blob: 44b4c6e124a27d110fca7e91cd33bd2bf95022c0 [file] [log] [blame]
/* ced_ioc.c
ioctl part of the 1401 usb device driver for linux.
Copyright (C) 2010 Cambridge Electronic Design Ltd
Author Greg P Smith (greg@ced.co.uk)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/uaccess.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/page-flags.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include "usb1401.h"
/****************************************************************************
** ced_flush_out_buff
**
** Empties the Output buffer and sets int lines. Used from user level only
****************************************************************************/
static void ced_flush_out_buff(struct ced_data *ced)
{
dev_dbg(&ced->interface->dev, "%s: current_state=%d\n",
__func__, ced->current_state);
/* Do nothing if hardware in trouble */
if (ced->current_state == U14ERR_TIME)
return;
/* Kill off any pending I/O */
/* CharSend_Cancel(ced); */
spin_lock_irq(&ced->char_out_lock);
ced->num_output = 0;
ced->out_buff_get = 0;
ced->out_buff_put = 0;
spin_unlock_irq(&ced->char_out_lock);
}
/****************************************************************************
**
** ced_flush_in_buff
**
** Empties the input buffer and sets int lines
****************************************************************************/
static void ced_flush_in_buff(struct ced_data *ced)
{
dev_dbg(&ced->interface->dev, "%s: current_state=%d\n",
__func__, ced->current_state);
if (ced->current_state == U14ERR_TIME) /* Do nothing if hardware in trouble */
return;
/* Kill off any pending I/O */
/* CharRead_Cancel(pDevObject); */
spin_lock_irq(&ced->char_in_lock);
ced->num_input = 0;
ced->in_buff_get = 0;
ced->in_buff_put = 0;
spin_unlock_irq(&ced->char_in_lock);
}
/****************************************************************************
** ced_put_chars
**
** Utility routine to copy chars into the output buffer and fire them off.
** called from user mode, holds char_out_lock.
****************************************************************************/
static int ced_put_chars(struct ced_data *ced, const char *ch,
unsigned int count)
{
int ret;
spin_lock_irq(&ced->char_out_lock); /* get the output spin lock */
if ((OUTBUF_SZ - ced->num_output) >= count) {
unsigned int u;
for (u = 0; u < count; u++) {
ced->output_buffer[ced->out_buff_put++] = ch[u];
if (ced->out_buff_put >= OUTBUF_SZ)
ced->out_buff_put = 0;
}
ced->num_output += count;
spin_unlock_irq(&ced->char_out_lock);
ret = ced_send_chars(ced); /* ...give a chance to transmit data */
} else {
ret = U14ERR_NOOUT; /* no room at the out (ha-ha) */
spin_unlock_irq(&ced->char_out_lock);
}
return ret;
}
/*****************************************************************************
** Add the data in "data" local pointer of length n to the output buffer, and
** trigger an output transfer if this is appropriate. User mode.
** Holds the io_mutex
*****************************************************************************/
int ced_send_string(struct ced_data *ced, const char __user *data,
unsigned int n)
{
int ret = U14ERR_NOERROR; /* assume all will be well */
char buffer[OUTBUF_SZ + 1]; /* space in our address space */
/* for characters */
if (n > OUTBUF_SZ) /* check space in local buffer... */
return U14ERR_NOOUT; /* ...too many characters */
if (copy_from_user(buffer, data, n))
return -EFAULT;
buffer[n] = 0; /* terminate for debug purposes */
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
if (n > 0) { /* do nothing if nowt to do! */
dev_dbg(&ced->interface->dev, "%s: n=%d>%s<\n",
__func__, n, buffer);
ret = ced_put_chars(ced, buffer, n);
}
ced_allowi(ced); /* make sure we have input int */
mutex_unlock(&ced->io_mutex);
return ret;
}
/****************************************************************************
** ced_send_char
**
** Sends a single character to the 1401. User mode, holds io_mutex.
****************************************************************************/
int ced_send_char(struct ced_data *ced, char c)
{
int ret;
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
ret = ced_put_chars(ced, &c, 1);
dev_dbg(&ced->interface->dev, "ced_send_char >%c< (0x%02x)\n", c, c);
ced_allowi(ced); /* Make sure char reads are running */
mutex_unlock(&ced->io_mutex);
return ret;
}
/***************************************************************************
**
** ced_get_state
**
** Retrieves state information from the 1401, adjusts the 1401 state held
** in the device extension to indicate the current 1401 type.
**
** *state is updated with information about the 1401 state as returned by the
** 1401. The low byte is a code for what 1401 is doing:
**
** 0 normal 1401 operation
** 1 sending chars to host
** 2 sending block data to host
** 3 reading block data from host
** 4 sending an escape sequence to the host
** 0x80 1401 is executing self-test, in which case the upper word
** is the last error code seen (or zero for no new error).
**
** *error is updated with error information if a self-test error code
** is returned in the upper word of state.
**
** both state and error are set to -1 if there are comms problems, and
** to zero if there is a simple failure.
**
** return error code (U14ERR_NOERROR for OK)
*/
int ced_get_state(struct ced_data *ced, __u32 *state, __u32 *error)
{
int got;
dev_dbg(&ced->interface->dev, "%s: entry\n", __func__);
*state = 0xFFFFFFFF; /* Start off with invalid state */
got = usb_control_msg(ced->udev, usb_rcvctrlpipe(ced->udev, 0),
GET_STATUS, (D_TO_H | VENDOR | DEVREQ), 0, 0,
ced->stat_buf, sizeof(ced->stat_buf), HZ);
if (got != sizeof(ced->stat_buf)) {
dev_err(&ced->interface->dev,
"%s: FAILED, return code %d\n", __func__, got);
/* Indicate that things are very wrong indeed */
ced->current_state = U14ERR_TIME;
*state = 0; /* Force status values to a known state */
*error = 0;
} else {
int device;
dev_dbg(&ced->interface->dev,
"%s: Success, state: 0x%x, 0x%x\n",
__func__, ced->stat_buf[0], ced->stat_buf[1]);
/* Return the state values to the calling code */
*state = ced->stat_buf[0];
*error = ced->stat_buf[1];
/* 1401 type code value */
device = ced->udev->descriptor.bcdDevice >> 8;
switch (device) { /* so we can clean up current state */
case 0:
ced->current_state = U14ERR_U1401;
break;
default: /* allow lots of device codes for future 1401s */
if ((device >= 1) && (device <= 23))
ced->current_state = (short)(device + 6);
else
ced->current_state = U14ERR_ILL;
break;
}
}
return ced->current_state >= 0 ? U14ERR_NOERROR : ced->current_state;
