%u!\n", |
| modname, hw->type); |
| return -EINVAL; |
| } |
| |
| |
| /* Make sure there is enough on-board memory */ |
| if (hw->memory < sfm->info.memsize) { |
| printk(KERN_INFO |
| "%s: firmware needs %lu bytes of on-board memory!\n", |
| modname, sfm->info.memsize); |
| return -EINVAL; |
| } |
| |
| /* Move code onto adapter */ |
| if (sdla_poke(hw, sfm->info.codeoffs, sfm->image, sfm->info.codesize)) { |
| printk(KERN_INFO "%s: failed to load code segment!\n", |
| modname); |
| return -EIO; |
| } |
| |
| /* Prepare boot-time configuration data and kick-off CPU */ |
| sdla_bootcfg(hw, &sfm->info); |
| if (sdla_start(hw, sfm->info.startoffs)) { |
| printk(KERN_INFO "%s: Damn... Adapter won't start!\n", |
| modname); |
| return -EIO; |
| } |
| |
| /* position DPM window over the mailbox and enable interrupts */ |
| if (sdla_mapmem(hw, sfm->info.winoffs) || sdla_inten(hw)) { |
| printk(KERN_INFO "%s: adapter hardware failure!\n", |
| modname); |
| return -EIO; |
| } |
| hw->fwid = sfm->info.codeid; /* set firmware ID */ |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Initialize SDLA hardware: setup memory window, IRQ, etc. |
| */ |
| static int sdla_init (sdlahw_t* hw) |
| { |
| int i; |
| |
| for (i = 0; i < SDLA_MAXIORANGE; ++i) |
| hw->regs[i] = 0; |
| |
| switch (hw->type) { |
| case SDLA_S502A: return init_s502a(hw); |
| case SDLA_S502E: return init_s502e(hw); |
| case SDLA_S503: return init_s503(hw); |
| case SDLA_S507: return init_s507(hw); |
| case SDLA_S508: return init_s508(hw); |
| } |
| return -EINVAL; |
| } |
| |
| /*============================================================================ |
| * Test adapter on-board memory. |
| * o slide DPM window from the bottom up and test adapter memory segment by |
| * segment. |
| * Return adapter memory size. |
| */ |
| static unsigned long sdla_memtest (sdlahw_t* hw) |
| { |
| unsigned long memsize; |
| unsigned winsize; |
| |
| for (memsize = 0, winsize = hw->dpmsize; |
| !sdla_mapmem(hw, memsize) && |
| (test_memregion(hw->dpmbase, winsize) == winsize) |
| ; |
| memsize += winsize) |
| ; |
| hw->memory = memsize; |
| return memsize; |
| } |
| |
| /*============================================================================ |
| * Prepare boot-time firmware configuration data. |
| * o position DPM window |
| * o initialize configuration data area |
| */ |
| static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo) |
| { |
| unsigned char* data; |
| |
| if (!sfminfo->datasize) return 0; /* nothing to do */ |
| |
| if (sdla_mapmem(hw, sfminfo->dataoffs) != 0) |
| return -EIO; |
| |
| if(hw->type == SDLA_S514) |
| data = (void*)(hw->dpmbase + sfminfo->dataoffs); |
| else |
| data = (void*)((u8 *)hw->dpmbase + |
| (sfminfo->dataoffs - hw->vector)); |
| |
| memset_io (data, 0, sfminfo->datasize); |
| |
| writeb (make_config_byte(hw), &data[0x00]); |
| |
| switch (sfminfo->codeid) { |
| case SFID_X25_502: |
| case SFID_X25_508: |
| writeb (3, &data[0x01]); /* T1 timer */ |
| writeb (10, &data[0x03]); /* N2 */ |
| writeb (7, &data[0x06]); /* HDLC window size */ |
| writeb (1, &data[0x0B]); /* DTE */ |
| writeb (2, &data[0x0C]); /* X.25 packet window size */ |
| writew (128, &data[0x0D]); /* default X.25 data size */ |
| writew (128, &data[0x0F]); /* maximum X.25 data size */ |
| break; |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Prepare configuration byte identifying adapter type and CPU clock rate. |
| */ |
| static unsigned char make_config_byte (sdlahw_t* hw) |
| { |
| unsigned char byte = 0; |
| |
| switch (hw->pclk) { |
| case 5000: byte = 0x01; break; |
| case 7200: byte = 0x02; break; |
| case 8000: byte = 0x03; break; |
| case 10000: byte = 0x04; break; |
| case 16000: byte = 0x05; break; |
| } |
| |
| switch (hw->type) { |
| case SDLA_S502E: byte |= 0x80; break; |
| case SDLA_S503: byte |= 0x40; break; |
| } |
| return byte; |
| } |
| |
| /*============================================================================ |
| * Start adapter's CPU. |
