| /* |
| * COPYRIGHT (c) 2008 |
| * The Regents of the University of Michigan |
| * ALL RIGHTS RESERVED |
| * |
| * Permission is granted to use, copy, create derivative works |
| * and redistribute this software and such derivative works |
| * for any purpose, so long as the name of The University of |
| * Michigan is not used in any advertising or publicity |
| * pertaining to the use of distribution of this software |
| * without specific, written prior authorization. If the |
| * above copyright notice or any other identification of the |
| * University of Michigan is included in any copy of any |
| * portion of this software, then the disclaimer below must |
| * also be included. |
| * |
| * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION |
| * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY |
| * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF |
| * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING |
| * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE |
| * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE |
| * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR |
| * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING |
| * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN |
| * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGES. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/jiffies.h> |
| #include <linux/sunrpc/gss_krb5.h> |
| #include <linux/random.h> |
| #include <linux/pagemap.h> |
| #include <linux/crypto.h> |
| |
| #ifdef RPC_DEBUG |
| # define RPCDBG_FACILITY RPCDBG_AUTH |
| #endif |
| |
| static inline int |
| gss_krb5_padding(int blocksize, int length) |
| { |
| return blocksize - (length % blocksize); |
| } |
| |
| static inline void |
| gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize) |
| { |
| int padding = gss_krb5_padding(blocksize, buf->len - offset); |
| char *p; |
| struct kvec *iov; |
| |
| if (buf->page_len || buf->tail[0].iov_len) |
| iov = &buf->tail[0]; |
| else |
| iov = &buf->head[0]; |
| p = iov->iov_base + iov->iov_len; |
| iov->iov_len += padding; |
| buf->len += padding; |
| memset(p, padding, padding); |
| } |
| |
| static inline int |
| gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize) |
| { |
| u8 *ptr; |
| u8 pad; |
| size_t len = buf->len; |
| |
| if (len <= buf->head[0].iov_len) { |
| pad = *(u8 *)(buf->head[0].iov_base + len - 1); |
| if (pad > buf->head[0].iov_len) |
| return -EINVAL; |
| buf->head[0].iov_len -= pad; |
| goto out; |
| } else |
| len -= buf->head[0].iov_len; |
| if (len <= buf->page_len) { |
| unsigned int last = (buf->page_base + len - 1) |
| >>PAGE_CACHE_SHIFT; |
| unsigned int offset = (buf->page_base + len - 1) |
| & (PAGE_CACHE_SIZE - 1); |
| ptr = kmap_atomic(buf->pages[last]); |
| pad = *(ptr + offset); |
| kunmap_atomic(ptr); |
| goto out; |
| } else |
| len -= buf->page_len; |
| BUG_ON(len > buf->tail[0].iov_len); |
| pad = *(u8 *)(buf->tail[0].iov_base + len - 1); |
| out: |
| /* XXX: NOTE: we do not adjust the page lengths--they represent |
| * a range of data in the real filesystem page cache, and we need |
| * to know that range so the xdr code can properly place read data. |
| * However adjusting the head length, as we do above, is harmless. |
| * In the case of a request that fits into a single page, the server |
| * also uses length and head length together to determine the original |
| * start of the request to copy the request for deferal; so it's |
| * easier on the server if we adjust head and tail length in tandem. |
| * It's not really a problem that we don't fool with the page and |
| * tail lengths, though--at worst badly formed xdr might lead the |
| * server to attempt to parse the padding. |
| * XXX: Document all these weird requirements for gss mechanism |
| * wrap/unwrap functions. */ |
| if (pad > blocksize) |
| return -EINVAL; |
| if (buf->len > pad) |