}
/****************************************************************************
** ced_read_write_cancel
**
** Kills off staged read\write request from the USB if one is pending.
****************************************************************************/
int ced_read_write_cancel(struct ced_data *ced)
{
dev_dbg(&ced->interface->dev, "%s: entry %d\n",
__func__, ced->staged_urb_pending);
#ifdef NOT_WRITTEN_YET
int ntStatus = STATUS_SUCCESS;
bool bResult = false;
unsigned int i;
/* We can fill this in when we know how we will implement the staged transfer stuff */
spin_lock_irq(&ced->staged_lock);
if (ced->staged_urb_pending) { /* anything to be cancelled? May need more... */
dev_info(&ced->interface - dev,
"ced_read_write_cancel about to cancel Urb\n");
/* Clear the staging done flag */
/* KeClearEvent(&ced->StagingDoneEvent); */
USB_ASSERT(ced->pStagedIrp != NULL);
/* Release the spinlock first otherwise the completion routine may hang */
/* on the spinlock while this function hands waiting for the event. */
spin_unlock_irq(&ced->staged_lock);
bResult = IoCancelIrp(ced->pStagedIrp); /* Actually do the cancel */
if (bResult) {
LARGE_INTEGER timeout;
timeout.QuadPart = -10000000; /* Use a timeout of 1 second */
dev_info(&ced->interface - dev,
"%s: about to wait till done\n", __func__);
ntStatus =
KeWaitForSingleObject(&ced->StagingDoneEvent,
Executive, KernelMode, FALSE,
&timeout);
} else {
dev_info(&ced->interface - dev,
"%s: cancellation failed\n", __func__);
ntStatus = U14ERR_FAIL;
}
USB_KdPrint(DBGLVL_DEFAULT,
("ced_read_write_cancel ntStatus = 0x%x decimal %d\n",
ntStatus, ntStatus));
} else
spin_unlock_irq(&ced->staged_lock);
dev_info(&ced->interface - dev, "%s: done\n", __func__);
return ntStatus;
#else
return U14ERR_NOERROR;
#endif
}
/***************************************************************************
** ced_in_self_test - utility to check in self test. Return 1 for ST, 0 for not
** or a -ve error code if we failed for some reason.
***************************************************************************/
static int ced_in_self_test(struct ced_data *ced, unsigned int *stat)
{
unsigned int state, error;
int ret = ced_get_state(ced, &state, &error); /* see if in self-test */
if (ret == U14ERR_NOERROR) /* if all still OK */
ret = (state == (unsigned int)-1) || /* TX problem or... */
((state & 0xff) == 0x80); /* ...self test */
*stat = state; /* return actual state */
return ret;
}
/***************************************************************************
** ced_is_1401 - ALWAYS CALLED HOLDING THE io_mutex
**
** Tests for the current state of the 1401. Sets current_state:
**
** U14ERR_NOIF 1401 i/f card not installed (not done here)
** U14ERR_OFF 1401 apparently not switched on
** U14ERR_NC 1401 appears to be not connected
** U14ERR_ILL 1401 if it is there its not very well at all
** U14ERR_TIME 1401 appears OK, but doesn't communicate - very bad
** U14ERR_STD 1401 OK and ready for use
** U14ERR_PLUS 1401+ OK and ready for use
** U14ERR_U1401 Micro1401 OK and ready for use
** U14ERR_POWER Power1401 OK and ready for use
** U14ERR_U14012 Micro1401 mkII OK and ready for use
**
** Returns TRUE if a 1401 detected and OK, else FALSE
****************************************************************************/
static bool ced_is_1401(struct ced_data *ced)
{
int ret;
dev_dbg(&ced->interface->dev, "%s\n", __func__);
ced_draw_down(ced); /* wait for, then kill outstanding Urbs */
ced_flush_in_buff(ced); /* Clear out input buffer & pipe */
ced_flush_out_buff(ced); /* Clear output buffer & pipe */
/* The next call returns 0 if OK, but has returned 1 in the past, */
/* meaning that usb_unlock_device() is needed... now it always is */
ret = usb_lock_device_for_reset(ced->udev, ced->interface);
/* release the io_mutex because if we don't, we will deadlock due to */
/* system calls back into the driver. */
mutex_unlock(&ced->io_mutex); /* locked, so we will not get */
/* system calls */
if (ret >= 0) { /* if we failed */
ret = usb_reset_device(ced->udev); /* try to do the reset */
usb_unlock_device(ced->udev); /* undo the lock */
}
mutex_lock(&ced->io_mutex); /* hold stuff off while we wait */
ced->dma_flag = MODE_CHAR; /* Clear DMA mode flag regardless! */
if (ret == 0) { /* if all is OK still */
unsigned int state;
ret = ced_in_self_test(ced, &state); /* see if likely in */
/* self test */
if (ret > 0) { /* do we need to wait for self-test? */
/* when to give up */
unsigned long timeout = jiffies + 30 * HZ;
while ((ret > 0) && time_before(jiffies, timeout)) {
schedule(); /* let other stuff run */
/* see if done yet */
ret = ced_in_self_test(ced, &state);
}
}
if (ret == 0) /* if all is OK... */
/* then success is that the state is 0 */
ret = state == 0;
} else
ret = 0; /* we failed */
ced->force_reset = false; /* Clear forced reset flag now */
return ret > 0;