| * o calculate a pointer to adapter's cold boot entry point |
| * o position DPM window |
| * o place boot instruction (jp addr) at cold boot entry point |
| * o start CPU |
| */ |
| static int sdla_start (sdlahw_t* hw, unsigned addr) |
| { |
| unsigned port = hw->port; |
| unsigned char *bootp; |
| int err, tmp, i; |
| |
| if (!port && (hw->type != SDLA_S514)) return -EFAULT; |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| bootp = hw->dpmbase; |
| bootp += 0x66; |
| break; |
| |
| case SDLA_S502E: |
| case SDLA_S503: |
| case SDLA_S507: |
| case SDLA_S508: |
| case SDLA_S514: |
| bootp = hw->dpmbase; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| err = sdla_mapmem(hw, 0); |
| if (err) return err; |
| |
| writeb (0xC3, bootp); /* Z80: 'jp' opcode */ |
| bootp ++; |
| writew (addr, bootp); |
| |
| switch (hw->type) { |
| case SDLA_S502A: |
| _OUTB(port, 0x10); /* issue NMI to CPU */ |
| hw->regs[0] = 0x10; |
| break; |
| |
| case SDLA_S502E: |
| _OUTB(port + 3, 0x01); /* start CPU */ |
| hw->regs[3] = 0x01; |
| for (i = 0; i < SDLA_IODELAY; ++i); |
| if (_INB(port) & 0x01) { /* verify */ |
| /* |
| * Enabling CPU changes functionality of the |
| * control register, so we have to reset its |
| * mirror. |
| */ |
| _OUTB(port, 0); /* disable interrupts */ |
| hw->regs[0] = 0; |
| } |
| else return -EIO; |
| break; |
| |
| case SDLA_S503: |
| tmp = hw->regs[0] | 0x09; /* set bits 0 and 3 */ |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); |
| if (!(_INB(port) & 0x01)) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S507: |
| tmp = hw->regs[0] | 0x02; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); |
| if (!(_INB(port) & 0x04)) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S508: |
| tmp = hw->regs[0] | 0x02; |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); |
| if (!(_INB(port + 1) & 0x02)) /* verify */ |
| return -EIO; |
| break; |
| |
| case SDLA_S514: |
| writeb (S514_CPU_START, hw->vector); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Initialize S502A adapter. |
| */ |
| static int init_s502a (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| if (!detect_s502a(port)) |
| return -ENODEV; |
| |
| hw->regs[0] = 0x08; |
| hw->regs[1] = 0xFF; |
| |
| /* Verify configuration options */ |
| i = get_option_index(s502a_dpmbase_options, virt_to_phys(hw->dpmbase)); |
| if (i == 0) |
| return -EINVAL; |
| |
| tmp = s502a_hmcr[i - 1]; |
| switch (hw->dpmsize) { |
| case 0x2000: |
| tmp |= 0x01; |
| break; |
| |
| case 0x10000L: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Setup dual-port memory window (this also enables memory access) */ |
| _OUTB(port + 1, tmp); |
| hw->regs[1] = tmp; |
| hw->regs[0] = 0x08; |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Initialize S502E adapter. |
| */ |
| static int init_s502e (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| if (!detect_s502e(port)) |
| return -ENODEV; |
| |
| /* Verify configuration options */ |
| i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); |
| if (i == 0) |
| return -EINVAL; |
| |
| tmp = s502e_hmcr[i - 1]; |
| switch (hw->dpmsize) { |
| case 0x2000: |
| tmp |= 0x01; |
| break; |
| |
| case 0x10000L: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Setup dual-port memory window */ |
| _OUTB(port + 1, tmp); |
| hw->regs[1] = tmp; |
| |
| /* Enable memory access */ |
| _OUTB(port, 0x02); |
| hw->regs[0] = 0x02; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| return (_INB(port) & 0x02) ? 0 : -EIO; |
| } |
| |
| /*============================================================================ |
| * Initialize S503 adapter. |
| * --------------------------------------------------------------------------- |
| */ |
| static int init_s503 (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| if (!detect_s503(port)) |
| return -ENODEV; |
| |
| /* Verify configuration options */ |
| i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); |
| if (i == 0) |
| return -EINVAL; |
| |