| buf->len -= pad; |
| else |
| return -EINVAL; |
| return 0; |
| } |
| |
| void |
| gss_krb5_make_confounder(char *p, u32 conflen) |
| { |
| static u64 i = 0; |
| u64 *q = (u64 *)p; |
| |
| /* rfc1964 claims this should be "random". But all that's really |
| * necessary is that it be unique. And not even that is necessary in |
| * our case since our "gssapi" implementation exists only to support |
| * rpcsec_gss, so we know that the only buffers we will ever encrypt |
| * already begin with a unique sequence number. Just to hedge my bets |
| * I'll make a half-hearted attempt at something unique, but ensuring |
| * uniqueness would mean worrying about atomicity and rollover, and I |
| * don't care enough. */ |
| |
| /* initialize to random value */ |
| if (i == 0) { |
| i = prandom_u32(); |
| i = (i << 32) | prandom_u32(); |
| } |
| |
| switch (conflen) { |
| case 16: |
| *q++ = i++; |
| /* fall through */ |
| case 8: |
| *q++ = i++; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* Assumptions: the head and tail of inbuf are ours to play with. |
| * The pages, however, may be real pages in the page cache and we replace |
| * them with scratch pages from **pages before writing to them. */ |
| /* XXX: obviously the above should be documentation of wrap interface, |
| * and shouldn't be in this kerberos-specific file. */ |
| |
| /* XXX factor out common code with seal/unseal. */ |
| |
| static u32 |
| gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset, |
| struct xdr_buf *buf, struct page **pages) |
| { |
| char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; |
| struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), |
| .data = cksumdata}; |
| int blocksize = 0, plainlen; |
| unsigned char *ptr, *msg_start; |
| s32 now; |
| int headlen; |
| struct page **tmp_pages; |
| u32 seq_send; |
| u8 *cksumkey; |
| u32 conflen = kctx->gk5e->conflen; |
| |
| dprintk("RPC: %s\n", __func__); |
| |
| now = get_seconds(); |
| |
| blocksize = crypto_blkcipher_blocksize(kctx->enc); |
| gss_krb5_add_padding(buf, offset, blocksize); |
| BUG_ON((buf->len - offset) % blocksize); |
| plainlen = conflen + buf->len - offset; |
| |
| headlen = g_token_size(&kctx->mech_used, |
| GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) - |
| (buf->len - offset); |
| |
| ptr = buf->head[0].iov_base + offset; |
| /* shift data to make room for header. */ |
| xdr_extend_head(buf, offset, headlen); |
| |
| /* XXX Would be cleverer to encrypt while copying. */ |
| BUG_ON((buf->len - offset - headlen) % blocksize); |
| |
| g_make_token_header(&kctx->mech_used, |
| GSS_KRB5_TOK_HDR_LEN + |
| kctx->gk5e->cksumlength + plainlen, &ptr); |
| |
| |
| /* ptr now at header described in rfc 1964, section 1.2.1: */ |
| ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff); |
| ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff); |
| |
| msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength; |
| |
| /* |
| * signalg and sealalg are stored as if they were converted from LE |
| * to host endian, even though they're opaque pairs of bytes according |
| * to the RFC. |
| */ |
| *(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg); |
| *(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg); |
| ptr[6] = 0xff; |
| ptr[7] = 0xff; |
| |
| gss_krb5_make_confounder(msg_start, conflen); |
| |
| if (kctx->gk5e->keyed_cksum) |
| cksumkey = kctx->cksum; |
| else |
| cksumkey = NULL; |
| |
| /* XXXJBF: UGH!: */ |
| tmp_pages = buf->pages; |
| buf->pages = pages; |
| if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen, |
| cksumkey, KG_USAGE_SEAL, &md5cksum)) |
| return GSS_S_FAILURE; |
| buf->pages = tmp_pages; |
| |
| memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len); |
| |
| spin_lock(&krb5_seq_lock); |
| seq_send = kctx->seq_send++; |
| spin_unlock(&krb5_seq_lock); |
| |
| /* XXX would probably be more efficient to compute checksum |