}
/****************************************************************************
** ced_quick_check - ALWAYS CALLED HOLDING THE io_mutex
** This is used to test for a 1401. It will try to do a quick check if all is
** OK, that is the 1401 was OK the last time it was asked, and there is no DMA
** in progress, and if the bTestBuff flag is set, the character buffers must be
** empty too. If the quick check shows that the state is still the same, then
** all is OK.
**
** If any of the above conditions are not met, or if the state or type of the
** 1401 has changed since the previous test, the full ced_is_1401 test is done,
** but only if can_reset is also TRUE.
**
** The return value is TRUE if a useable 1401 is found, FALSE if not
*/
static bool ced_quick_check(struct ced_data *ced, bool test_buff,
bool can_reset)
{
bool ret = false; /* assume it will fail and we will reset */
bool short_test;
short_test = ((ced->dma_flag == MODE_CHAR) && /* no DMA running */
(!ced->force_reset) && /* Not had a real reset forced */
(ced->current_state >= U14ERR_STD)); /* No 1401 errors stored */
dev_dbg(&ced->interface->dev,
"%s: DMAFlag:%d, state:%d, force:%d, testBuff:%d, short:%d\n",
__func__, ced->dma_flag, ced->current_state, ced->force_reset,
test_buff, short_test);
if ((test_buff) && /* Buffer check requested, and... */
(ced->num_input || ced->num_output)) { /* ...characters were in the buffer? */
short_test = false; /* Then do the full test */
dev_dbg(&ced->interface->dev,
"%s: will reset as buffers not empty\n", __func__);
}
if (short_test || !can_reset) { /* Still OK to try the short test? */
/* Always test if no reset - we want state update */
unsigned int state, error;
dev_dbg(&ced->interface->dev, "%s: ced_get_state\n", __func__);
if (ced_get_state(ced, &state, &error) == U14ERR_NOERROR) { /* Check on the 1401 state */
if ((state & 0xFF) == 0) /* If call worked, check the status value */
ret = true; /* If that was zero, all is OK, */
/* no reset needed */
}
}
if (!ret && can_reset) { /* If all not OK, then */
dev_info(&ced->interface->dev, "%s: ced_is_1401 %d %d %d %d\n",
__func__, short_test, ced->current_state, test_buff,
ced->force_reset);
ret = ced_is_1401(ced); /* do full test */
}
return ret;
}
/****************************************************************************
** ced_reset
**
** Resets the 1401 and empties the i/o buffers
*****************************************************************************/
int ced_reset(struct ced_data *ced)
{
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
dev_dbg(&ced->interface->dev, "%s: About to call ced_quick_check\n",
__func__);
ced_quick_check(ced, true, true); /* Check 1401, reset if not OK */
mutex_unlock(&ced->io_mutex);
return U14ERR_NOERROR;
}
/****************************************************************************
** ced_get_char
**
** Gets a single character from the 1401
****************************************************************************/
int ced_get_char(struct ced_data *ced)
{
int ret = U14ERR_NOIN; /* assume we will get nothing */
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
dev_dbg(&ced->interface->dev, "%s\n", __func__);
ced_allowi(ced); /* Make sure char reads are running */
ced_send_chars(ced); /* and send any buffered chars */
spin_lock_irq(&ced->char_in_lock);
if (ced->num_input > 0) { /* worth looking */
ret = ced->input_buffer[ced->in_buff_get++];
if (ced->in_buff_get >= INBUF_SZ)
ced->in_buff_get = 0;
ced->num_input--;
} else
ret = U14ERR_NOIN; /* no input data to read */
spin_unlock_irq(&ced->char_in_lock);
ced_allowi(ced); /* Make sure char reads are running */
mutex_unlock(&ced->io_mutex); /* Protect disconnect from new i/o */
return ret;
}
/****************************************************************************
** ced_get_string
**
** Gets a string from the 1401. Returns chars up to the next CR or when
** there are no more to read or nowhere to put them. CR is translated to
** 0 and counted as a character. If the string does not end in a 0, we will
** add one, if there is room, but it is not counted as a character.
**
** returns the count of characters (including the terminator, or 0 if none
** or a negative error code.
****************************************************************************/
int ced_get_string(struct ced_data *ced, char __user *user, int n)
{
int available; /* character in the buffer */
int ret = U14ERR_NOIN;
if (n <= 0)
return -ENOMEM;
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
ced_allowi(ced); /* Make sure char reads are running */
ced_send_chars(ced); /* and send any buffered chars */
spin_lock_irq(&ced->char_in_lock);
available = ced->num_input; /* characters available now */
if (available > n) /* read max of space in user... */
available = n; /* ...or input characters */
if (available > 0) { /* worth looking? */
char buffer[INBUF_SZ + 1]; /* space for a linear copy of data */
int got = 0;
int n_copy_to_user; /* number to copy to user */
char data;
do {
data = ced->input_buffer[ced->in_buff_get++];
if (data == CR_CHAR) /* replace CR with zero */
data = (char)0;
if (ced->in_buff_get >= INBUF_SZ)
ced->in_buff_get = 0; /* wrap buffer pointer */
buffer[got++] = data; /* save the output */
} while ((got < available) && data);
n_copy_to_user = got; /* what to copy... */
if (data) { /* do we need null */
buffer[got] = (char)0; /* make it tidy */
if (got < n) /* if space in user buffer... */
++n_copy_to_user; /* ...copy the 0 as well. */
}
ced->num_input -= got;
spin_unlock_irq(&ced->char_in_lock);
dev_dbg(&ced->interface->dev, "%s: read %d characters >%s<\n",
__func__, got, buffer);
if (copy_to_user(user, buffer, n_copy_to_user))
ret = -EFAULT;
else
ret = got; /* report characters read */
} else
spin_unlock_irq(&ced->char_in_lock);
ced_allowi(ced); /* Make sure char reads are running */
mutex_unlock(&ced->io_mutex); /* Protect disconnect from new i/o */
return ret;