| tmp = s502e_hmcr[i - 1]; |
| switch (hw->dpmsize) { |
| case 0x2000: |
| tmp |= 0x01; |
| break; |
| |
| case 0x10000L: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Setup dual-port memory window */ |
| _OUTB(port + 1, tmp); |
| hw->regs[1] = tmp; |
| |
| /* Enable memory access */ |
| _OUTB(port, 0x02); |
| hw->regs[0] = 0x02; /* update mirror */ |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Initialize S507 adapter. |
| */ |
| static int init_s507 (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| if (!detect_s507(port)) |
| return -ENODEV; |
| |
| /* Verify configuration options */ |
| i = get_option_index(s507_dpmbase_options, virt_to_phys(hw->dpmbase)); |
| if (i == 0) |
| return -EINVAL; |
| |
| tmp = s507_hmcr[i - 1]; |
| switch (hw->dpmsize) { |
| case 0x2000: |
| tmp |= 0x01; |
| break; |
| |
| case 0x10000L: |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Enable adapter's logic */ |
| _OUTB(port, 0x01); |
| hw->regs[0] = 0x01; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (!(_INB(port) & 0x20)) |
| return -EIO; |
| |
| /* Setup dual-port memory window */ |
| _OUTB(port + 1, tmp); |
| hw->regs[1] = tmp; |
| |
| /* Enable memory access */ |
| tmp = hw->regs[0] | 0x04; |
| if (hw->irq) { |
| i = get_option_index(s508_irq_options, hw->irq); |
| if (i) tmp |= s507_irqmask[i - 1]; |
| } |
| _OUTB(port, tmp); |
| hw->regs[0] = tmp; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| return (_INB(port) & 0x08) ? 0 : -EIO; |
| } |
| |
| /*============================================================================ |
| * Initialize S508 adapter. |
| */ |
| static int init_s508 (sdlahw_t* hw) |
| { |
| unsigned port = hw->port; |
| int tmp, i; |
| |
| if (!detect_s508(port)) |
| return -ENODEV; |
| |
| /* Verify configuration options */ |
| i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); |
| if (i == 0) |
| return -EINVAL; |
| |
| /* Setup memory configuration */ |
| tmp = s508_hmcr[i - 1]; |
| _OUTB(port + 1, tmp); |
| hw->regs[1] = tmp; |
| |
| /* Enable memory access */ |
| _OUTB(port, 0x04); |
| hw->regs[0] = 0x04; /* update mirror */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| return (_INB(port + 1) & 0x04) ? 0 : -EIO; |
| } |
| |
| /*============================================================================ |
| * Detect S502A adapter. |
| * Following tests are used to detect S502A adapter: |
| * 1. All registers other than status (BASE) should read 0xFF |
| * 2. After writing 00001000b to control register, status register should |
| * read 01000000b. |
| * 3. After writing 0 to control register, status register should still |
| * read 01000000b. |
| * 4. After writing 00000100b to control register, status register should |
| * read 01000100b. |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s502a (int port) |
| { |
| int i, j; |
| |
| if (!get_option_index(s502_port_options, port)) |
| return 0; |
| |
| for (j = 1; j < SDLA_MAXIORANGE; ++j) { |
| if (_INB(port + j) != 0xFF) |
| return 0; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| } |
| |
| _OUTB(port, 0x08); /* halt CPU */ |
| _OUTB(port, 0x08); |
| _OUTB(port, 0x08); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0x40) |
| return 0; |
| _OUTB(port, 0x00); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0x40) |
| return 0; |
| _OUTB(port, 0x04); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0x44) |
| return 0; |
| |
| /* Reset adapter */ |
| _OUTB(port, 0x08); |
| _OUTB(port, 0x08); |
| _OUTB(port, 0x08); |
| _OUTB(port + 1, 0xFF); |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Detect S502E adapter. |
| * Following tests are used to verify adapter presence: |
| * 1. All registers other than status (BASE) should read 0xFF. |
| * 2. After writing 0 to CPU control register (BASE+3), status register |
| * (BASE) should read 11111000b. |
| * 3. After writing 00000100b to port BASE (set bit 2), status register |
| * (BASE) should read 11111100b. |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s502e (int port) |