| * and encrypt at the same time: */ |
| if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff, |
| seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8))) |
| return GSS_S_FAILURE; |
| |
| if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { |
| struct crypto_blkcipher *cipher; |
| int err; |
| cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(cipher)) |
| return GSS_S_FAILURE; |
| |
| krb5_rc4_setup_enc_key(kctx, cipher, seq_send); |
| |
| err = gss_encrypt_xdr_buf(cipher, buf, |
| offset + headlen - conflen, pages); |
| crypto_free_blkcipher(cipher); |
| if (err) |
| return GSS_S_FAILURE; |
| } else { |
| if (gss_encrypt_xdr_buf(kctx->enc, buf, |
| offset + headlen - conflen, pages)) |
| return GSS_S_FAILURE; |
| } |
| |
| return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; |
| } |
| |
| static u32 |
| gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) |
| { |
| int signalg; |
| int sealalg; |
| char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; |
| struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), |
| .data = cksumdata}; |
| s32 now; |
| int direction; |
| s32 seqnum; |
| unsigned char *ptr; |
| int bodysize; |
| void *data_start, *orig_start; |
| int data_len; |
| int blocksize; |
| u32 conflen = kctx->gk5e->conflen; |
| int crypt_offset; |
| u8 *cksumkey; |
| |
| dprintk("RPC: gss_unwrap_kerberos\n"); |
| |
| ptr = (u8 *)buf->head[0].iov_base + offset; |
| if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr, |
| buf->len - offset)) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) || |
| (ptr[1] != (KG_TOK_WRAP_MSG & 0xff))) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| /* XXX sanity-check bodysize?? */ |
| |
| /* get the sign and seal algorithms */ |
| |
| signalg = ptr[2] + (ptr[3] << 8); |
| if (signalg != kctx->gk5e->signalg) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| sealalg = ptr[4] + (ptr[5] << 8); |
| if (sealalg != kctx->gk5e->sealalg) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| if ((ptr[6] != 0xff) || (ptr[7] != 0xff)) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| /* |
| * Data starts after token header and checksum. ptr points |
| * to the beginning of the token header |
| */ |
| crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) - |
| (unsigned char *)buf->head[0].iov_base; |
| |
| /* |
| * Need plaintext seqnum to derive encryption key for arcfour-hmac |
| */ |
| if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN, |
| ptr + 8, &direction, &seqnum)) |
| return GSS_S_BAD_SIG; |
| |
| if ((kctx->initiate && direction != 0xff) || |
| (!kctx->initiate && direction != 0)) |
| return GSS_S_BAD_SIG; |
| |
| if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { |
| struct crypto_blkcipher *cipher; |
| int err; |
| |
| cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(cipher)) |
| return GSS_S_FAILURE; |
| |
| krb5_rc4_setup_enc_key(kctx, cipher, seqnum); |
| |
| err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset); |
| crypto_free_blkcipher(cipher); |
| if (err) |
| return GSS_S_DEFECTIVE_TOKEN; |
| } else { |
| if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset)) |
| return GSS_S_DEFECTIVE_TOKEN; |
| } |
| |
| if (kctx->gk5e->keyed_cksum) |
| cksumkey = kctx->cksum; |
| else |
| cksumkey = NULL; |
| |
| if (make_checksum(kctx, ptr, 8, buf, crypt_offset, |
| cksumkey, KG_USAGE_SEAL, &md5cksum)) |
| return GSS_S_FAILURE; |
| |
| if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN, |
| kctx->gk5e->cksumlength)) |
| return GSS_S_BAD_SIG; |
| |
| /* it got through unscathed. Make sure the context is unexpired */ |
| |
| now = get_seconds(); |
| |
| if (now > kctx->endtime) |
| return GSS_S_CONTEXT_EXPIRED; |
| |
| /* do sequencing checks */ |
| |
| /* Copy the data back to the right position. XXX: Would probably be |
| * better to copy and encrypt at the same time. */ |