}
/*******************************************************************************
** Get count of characters in the inout buffer.
*******************************************************************************/
int ced_stat_1401(struct ced_data *ced)
{
int ret;
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
ced_allowi(ced); /* make sure we allow pending chars */
ced_send_chars(ced); /* in both directions */
ret = ced->num_input; /* no lock as single read */
mutex_unlock(&ced->io_mutex); /* Protect disconnect from new i/o */
return ret;
}
/****************************************************************************
** ced_line_count
**
** Returns the number of newline chars in the buffer. There is no need for
** any fancy interlocks as we only read the interrupt routine data, and the
** system is arranged so nothing can be destroyed.
****************************************************************************/
int ced_line_count(struct ced_data *ced)
{
int ret = 0; /* will be count of line ends */
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
ced_allowi(ced); /* Make sure char reads are running */
ced_send_chars(ced); /* and send any buffered chars */
spin_lock_irq(&ced->char_in_lock); /* Get protection */
if (ced->num_input > 0) { /* worth looking? */
/* start at first available */
unsigned int index = ced->in_buff_get;
/* Position for search end */
unsigned int end = ced->in_buff_put;
do {
if (ced->input_buffer[index++] == CR_CHAR)
++ret; /* inc count if CR */
if (index >= INBUF_SZ) /* see if we fall off buff */
index = 0;
} while (index != end); /* go to last available */
}
spin_unlock_irq(&ced->char_in_lock);
dev_dbg(&ced->interface->dev, "%s: returned %d\n", __func__, ret);
mutex_unlock(&ced->io_mutex); /* Protect disconnect from new i/o */
return ret;
}
/****************************************************************************
** ced_get_out_buf_space
**
** Gets the space in the output buffer. Called from user code.
*****************************************************************************/
int ced_get_out_buf_space(struct ced_data *ced)
{
int ret;
mutex_lock(&ced->io_mutex); /* Protect disconnect from new i/o */
ced_send_chars(ced); /* send any buffered chars */
/* no lock needed for single read */
ret = (int)(OUTBUF_SZ - ced->num_output);
dev_dbg(&ced->interface->dev, "%s: %d\n", __func__, ret);
mutex_unlock(&ced->io_mutex); /* Protect disconnect from new i/o */
return ret;
}
/****************************************************************************
**
** ced_clear_area
**
** Clears up a transfer area. This is always called in the context of a user
** request, never from a call-back.
****************************************************************************/
int ced_clear_area(struct ced_data *ced, int area)
{
int ret = U14ERR_NOERROR;
if ((area < 0) || (area >= MAX_TRANSAREAS)) {
ret = U14ERR_BADAREA;
dev_err(&ced->interface->dev, "%s: Attempt to clear area %d\n",
__func__, area);
} else {
/* to save typing */
struct transarea *ta = &ced->trans_def[area];
if (!ta->used) /* if not used... */
ret = U14ERR_NOTSET; /* ...nothing to be done */
else {
/* We must save the memory we return as we shouldn't */
/* mess with memory while holding a spin lock. */
struct page **pages = NULL; /*save page address list*/
int n_pages = 0; /* and number of pages */
int np;
dev_dbg(&ced->interface->dev, "%s: area %d\n",
__func__, area);
spin_lock_irq(&ced->staged_lock);
if ((ced->staged_id == area)
&& (ced->dma_flag > MODE_CHAR)) {
/* cannot delete as in use */
ret = U14ERR_UNLOCKFAIL;
dev_err(&ced->interface->dev,
"%s: call on area %d while active\n",
__func__, area);
} else {
pages = ta->pages; /* save page address list */
n_pages = ta->n_pages; /* and page count */
if (ta->event_sz)/* if events flagging in use */
/* release anything that was waiting */
wake_up_interruptible(&ta->event);
if (ced->xfer_waiting
&& (ced->dma_info.ident == area))
/* Cannot have pending xfer if */
/* area cleared */
ced->xfer_waiting = false;
/* Clean out the struct transarea except for */
/* the wait queue, which is at the end. This */
/* sets used to false and event_sz to 0 to */
/* say area not used and no events. */
memset(ta, 0,
sizeof(struct transarea) -
sizeof(wait_queue_head_t));
}
spin_unlock_irq(&ced->staged_lock);
if (pages) { /* if we decided to release the memory */
/* Now we must undo the pinning down of the */
/* pages. We will assume the worst and mark */
/* all the pages as dirty. Don't be tempted */
/* to move this up above as you must not be */
/* holding a spin lock to do this stuff as */
/* it is not atomic. */
dev_dbg(&ced->interface->dev,
"%s: n_pages=%d\n",
__func__, n_pages);
for (np = 0; np < n_pages; ++np) {
if (pages[np]) {
SetPageDirty(pages[np]);
page_cache_release(pages[np]);
}
}
kfree(pages);
dev_dbg(&ced->interface->dev,
"%s: kfree(pages) done\n", __func__);
}
}
}
return ret;