| { |
| int i, j; |
| |
| if (!get_option_index(s502_port_options, port)) |
| return 0; |
| for (j = 1; j < SDLA_MAXIORANGE; ++j) { |
| if (_INB(port + j) != 0xFF) |
| return 0; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| } |
| |
| _OUTB(port + 3, 0); /* CPU control reg. */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0xF8) /* read status */ |
| return 0; |
| _OUTB(port, 0x04); /* set bit 2 */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0xFC) /* verify */ |
| return 0; |
| |
| /* Reset adapter */ |
| _OUTB(port, 0); |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Detect s503 adapter. |
| * Following tests are used to verify adapter presence: |
| * 1. All registers other than status (BASE) should read 0xFF. |
| * 2. After writing 0 to control register (BASE), status register (BASE) |
| * should read 11110000b. |
| * 3. After writing 00000100b (set bit 2) to control register (BASE), |
| * status register should read 11110010b. |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s503 (int port) |
| { |
| int i, j; |
| |
| if (!get_option_index(s503_port_options, port)) |
| return 0; |
| for (j = 1; j < SDLA_MAXIORANGE; ++j) { |
| if (_INB(port + j) != 0xFF) |
| return 0; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| } |
| |
| _OUTB(port, 0); /* reset control reg.*/ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0xF0) /* read status */ |
| return 0; |
| _OUTB(port, 0x04); /* set bit 2 */ |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if (_INB(port) != 0xF2) /* verify */ |
| return 0; |
| |
| /* Reset adapter */ |
| _OUTB(port, 0); |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Detect s507 adapter. |
| * Following tests are used to detect s507 adapter: |
| * 1. All ports should read the same value. |
| * 2. After writing 0x00 to control register, status register should read |
| * ?011000?b. |
| * 3. After writing 0x01 to control register, status register should read |
| * ?011001?b. |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s507 (int port) |
| { |
| int tmp, i, j; |
| |
| if (!get_option_index(s508_port_options, port)) |
| return 0; |
| tmp = _INB(port); |
| for (j = 1; j < S507_IORANGE; ++j) { |
| if (_INB(port + j) != tmp) |
| return 0; |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| } |
| |
| _OUTB(port, 0x00); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if ((_INB(port) & 0x7E) != 0x30) |
| return 0; |
| _OUTB(port, 0x01); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if ((_INB(port) & 0x7E) != 0x32) |
| return 0; |
| |
| /* Reset adapter */ |
| _OUTB(port, 0x00); |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Detect s508 adapter. |
| * Following tests are used to detect s508 adapter: |
| * 1. After writing 0x00 to control register, status register should read |
| * ??000000b. |
| * 2. After writing 0x10 to control register, status register should read |
| * ??010000b |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s508 (int port) |
| { |
| int i; |
| |
| if (!get_option_index(s508_port_options, port)) |
| return 0; |
| _OUTB(port, 0x00); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if ((_INB(port + 1) & 0x3F) != 0x00) |
| return 0; |
| _OUTB(port, 0x10); |
| for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ |
| if ((_INB(port + 1) & 0x3F) != 0x10) |
| return 0; |
| |
| /* Reset adapter */ |
| _OUTB(port, 0x00); |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Detect s514 PCI adapter. |
| * Return 1 if detected o.k. or 0 if failed. |
| * Note: This test is destructive! Adapter will be left in shutdown |
| * state after the test. |
| */ |
| static int detect_s514 (sdlahw_t* hw) |
| { |
| unsigned char CPU_no, slot_no, auto_slot_cfg; |
| int number_S514_cards = 0; |
| u32 S514_mem_base_addr = 0; |
| u32 ut_u32; |
| struct pci_dev *pci_dev; |
| |
| |
| #ifndef CONFIG_PCI |
| printk(KERN_INFO "%s: Linux not compiled for PCI usage!\n", modname); |
| return 0; |