| |
| blocksize = crypto_blkcipher_blocksize(kctx->enc); |
| data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) + |
| conflen; |
| orig_start = buf->head[0].iov_base + offset; |
| data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start; |
| memmove(orig_start, data_start, data_len); |
| buf->head[0].iov_len -= (data_start - orig_start); |
| buf->len -= (data_start - orig_start); |
| |
| if (gss_krb5_remove_padding(buf, blocksize)) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| return GSS_S_COMPLETE; |
| } |
| |
| /* |
| * We can shift data by up to LOCAL_BUF_LEN bytes in a pass. If we need |
| * to do more than that, we shift repeatedly. Kevin Coffman reports |
| * seeing 28 bytes as the value used by Microsoft clients and servers |
| * with AES, so this constant is chosen to allow handling 28 in one pass |
| * without using too much stack space. |
| * |
| * If that proves to a problem perhaps we could use a more clever |
| * algorithm. |
| */ |
| #define LOCAL_BUF_LEN 32u |
| |
| static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift) |
| { |
| char head[LOCAL_BUF_LEN]; |
| char tmp[LOCAL_BUF_LEN]; |
| unsigned int this_len, i; |
| |
| BUG_ON(shift > LOCAL_BUF_LEN); |
| |
| read_bytes_from_xdr_buf(buf, 0, head, shift); |
| for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) { |
| this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift)); |
| read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len); |
| write_bytes_to_xdr_buf(buf, i, tmp, this_len); |
| } |
| write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift); |
| } |
| |
| static void _rotate_left(struct xdr_buf *buf, unsigned int shift) |
| { |
| int shifted = 0; |
| int this_shift; |
| |
| shift %= buf->len; |
| while (shifted < shift) { |
| this_shift = min(shift - shifted, LOCAL_BUF_LEN); |
| rotate_buf_a_little(buf, this_shift); |
| shifted += this_shift; |
| } |
| } |
| |
| static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift) |
| { |
| struct xdr_buf subbuf; |
| |
| xdr_buf_subsegment(buf, &subbuf, base, buf->len - base); |
| _rotate_left(&subbuf, shift); |
| } |
| |
| static u32 |
| gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset, |
| struct xdr_buf *buf, struct page **pages) |
| { |
| int blocksize; |
| u8 *ptr, *plainhdr; |
| s32 now; |
| u8 flags = 0x00; |
| __be16 *be16ptr; |
| __be64 *be64ptr; |
| u32 err; |
| |
| dprintk("RPC: %s\n", __func__); |
| |
| if (kctx->gk5e->encrypt_v2 == NULL) |
| return GSS_S_FAILURE; |
| |
| /* make room for gss token header */ |
| if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN)) |
| return GSS_S_FAILURE; |
| |
| /* construct gss token header */ |
| ptr = plainhdr = buf->head[0].iov_base + offset; |
| *ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff); |
| *ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff); |
| |
| if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0) |
| flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR; |
| if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0) |
| flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY; |
| /* We always do confidentiality in wrap tokens */ |
| flags |= KG2_TOKEN_FLAG_SEALED; |
| |
| *ptr++ = flags; |
| *ptr++ = 0xff; |
| be16ptr = (__be16 *)ptr; |
| |
| blocksize = crypto_blkcipher_blocksize(kctx->acceptor_enc); |
| *be16ptr++ = 0; |
| /* "inner" token header always uses 0 for RRC */ |
| *be16ptr++ = 0; |
| |
| be64ptr = (__be64 *)be16ptr; |
| spin_lock(&krb5_seq_lock); |
| *be64ptr = cpu_to_be64(kctx->seq_send64++); |
| spin_unlock(&krb5_seq_lock); |
| |
| err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages); |
| if (err) |
| return err; |
| |
| now = get_seconds(); |
| return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; |
| } |
| |
| static u32 |
| gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) |
| { |
| s32 now; |