}
/****************************************************************************
** ced_set_area
**
** Sets up a transfer area - the functional part. Called by both
** ced_set_transfer and ced_set_circular.
****************************************************************************/
static int ced_set_area(struct ced_data *ced, int area, char __user *buf,
unsigned int length, bool circular, bool circ_to_host)
{
/* Start by working out the page aligned start of the area and the */
/* size of the area in pages, allowing for the start not being */
/* aligned and the end needing to be rounded up to a page boundary. */
unsigned long start = ((unsigned long)buf) & PAGE_MASK;
unsigned int offset = ((unsigned long)buf) & (PAGE_SIZE - 1);
int len = (length + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
struct transarea *ta = &ced->trans_def[area]; /* to save typing */
struct page **pages = NULL; /* space for page tables */
int n_pages = 0; /* and number of pages */
int ret = ced_clear_area(ced, area); /* see if OK to use this area */
if ((ret != U14ERR_NOTSET) && /* if not area unused and... */
(ret != U14ERR_NOERROR)) /* ...not all OK, then... */
return ret; /* ...we cannot use this area */
/* if we cannot access the memory... */
if (!access_ok(VERIFY_WRITE, buf, length))
return -EFAULT; /* ...then we are done */
/* Now allocate space to hold the page pointer and */
/* virtual address pointer tables */
pages = kmalloc(len * sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = U14ERR_NOMEMORY;
goto error;
}
dev_dbg(&ced->interface->dev, "%s: %p, length=%06x, circular %d\n",
__func__, buf, length, circular);
/* To pin down user pages we must first */
/* acquire the mapping semaphore. */
n_pages = get_user_pages_fast(start, len, 1, pages);
dev_dbg(&ced->interface->dev, "%s: n_pages = %d\n", __func__, n_pages);
if (n_pages > 0) { /* if we succeeded */
/* If you are tempted to use page_address (form LDD3), forget */
/* it. You MUST use kmap() or kmap_atomic() to get a virtual */
/* address. page_address will give you (null) or at least it */
/* does in this context with an x86 machine. */
spin_lock_irq(&ced->staged_lock);
ta->buff = buf; /* keep start of region (user address) */
ta->base_offset = offset; /* save offset in first page */
/* to start of xfer */
ta->length = length; /* Size if the region in bytes */
ta->pages = pages; /* list of pages that are used by buffer */
ta->n_pages = n_pages; /* number of pages */
ta->circular = circular;
ta->circ_to_host = circ_to_host;
ta->blocks[0].offset = 0;
ta->blocks[0].size = 0;
ta->blocks[1].offset = 0;
ta->blocks[1].size = 0;
ta->used = true; /* This is now a used block */
spin_unlock_irq(&ced->staged_lock);
ret = U14ERR_NOERROR; /* say all was well */
} else {
ret = U14ERR_LOCKFAIL;
goto error;
}
return ret;
error:
kfree(pages);
return ret;
}
/****************************************************************************
** ced_set_transfer
**
** Sets up a transfer area record. If the area is already set, we attempt to
** unset it. Unsetting will fail if the area is booked, and a transfer to that
** area is in progress. Otherwise, we will release the area and re-assign it.
****************************************************************************/
int ced_set_transfer(struct ced_data *ced,
struct transfer_area_desc __user *utd)
{
int ret;
struct transfer_area_desc td;
if (copy_from_user(&td, utd, sizeof(td)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: area:%d, size:%08x\n",
__func__, td.wAreaNum, td.dwLength);
/* The strange cast is done so that we don't get warnings in 32-bit */
/* linux about the size of the pointer. The pointer is always passed */
/* as a 64-bit object so that we don't have problems using a 32-bit */
/* program on a 64-bit system. unsigned long is 64-bits on a 64-bit */
/* system. */
ret =
ced_set_area(ced, td.wAreaNum,
(char __user *)((unsigned long)td.lpvBuff), td.dwLength,
false, false);
mutex_unlock(&ced->io_mutex);
return ret;
}
/****************************************************************************
** ced_unset_transfer
** Erases a transfer area record
****************************************************************************/
int ced_unset_transfer(struct ced_data *ced, int area)
{
int ret;
mutex_lock(&ced->io_mutex);
ret = ced_clear_area(ced, area);
mutex_unlock(&ced->io_mutex);
return ret;
}
/****************************************************************************
** ced_set_event
** Creates an event that we can test for based on a transfer to/from an area.
** The area must be setup for a transfer. We attempt to simulate the Windows
** driver behavior for events (as we don't actually use them), which is to
** pretend that whatever the user asked for was achieved, so we return 1 if
** try to create one, and 0 if they ask to remove (assuming all else was OK).
****************************************************************************/
int ced_set_event(struct ced_data *ced, struct transfer_event __user *ute)
{
int ret = U14ERR_NOERROR;
struct transfer_event te;
/* get a local copy of the data */
if (copy_from_user(&te, ute, sizeof(te)))
return -EFAULT;
if (te.wAreaNum >= MAX_TRANSAREAS) /* the area must exist */
return U14ERR_BADAREA;
else {
struct transarea *ta = &ced->trans_def[te.wAreaNum];
/* make sure we have no competitor */
mutex_lock(&ced->io_mutex);
spin_lock_irq(&ced->staged_lock);
if (ta->used) { /* area must be in use */
ta->event_st = te.dwStart; /* set area regions */
/* set size (0 cancels it) */
ta->event_sz = te.dwLength;
/* set the direction */
ta->event_to_host = te.wFlags & 1;
ta->wake_up = 0; /* zero the wake up count */
} else
ret = U14ERR_NOTSET;
spin_unlock_irq(&ced->staged_lock);
mutex_unlock(&ced->io_mutex);
}
return ret ==
U14ERR_NOERROR ? (te.iSetEvent ? 1 : U14ERR_NOERROR) : ret;
}
/****************************************************************************
** ced_wait_event
** Sleep the process with a timeout waiting for an event. Returns the number
** of times that a block met the event condition since we last cleared it or
** 0 if timed out, or -ve error (bad area or not set, or signal).
****************************************************************************/
int ced_wait_event(struct ced_data *ced, int area, int time_out)
{
int ret;
if ((unsigned)area >= MAX_TRANSAREAS)
return U14ERR_BADAREA;
else {
int wait;
struct transarea *ta = &ced->trans_def[area];
/* convert timeout to jiffies */
time_out = (time_out * HZ + 999) / 1000;
/* We cannot wait holding the mutex, but we check the flags */
/* while holding it. This may well be pointless as another */
/* thread could get in between releasing it and the wait */
/* call. However, this would have to clear the wake_up flag. */
/* However, the !ta->used may help us in this case. */
/* make sure we have no competitor */
mutex_lock(&ced->io_mutex);
if (!ta->used || !ta->event_sz) /* check something to */
/* wait for... */
return U14ERR_NOTSET; /* ...else we do nothing */
mutex_unlock(&ced->io_mutex);
if (time_out)
wait = wait_event_interruptible_timeout(ta->event,
ta->wake_up ||
!ta->used,
time_out);
else
wait = wait_event_interruptible(ta->event,
ta->wake_up ||
!ta->used);
if (wait)
ret = -ERESTARTSYS; /* oops - we have had a SIGNAL */
else
ret = ta->wake_up; /* else the wakeup count */
spin_lock_irq(&ced->staged_lock);
ta->wake_up = 0; /* clear the flag */
spin_unlock_irq(&ced->staged_lock);
}
return ret;