| #endif |
| |
| /* |
| The 'setup()' procedure in 'sdlamain.c' passes the CPU number and the |
| slot number defined in 'router.conf' via the 'port' definition. |
| */ |
| CPU_no = hw->S514_cpu_no[0]; |
| slot_no = hw->S514_slot_no; |
| auto_slot_cfg = hw->auto_pci_cfg; |
| |
| if (auto_slot_cfg){ |
| printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot=Auto\n", |
| modname, CPU_no); |
| |
| }else{ |
| printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot #%d\n", |
| modname, CPU_no, slot_no); |
| } |
| |
| /* check to see that CPU A or B has been selected in 'router.conf' */ |
| switch(CPU_no) { |
| case S514_CPU_A: |
| case S514_CPU_B: |
| break; |
| |
| default: |
| printk(KERN_INFO "%s: S514 CPU definition invalid.\n", |
| modname); |
| printk(KERN_INFO "Must be 'A' or 'B'\n"); |
| return 0; |
| } |
| |
| number_S514_cards = find_s514_adapter(hw, 0); |
| if(!number_S514_cards) |
| return 0; |
| |
| /* we are using a single S514 adapter with a slot of 0 so re-read the */ |
| /* location of this adapter */ |
| if((number_S514_cards == 1) && auto_slot_cfg) { |
| number_S514_cards = find_s514_adapter(hw, 1); |
| if(!number_S514_cards) { |
| printk(KERN_INFO "%s: Error finding PCI card\n", |
| modname); |
| return 0; |
| } |
| } |
| |
| pci_dev = hw->pci_dev; |
| /* read the physical memory base address */ |
| S514_mem_base_addr = (CPU_no == S514_CPU_A) ? |
| (pci_dev->resource[1].start) : |
| (pci_dev->resource[2].start); |
| |
| printk(KERN_INFO "%s: S514 PCI memory at 0x%X\n", |
| modname, S514_mem_base_addr); |
| if(!S514_mem_base_addr) { |
| if(CPU_no == S514_CPU_B) |
| printk(KERN_INFO "%s: CPU #B not present on the card\n", modname); |
| else |
| printk(KERN_INFO "%s: No PCI memory allocated to card\n", modname); |
| return 0; |
| } |
| |
| /* enable the PCI memory */ |
| pci_read_config_dword(pci_dev, |
| (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, |
| &ut_u32); |
| pci_write_config_dword(pci_dev, |
| (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, |
| (ut_u32 | PCI_MEMORY_ENABLE)); |
| |
| /* check the IRQ allocated and enable IRQ usage */ |
| if(!(hw->irq = pci_dev->irq)) { |
| printk(KERN_INFO "%s: IRQ not allocated to S514 adapter\n", |
| modname); |
| return 0; |
| } |
| |
| /* BUG FIX : Mar 6 2000 |
| * On a initial loading of the card, we must check |
| * and clear PCI interrupt bits, due to a reset |
| * problem on some other boards. i.e. An interrupt |
| * might be pending, even after system bootup, |
| * in which case, when starting wanrouter the machine |
| * would crash. |
| */ |
| if (init_pci_slot(hw)) |
| return 0; |
| |
| pci_read_config_dword(pci_dev, PCI_INT_CONFIG, &ut_u32); |
| ut_u32 |= (CPU_no == S514_CPU_A) ? |
| PCI_ENABLE_IRQ_CPU_A : PCI_ENABLE_IRQ_CPU_B; |
| pci_write_config_dword(pci_dev, PCI_INT_CONFIG, ut_u32); |
| |
| printk(KERN_INFO "%s: IRQ %d allocated to the S514 card\n", |
| modname, hw->irq); |
| |
| /* map the physical PCI memory to virtual memory */ |
| (void *)hw->dpmbase = ioremap((unsigned long)S514_mem_base_addr, |
| (unsigned long)MAX_SIZEOF_S514_MEMORY); |
| /* map the physical control register memory to virtual memory */ |
| hw->vector = (unsigned long)ioremap( |
| (unsigned long)(S514_mem_base_addr + S514_CTRL_REG_BYTE), |
| (unsigned long)16); |
| |
| if(!hw->dpmbase || !hw->vector) { |
| printk(KERN_INFO "%s: PCI virtual memory allocation failed\n", |
| modname); |
| return 0; |
| } |
| |
| /* halt the adapter */ |
| writeb (S514_CPU_HALT, hw->vector); |
| |
| return 1; |
| } |
| |
| /*============================================================================ |
| * Find the S514 PCI adapter in the PCI bus. |
| * Return the number of S514 adapters found (0 if no adapter found). |
| */ |
| static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card) |
| { |
| unsigned char slot_no; |
| int number_S514_cards = 0; |
| char S514_found_in_slot = 0; |
| u16 PCI_subsys_vendor; |
| |
| struct pci_dev *pci_dev = NULL; |
| |