| u8 *ptr; |
| u8 flags = 0x00; |
| u16 ec, rrc; |
| int err; |
| u32 headskip, tailskip; |
| u8 decrypted_hdr[GSS_KRB5_TOK_HDR_LEN]; |
| unsigned int movelen; |
| |
| |
| dprintk("RPC: %s\n", __func__); |
| |
| if (kctx->gk5e->decrypt_v2 == NULL) |
| return GSS_S_FAILURE; |
| |
| ptr = buf->head[0].iov_base + offset; |
| |
| if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| flags = ptr[2]; |
| if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) || |
| (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR))) |
| return GSS_S_BAD_SIG; |
| |
| if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) { |
| dprintk("%s: token missing expected sealed flag\n", __func__); |
| return GSS_S_DEFECTIVE_TOKEN; |
| } |
| |
| if (ptr[3] != 0xff) |
| return GSS_S_DEFECTIVE_TOKEN; |
| |
| ec = be16_to_cpup((__be16 *)(ptr + 4)); |
| rrc = be16_to_cpup((__be16 *)(ptr + 6)); |
| |
| /* |
| * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss |
| * doesn't want it checked; see page 6 of rfc 2203. |
| */ |
| |
| if (rrc != 0) |
| rotate_left(offset + 16, buf, rrc); |
| |
| err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf, |
| &headskip, &tailskip); |
| if (err) |
| return GSS_S_FAILURE; |
| |
| /* |
| * Retrieve the decrypted gss token header and verify |
| * it against the original |
| */ |
| err = read_bytes_from_xdr_buf(buf, |
| buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip, |
| decrypted_hdr, GSS_KRB5_TOK_HDR_LEN); |
| if (err) { |
| dprintk("%s: error %u getting decrypted_hdr\n", __func__, err); |
| return GSS_S_FAILURE; |
| } |
| if (memcmp(ptr, decrypted_hdr, 6) |
| || memcmp(ptr + 8, decrypted_hdr + 8, 8)) { |
| dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__); |
| return GSS_S_FAILURE; |
| } |
| |
| /* do sequencing checks */ |
| |
| /* it got through unscathed. Make sure the context is unexpired */ |
| now = get_seconds(); |
| if (now > kctx->endtime) |
| return GSS_S_CONTEXT_EXPIRED; |
| |
| /* |
| * Move the head data back to the right position in xdr_buf. |
| * We ignore any "ec" data since it might be in the head or |
| * the tail, and we really don't need to deal with it. |
| * Note that buf->head[0].iov_len may indicate the available |
| * head buffer space rather than that actually occupied. |
| */ |
| movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len); |
| movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip; |
| BUG_ON(offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen > |
| buf->head[0].iov_len); |
| memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen); |
| buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip; |
| buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip; |
| |
| /* Trim off the trailing "extra count" and checksum blob */ |
| xdr_buf_trim(buf, ec + GSS_KRB5_TOK_HDR_LEN + tailskip); |
| return GSS_S_COMPLETE; |
| } |
| |
| u32 |
| gss_wrap_kerberos(struct gss_ctx *gctx, int offset, |
| struct xdr_buf *buf, struct page **pages) |
| { |
| struct krb5_ctx *kctx = gctx->internal_ctx_id; |
| |
| switch (kctx->enctype) { |
| default: |
| BUG(); |
| case ENCTYPE_DES_CBC_RAW: |
| case ENCTYPE_DES3_CBC_RAW: |
| case ENCTYPE_ARCFOUR_HMAC: |
| return gss_wrap_kerberos_v1(kctx, offset, buf, pages); |
| case ENCTYPE_AES128_CTS_HMAC_SHA1_96: |
| case ENCTYPE_AES256_CTS_HMAC_SHA1_96: |
| return gss_wrap_kerberos_v2(kctx, offset, buf, pages); |
| } |
| } |
| |
| u32 |
| gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf) |
| { |
| struct krb5_ctx *kctx = gctx->internal_ctx_id; |
| |
| switch (kctx->enctype) { |
| default: |
| BUG(); |
| case ENCTYPE_DES_CBC_RAW: |
| case ENCTYPE_DES3_CBC_RAW: |
| case ENCTYPE_ARCFOUR_HMAC: |
| return gss_unwrap_kerberos_v1(kctx, offset, buf); |
| case ENCTYPE_AES128_CTS_HMAC_SHA1_96: |
| case ENCTYPE_AES256_CTS_HMAC_SHA1_96: |
| return gss_unwrap_kerberos_v2(kctx, offset, buf); |
| } |
| } |
| |