}
/****************************************************************************
** ced_test_event
** Test the event to see if a ced_wait_event would return immediately. Returns the
** number of times a block completed since the last call, or 0 if none or a
** negative error.
****************************************************************************/
int ced_test_event(struct ced_data *ced, int area)
{
int ret;
if ((unsigned)area >= MAX_TRANSAREAS)
ret = U14ERR_BADAREA;
else {
struct transarea *ta = &ced->trans_def[area];
/* make sure we have no competitor */
mutex_lock(&ced->io_mutex);
spin_lock_irq(&ced->staged_lock);
ret = ta->wake_up; /* get wakeup count since last call */
ta->wake_up = 0; /* clear the count */
spin_unlock_irq(&ced->staged_lock);
mutex_unlock(&ced->io_mutex);
}
return ret;
}
/****************************************************************************
** ced_get_transferInfo
** Puts the current state of the 1401 in a TGET_TX_BLOCK.
*****************************************************************************/
int ced_get_transfer(struct ced_data *ced, TGET_TX_BLOCK __user *utx)
{
int ret = U14ERR_NOERROR;
unsigned int dwIdent;
mutex_lock(&ced->io_mutex);
dwIdent = ced->staged_id; /* area ident for last xfer */
if (dwIdent >= MAX_TRANSAREAS)
ret = U14ERR_BADAREA;
else {
/* Return the best information we have - we */
/* don't have physical addresses */
TGET_TX_BLOCK *tx;
tx = kzalloc(sizeof(*tx), GFP_KERNEL);
if (!tx) {
mutex_unlock(&ced->io_mutex);
return -ENOMEM;
}
tx->size = ced->trans_def[dwIdent].length;
tx->linear = (long long)((long)ced->trans_def[dwIdent].buff);
/* how many blocks we could return */
tx->avail = GET_TX_MAXENTRIES;
tx->used = 1; /* number we actually return */
tx->entries[0].physical =
(long long)(tx->linear + ced->staged_offset);
tx->entries[0].size = tx->size;
if (copy_to_user(utx, tx, sizeof(*tx)))
ret = -EFAULT;
kfree(tx);
}
mutex_unlock(&ced->io_mutex);
return ret;
}
/****************************************************************************
** ced_kill_io
**
** Empties the host i/o buffers
****************************************************************************/
int ced_kill_io(struct ced_data *ced)
{
dev_dbg(&ced->interface->dev, "%s\n", __func__);
mutex_lock(&ced->io_mutex);
ced_flush_out_buff(ced);
ced_flush_in_buff(ced);
mutex_unlock(&ced->io_mutex);
return U14ERR_NOERROR;
}
/****************************************************************************
** ced_state_of_1401
**
** Puts the current state of the 1401 in the Irp return buffer.
*****************************************************************************/
int ced_state_of_1401(struct ced_data *ced)
{
int ret;
mutex_lock(&ced->io_mutex);
ced_quick_check(ced, false, false); /* get state up to date, no reset */
ret = ced->current_state;
mutex_unlock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: %d\n", __func__, ret);
return ret;
}
/****************************************************************************
** ced_start_self_test
**
** Initiates a self-test cycle. The assumption is that we have no interrupts
** active, so we should make sure that this is the case.
*****************************************************************************/
int ced_start_self_test(struct ced_data *ced)
{
int got;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
ced_draw_down(ced); /* wait for, then kill outstanding Urbs */
ced_flush_in_buff(ced); /* Clear out input buffer & pipe */
ced_flush_out_buff(ced); /* Clear output buffer & pipe */
/* so things stay tidy */
/* ced_read_write_cancel(pDeviceObject); */
ced->dma_flag = MODE_CHAR; /* Clear DMA mode flags here */
got = usb_control_msg(ced->udev, usb_rcvctrlpipe(ced->udev, 0),
DB_SELFTEST, (H_TO_D | VENDOR | DEVREQ),
0, 0, NULL, 0, HZ); /* allow 1 second timeout */
ced->self_test_time = jiffies + HZ * 30; /* 30 seconds into the */
/* future */
mutex_unlock(&ced->io_mutex);
if (got < 0)
dev_err(&ced->interface->dev, "%s: err=%d\n", __func__, got);
return got < 0 ? U14ERR_FAIL : U14ERR_NOERROR;
}
/****************************************************************************
** ced_check_self_test
**
** Check progress of a self-test cycle
****************************************************************************/
int ced_check_self_test(struct ced_data *ced, TGET_SELFTEST __user *pGST)
{
unsigned int state, error;
int iReturn;
TGET_SELFTEST gst; /* local work space */
memset(&gst, 0, sizeof(gst)); /* clear out the space (sets code 0) */
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
iReturn = ced_get_state(ced, &state, &error);
if (iReturn == U14ERR_NOERROR) /* Only accept zero if it happens twice */
iReturn = ced_get_state(ced, &state, &error);
if (iReturn != U14ERR_NOERROR) { /* Self-test can cause comms errors */
/* so we assume still testing */
dev_err(&ced->interface->dev,
"%s: ced_get_state=%d, assuming still testing\n",
__func__, iReturn);
state = 0x80; /* Force still-testing, no error */
error = 0;
iReturn = U14ERR_NOERROR;
}
if ((state == -1) && (error == -1)) { /* If ced_get_state had problems */
dev_err(&ced->interface->dev,
"%s: ced_get_state failed, assuming still testing\n",
__func__);
state = 0x80; /* Force still-testing, no error */
error = 0;
}
if ((state & 0xFF) == 0x80) { /* If we are still in self-test */
if (state & 0x00FF0000) { /* Have we got an error? */
gst.code = (state & 0x00FF0000) >> 16; /* read the error code */
gst.x = error & 0x0000FFFF; /* Error data X */
gst.y = (error & 0xFFFF0000) >> 16; /* and data Y */
dev_dbg(&ced->interface->dev,
"Self-test error code %d\n", gst.code);
} else { /* No error, check for timeout */
unsigned long ulNow = jiffies; /* get current time */
if (time_after(ulNow, ced->self_test_time)) {
gst.code = -2; /* Flag the timeout */
dev_dbg(&ced->interface->dev,
"Self-test timed-out\n");
} else
dev_dbg(&ced->interface->dev,
"Self-test on-going\n");
}
} else {
gst.code = -1; /* Flag the test is done */
dev_dbg(&ced->interface->dev, "Self-test done\n");