| slot_no = hw->S514_slot_no; |
| |
| while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev)) |
| != NULL) { |
| |
| pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD, |
| &PCI_subsys_vendor); |
| |
| if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) |
| continue; |
| |
| hw->pci_dev = pci_dev; |
| |
| if(find_first_S514_card) |
| return(1); |
| |
| number_S514_cards ++; |
| |
| printk(KERN_INFO |
| "%s: S514 card found, slot #%d (devfn 0x%X)\n", |
| modname, ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), |
| pci_dev->devfn); |
| |
| if (hw->auto_pci_cfg){ |
| hw->S514_slot_no = ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK); |
| slot_no = hw->S514_slot_no; |
| |
| }else if (((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK) == slot_no){ |
| S514_found_in_slot = 1; |
| break; |
| } |
| } |
| |
| /* if no S514 adapter has been found, then exit */ |
| if (!number_S514_cards) { |
| printk(KERN_INFO "%s: Error, no S514 adapters found\n", modname); |
| return 0; |
| } |
| /* if more than one S514 card has been found, then the user must have */ /* defined a slot number so that the correct adapter is used */ |
| else if ((number_S514_cards > 1) && hw->auto_pci_cfg) { |
| printk(KERN_INFO "%s: Error, PCI Slot autodetect Failed! \n" |
| "%s: More than one S514 adapter found.\n" |
| "%s: Disable the Autodetect feature and supply\n" |
| "%s: the PCISLOT numbers for each card.\n", |
| modname,modname,modname,modname); |
| return 0; |
| } |
| /* if the user has specified a slot number and the S514 adapter has */ |
| /* not been found in that slot, then exit */ |
| else if (!hw->auto_pci_cfg && !S514_found_in_slot) { |
| printk(KERN_INFO |
| "%s: Error, S514 card not found in specified slot #%d\n", |
| modname, slot_no); |
| return 0; |
| } |
| |
| return (number_S514_cards); |
| } |
| |
| |
| |
| /******* Miscellaneous ******************************************************/ |
| |
| /*============================================================================ |
| * Calibrate SDLA memory access delay. |
| * Count number of idle loops made within 1 second and then calculate the |
| * number of loops that should be made to achive desired delay. |
| */ |
| static int calibrate_delay (int mks) |
| { |
| unsigned int delay; |
| unsigned long stop; |
| |
| for (delay = 0, stop = SYSTEM_TICK + HZ; SYSTEM_TICK < stop; ++delay); |
| return (delay/(1000000L/mks) + 1); |
| } |
| |
| /*============================================================================ |
| * Get option's index into the options list. |
| * Return option's index (1 .. N) or zero if option is invalid. |
| */ |
| static int get_option_index (unsigned* optlist, unsigned optval) |
| { |
| int i; |
| |
| for (i = 1; i <= optlist[0]; ++i) |
| if ( optlist[i] == optval) |
| return i; |
| return 0; |
| } |
| |
| /*============================================================================ |
| * Check memory region to see if it's available. |
| * Return: 0 ok. |
| */ |
| static unsigned check_memregion (void* ptr, unsigned len) |
| { |
| volatile unsigned char* p = ptr; |
| |
| for (; len && (readb (p) == 0xFF); --len, ++p) { |
| writeb (0, p); /* attempt to write 0 */ |
| if (readb(p) != 0xFF) { /* still has to read 0xFF */ |
| writeb (0xFF, p);/* restore original value */ |
| break; /* not good */ |
| } |
| } |
| |
| return len; |
| } |
| |
| /*============================================================================ |
| * Test memory region. |
| * Return: size of the region that passed the test. |
| * Note: Region size must be multiple of 2 ! |
| */ |
| static unsigned test_memregion (void* ptr, unsigned len) |
| { |
| volatile unsigned short* w_ptr; |
| unsigned len_w = len >> 1; /* region len in words */ |
| unsigned i; |
| |
| for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) |
| writew (0xAA55, w_ptr); |
| |
| for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) |
| if (readw (w_ptr) != 0xAA55) { |
| len_w = i; |
| break; |
| } |
| |
| for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) |
| writew (0x55AA, w_ptr); |
| |
| for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) |
| if (readw(w_ptr) != 0x55AA) { |
| len_w = i; |
| break; |
| } |
| |
| for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) |
| writew (0, w_ptr); |
| |
| return len_w << 1; |
| } |
| |
| /*============================================================================ |
| * Calculate 16-bit CRC using CCITT polynomial. |
| */ |
| static unsigned short checksum (unsigned char* buf, unsigned len) |
| { |
| unsigned short crc = 0; |
| unsigned mask, flag; |
| |
| for (; len; --len, ++buf) { |
| for (mask = 0x80; mask; mask >>= 1) { |
| flag = (crc & 0x8000); |
| crc <<= 1; |
| crc |= ((*buf & mask) ? 1 : 0); |
| if (flag) crc ^= 0x1021; |
| } |
| } |
| return crc; |
| } |
| |
| static int init_pci_slot(sdlahw_t *hw) |
| { |
| |
| u32 int_status; |
| int volatile found=0; |
| int i=0; |
| |
| /* Check if this is a very first load for a specific |
| * pci card. If it is, clear the interrput bits, and |
| * set the flag indicating that this card was initialized. |
| */ |
| |
| for (i=0; (i<MAX_S514_CARDS) && !found; i++){ |
| if (pci_slot_ar[i] == hw->S514_slot_no){ |
| found=1; |
| break; |
| } |
| if (pci_slot_ar[i] == 0xFF){ |
| break; |
| } |
| } |
| |
| if (!found){ |
| read_S514_int_stat(hw,&int_status); |
| S514_intack(hw,int_status); |
| if (i == MAX_S514_CARDS){ |
| printk(KERN_INFO "%s: Critical Error !!!\n",modname); |
| printk(KERN_INFO |
| "%s: Number of Sangoma PCI cards exceeded maximum limit.\n", |
| modname); |
| printk(KERN_INFO "Please contact Sangoma Technologies\n"); |
| return 1; |
| } |
| pci_slot_ar[i] = hw->S514_slot_no; |
| } |
| return 0; |
| } |
| |
| static int pci_probe(sdlahw_t *hw) |
| { |
| |
| unsigned char slot_no; |
| int number_S514_cards = 0; |
| u16 PCI_subsys_vendor; |
| u16 PCI_card_type; |
| |
| struct pci_dev *pci_dev = NULL; |
| struct pci_bus *bus = NULL; |
| |
| slot_no = 0; |
| |
| while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev)) |
| != NULL) { |
| |
| pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD, |
| &PCI_subsys_vendor); |
| |
| if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) |
| continue; |
| |
| pci_read_config_word(pci_dev, PCI_CARD_TYPE, |
| &PCI_card_type); |
| |
| bus = pci_dev->bus; |
| |
| /* A dual cpu card can support up to 4 physical connections, |
| * where a single cpu card can support up to 2 physical |
| * connections. The FT1 card can only support a single |
| * connection, however we cannot distinguish between a Single |
| * CPU card and an FT1 card. */ |
| if (PCI_card_type == S514_DUAL_CPU){ |
| number_S514_cards += 4; |
| printk(KERN_INFO |
| "wanpipe: S514-PCI card found, cpu(s) 2, bus #%d, slot #%d, irq #%d\n", |
| bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), |
| pci_dev->irq); |
| }else{ |
| number_S514_cards += 2; |
| printk(KERN_INFO |
| "wanpipe: S514-PCI card found, cpu(s) 1, bus #%d, slot #%d, irq #%d\n", |
| bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), |
| pci_dev->irq); |
| } |
| } |
| |
| return number_S514_cards; |
| |
| } |
| |
| |
| |
| EXPORT_SYMBOL(wanpipe_hw_probe); |
| |
| unsigned wanpipe_hw_probe(void) |
| { |
| sdlahw_t hw; |
| unsigned* opt = s508_port_options; |
| unsigned cardno=0; |
| int i; |
| |
| memset(&hw, 0, sizeof(hw)); |
| |
| for (i = 1; i <= opt[0]; i++) { |
| if (detect_s508(opt[i])){ |
| /* S508 card can support up to two physical links */ |
| cardno+=2; |
| printk(KERN_INFO "wanpipe: S508-ISA card found, port 0x%x\n",opt[i]); |
| } |
| } |
| |
| #ifdef CONFIG_PCI |
| hw.S514_slot_no = 0; |
| cardno += pci_probe(&hw); |
| #else |
| printk(KERN_INFO "wanpipe: Warning, Kernel not compiled for PCI support!\n"); |
| printk(KERN_INFO "wanpipe: PCI Hardware Probe Failed!\n"); |
| #endif |
| |
| return cardno; |
| } |
| |
| /****** End *****************************************************************/ |