}
if (gst.code < 0) { /* If we have a problem or finished */
/* If using the 2890 we should reset properly */
if ((ced->n_pipes == 4) && (ced->type <= TYPEPOWER))
ced_is_1401(ced); /* Get 1401 reset and OK */
else
ced_quick_check(ced, true, true); /* Otherwise check without reset unless problems */
}
mutex_unlock(&ced->io_mutex);
if (copy_to_user(pGST, &gst, sizeof(gst)))
return -EFAULT;
return iReturn;
}
/****************************************************************************
** ced_type_of_1401
**
** Returns code for standard, plus, micro1401, power1401 or none
****************************************************************************/
int ced_type_of_1401(struct ced_data *ced)
{
int iReturn = TYPEUNKNOWN;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
switch (ced->type) {
case TYPE1401:
iReturn = U14ERR_STD;
break; /* Handle these types directly */
case TYPEPLUS:
iReturn = U14ERR_PLUS;
break;
case TYPEU1401:
iReturn = U14ERR_U1401;
break;
default:
if ((ced->type >= TYPEPOWER) && (ced->type <= 25))
iReturn = ced->type + 4; /* We can calculate types */
else /* for up-coming 1401 designs */
iReturn = TYPEUNKNOWN; /* Don't know or not there */
}
dev_dbg(&ced->interface->dev, "%s %d\n", __func__, iReturn);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_transfer_flags
**
** Returns flags on block transfer abilities
****************************************************************************/
int ced_transfer_flags(struct ced_data *ced)
{
int iReturn = U14TF_MULTIA | U14TF_DIAG | /* we always have multiple DMA area */
U14TF_NOTIFY | U14TF_CIRCTH; /* diagnostics, notify and circular */
dev_dbg(&ced->interface->dev, "%s\n", __func__);
mutex_lock(&ced->io_mutex);
if (ced->is_usb2) /* Set flag for USB2 if appropriate */
iReturn |= U14TF_USB2;
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/***************************************************************************
** ced_dbg_cmd
** Issues a debug\diagnostic command to the 1401 along with a 32-bit datum
** This is a utility command used for dbg operations.
*/
static int ced_dbg_cmd(struct ced_data *ced, unsigned char cmd,
unsigned int data)
{
int iReturn;
dev_dbg(&ced->interface->dev, "%s: entry\n", __func__);
iReturn = usb_control_msg(ced->udev, usb_sndctrlpipe(ced->udev, 0), cmd,
(H_TO_D | VENDOR | DEVREQ),
(unsigned short)data,
(unsigned short)(data >> 16), NULL, 0, HZ);
/* allow 1 second timeout */
if (iReturn < 0)
dev_err(&ced->interface->dev, "%s: fail code=%d\n",
__func__, iReturn);
return iReturn;
}
/****************************************************************************
** ced_dbg_peek
**
** Execute the diagnostic peek operation. Uses address, width and repeats.
****************************************************************************/
int ced_dbg_peek(struct ced_data *ced, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: @ %08x\n", __func__, db.iAddr);
iReturn = ced_dbg_cmd(ced, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_PEEK, 0);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_dbg_poke
**
** Execute the diagnostic poke operation. Parameters are in the CSBLOCK struct
** in order address, size, repeats and value to poke.
****************************************************************************/
int ced_dbg_poke(struct ced_data *ced, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: @ %08x\n", __func__, db.iAddr);
iReturn = ced_dbg_cmd(ced, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_POKE, db.iData);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_dbg_ramp_data
**
** Execute the diagnostic ramp data operation. Parameters are in the CSBLOCK struct
** in order address, default, enable mask, size and repeats.
****************************************************************************/
int ced_dbg_ramp_data(struct ced_data *ced, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: @ %08x\n", __func__, db.iAddr);
iReturn = ced_dbg_cmd(ced, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_SETDEF, db.iDefault);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_SETMASK, db.iMask);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_RAMPD, 0);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_dbg_ramp_addr
**
** Execute the diagnostic ramp address operation
****************************************************************************/
int ced_dbg_ramp_addr(struct ced_data *ced, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
iReturn = ced_dbg_cmd(ced, DB_SETDEF, db.iDefault);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_SETMASK, db.iMask);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = ced_dbg_cmd(ced, DB_RAMPA, 0);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_dbg_get_data
**
** Retrieve the data resulting from the last debug Peek operation
****************************************************************************/
int ced_dbg_get_data(struct ced_data *ced, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
memset(&db, 0, sizeof(db)); /* fill returned block with 0s */
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
/* Read back the last peeked value from the 1401. */
iReturn = usb_control_msg(ced->udev, usb_rcvctrlpipe(ced->udev, 0),
DB_DATA, (D_TO_H | VENDOR | DEVREQ), 0, 0,
&db.iData, sizeof(db.iData), HZ);
if (iReturn == sizeof(db.iData)) {
if (copy_to_user(pDB, &db, sizeof(db)))
iReturn = -EFAULT;
else
iReturn = U14ERR_NOERROR;
} else
dev_err(&ced->interface->dev, "%s: failed, code %d\n",
__func__, iReturn);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_dbg_stop_loop
**
** Stop any never-ending debug loop, we just call ced_get_state for USB
**
****************************************************************************/
int ced_dbg_stop_loop(struct ced_data *ced)
{
int iReturn;
unsigned int uState, uErr;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s\n", __func__);
iReturn = ced_get_state(ced, &uState, &uErr);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_set_circular
**
** Sets up a transfer area record for circular transfers. If the area is
** already set, we attempt to unset it. Unsetting will fail if the area is
** booked and a transfer to that area is in progress. Otherwise, we will
** release the area and re-assign it.
****************************************************************************/
int ced_set_circular(struct ced_data *ced, struct transfer_area_desc __user *pTD)
{
int iReturn;
bool bToHost;
struct transfer_area_desc td;
if (copy_from_user(&td, pTD, sizeof(td)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
dev_dbg(&ced->interface->dev, "%s: area:%d, size:%08x\n",
__func__, td.wAreaNum, td.dwLength);
bToHost = td.eSize != 0; /* this is used as the tohost flag */
/* The strange cast is done so that we don't get warnings in 32-bit linux about the size of the */
/* pointer. The pointer is always passed as a 64-bit object so that we don't have problems using */
/* a 32-bit program on a 64-bit system. unsigned long is 64-bits on a 64-bit system. */
iReturn =
ced_set_area(ced, td.wAreaNum,
(char __user *)((unsigned long)td.lpvBuff), td.dwLength,
true, bToHost);
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_get_circ_block
**
** Return the next available block of circularly-transferred data.
****************************************************************************/
int ced_get_circ_block(struct ced_data *ced, TCIRCBLOCK __user *pCB)
{
int iReturn = U14ERR_NOERROR;
unsigned int nArea;
TCIRCBLOCK cb;
dev_dbg(&ced->interface->dev, "%s\n", __func__);
if (copy_from_user(&cb, pCB, sizeof(cb)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
nArea = cb.nArea; /* Retrieve parameters first */
cb.dwOffset = 0; /* set default result (nothing) */
cb.dwSize = 0;
if (nArea < MAX_TRANSAREAS) { /* The area number must be OK */
/* Pointer to relevant info */
struct transarea *pArea = &ced->trans_def[nArea];
spin_lock_irq(&ced->staged_lock); /* Lock others out */
if ((pArea->used) && (pArea->circular) && /* Must be circular area */
(pArea->circ_to_host)) { /* For now at least must be to host */
if (pArea->blocks[0].size > 0) { /* Got anything? */
cb.dwOffset = pArea->blocks[0].offset;
cb.dwSize = pArea->blocks[0].size;
dev_dbg(&ced->interface->dev,
"%s: return block 0: %d bytes at %d\n",
__func__, cb.dwSize, cb.dwOffset);
}
} else
iReturn = U14ERR_NOTSET;
spin_unlock_irq(&ced->staged_lock);
} else
iReturn = U14ERR_BADAREA;
if (copy_to_user(pCB, &cb, sizeof(cb)))
iReturn = -EFAULT;
mutex_unlock(&ced->io_mutex);
return iReturn;
}
/****************************************************************************
** ced_free_circ_block
**
** Frees a block of circularly-transferred data and returns the next one.
****************************************************************************/
int ced_free_circ_block(struct ced_data *ced, TCIRCBLOCK __user *pCB)
{
int iReturn = U14ERR_NOERROR;
unsigned int nArea, uStart, uSize;
TCIRCBLOCK cb;
dev_dbg(&ced->interface->dev, "%s\n", __func__);
if (copy_from_user(&cb, pCB, sizeof(cb)))
return -EFAULT;
mutex_lock(&ced->io_mutex);
nArea = cb.nArea; /* Retrieve parameters first */
uStart = cb.dwOffset;
uSize = cb.dwSize;
cb.dwOffset = 0; /* then set default result (nothing) */
cb.dwSize = 0;
if (nArea < MAX_TRANSAREAS) { /* The area number must be OK */
/* Pointer to relevant info */
struct transarea *pArea = &ced->trans_def[nArea];
spin_lock_irq(&ced->staged_lock); /* Lock others out */
if ((pArea->used) && (pArea->circular) && /* Must be circular area */
(pArea->circ_to_host)) { /* For now at least must be to host */
bool bWaiting = false;
if ((pArea->blocks[0].size >= uSize) && /* Got anything? */
(pArea->blocks[0].offset == uStart)) { /* Must be legal data */
pArea->blocks[0].size -= uSize;
pArea->blocks[0].offset += uSize;
if (pArea->blocks[0].size == 0) { /* Have we emptied this block? */
if (pArea->blocks[1].size) { /* Is there a second block? */
pArea->blocks[0] = pArea->blocks[1]; /* Copy down block 2 data */
pArea->blocks[1].size = 0; /* and mark the second block as unused */
pArea->blocks[1].offset = 0;
} else
pArea->blocks[0].offset = 0;
}
dev_dbg(&ced->interface->dev,
"%s: free %d bytes at %d, return %d bytes at %d, wait=%d\n",
__func__, uSize, uStart,
pArea->blocks[0].size,
pArea->blocks[0].offset,
ced->xfer_waiting);
/* Return the next available block of memory as well */
if (pArea->blocks[0].size > 0) { /* Got anything? */
cb.dwOffset =
pArea->blocks[0].offset;
cb.dwSize = pArea->blocks[0].size;
}
bWaiting = ced->xfer_waiting;
if (bWaiting && ced->staged_urb_pending) {
dev_err(&ced->interface->dev,
"%s: ERROR: waiting xfer and staged Urb pending!\n",
__func__);
bWaiting = false;
}
} else {
dev_err(&ced->interface->dev,
"%s: ERROR: freeing %d bytes at %d, block 0 is %d bytes at %d\n",
__func__, uSize, uStart,
pArea->blocks[0].size,
pArea->blocks[0].offset);
iReturn = U14ERR_NOMEMORY;
}
/* If we have one, kick off pending transfer */
if (bWaiting) { /* Got a block xfer waiting? */
int RWMStat =
ced_read_write_mem(ced,
!ced->dma_info.outward,
ced->dma_info.ident,
ced->dma_info.offset,
ced->dma_info.size);
if (RWMStat != U14ERR_NOERROR)
dev_err(&ced->interface->dev,
"%s: rw setup failed %d\n",
__func__, RWMStat);
}
} else
iReturn = U14ERR_NOTSET;
spin_unlock_irq(&ced->staged_lock);
} else
iReturn = U14ERR_BADAREA;
if (copy_to_user(pCB, &cb, sizeof(cb)))
iReturn = -EFAULT;
mutex_unlock(&ced->io_mutex);
return iReturn;
}