blob: 43b426de7b2b363a431e611014ba89fb19270062 [file] [log] [blame]
/* Copyright (c) 2011-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h> /* Just for modules */
#include <linux/kernel.h> /* Only for KERN_INFO */
#include <linux/err.h> /* Error macros */
#include <linux/list.h> /* Linked list */
#include <linux/cdev.h>
#include <linux/init.h> /* Needed for the macros */
#include <linux/io.h> /* IO macros */
#include <linux/device.h> /* Device drivers need this */
#include <linux/sched.h> /* Externally defined globals */
#include <linux/pm_runtime.h> /* Runtime power management */
#include <linux/fs.h>
#include <linux/uaccess.h> /* copy_to_user */
#include <linux/slab.h> /* kfree, kzalloc */
#include <linux/ioport.h> /* XXX_ mem_region */
#include <linux/dma-mapping.h> /* dma_XXX */
#include <linux/dmapool.h> /* DMA pools */
#include <linux/delay.h> /* msleep */
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/poll.h> /* poll() file op */
#include <linux/wait.h> /* wait() macros, sleeping */
#include <linux/bitops.h> /* BIT() macro */
#include <linux/regulator/consumer.h>
#include <dt-bindings/regulator/qcom,rpmh-regulator.h>
#include <linux/msm-sps.h> /* BAM stuff */
#include <linux/wakelock.h> /* Locking functions */
#include <linux/timer.h> /* Timer services */
#include <linux/jiffies.h> /* Jiffies counter */
#include <linux/qcom_tspp.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/string.h>
#include <linux/msm-bus.h>
#include <linux/interrupt.h> /* tasklet */
#include <asm/arch_timer.h> /* Timer */
#include <linux/avtimer_kernel.h> /* Timer */
/*
* General defines
*/
#define TSPP_TSIF_INSTANCES 2
#define TSPP_GPIOS_PER_TSIF 4
#define TSPP_FILTER_TABLES 3
#define TSPP_MAX_DEVICES 1
#define TSPP_NUM_CHANNELS 16
#define TSPP_NUM_PRIORITIES 16
#define TSPP_NUM_KEYS 8
#define INVALID_CHANNEL 0xFFFFFFFF
#define TSPP_BAM_DEFAULT_IPC_LOGLVL 2
/*
* BAM descriptor FIFO size (in number of descriptors).
* Max number of descriptors allowed by SPS which is 8K-1.
*/
#define TSPP_SPS_DESCRIPTOR_COUNT (8 * 1024 - 1)
#define TSPP_PACKET_LENGTH 188
#define TSPP_MIN_BUFFER_SIZE (TSPP_PACKET_LENGTH)
/* Max descriptor buffer size allowed by SPS */
#define TSPP_MAX_BUFFER_SIZE (32 * 1024 - 1)
/*
* Returns whether to use DMA pool for TSPP output buffers.
* For buffers smaller than page size, using DMA pool
* provides better memory utilization as dma_alloc_coherent
* allocates minimum of page size.
*/
#define TSPP_USE_DMA_POOL(buff_size) ((buff_size) < PAGE_SIZE)
/*
* Max allowed TSPP buffers/descriptors.
* If SPS desc FIFO holds X descriptors, we can queue up to X-1 descriptors.
*/
#define TSPP_NUM_BUFFERS (TSPP_SPS_DESCRIPTOR_COUNT - 1)
#define TSPP_TSIF_DEFAULT_TIME_LIMIT 60
#define SPS_DESCRIPTOR_SIZE 8
#define MIN_ACCEPTABLE_BUFFER_COUNT 2
#define TSPP_DEBUG(msg...)
/*
* TSIF register offsets
*/
#define TSIF_STS_CTL_OFF (0x0)
#define TSIF_TIME_LIMIT_OFF (0x4)
#define TSIF_CLK_REF_OFF (0x8)
#define TSIF_LPBK_FLAGS_OFF (0xc)
#define TSIF_LPBK_DATA_OFF (0x10)
#define TSIF_TEST_CTL_OFF (0x14)
#define TSIF_TEST_MODE_OFF (0x18)
#define TSIF_TEST_RESET_OFF (0x1c)
#define TSIF_TEST_EXPORT_OFF (0x20)
#define TSIF_TEST_CURRENT_OFF (0x24)
#define TSIF_TTS_CTL_OFF (0x38)
#define TSIF_DATA_PORT_OFF (0x100)
/* bits for TSIF_STS_CTL register */
#define TSIF_STS_CTL_EN_IRQ BIT(28)
#define TSIF_STS_CTL_PACK_AVAIL BIT(27)
#define TSIF_STS_CTL_1ST_PACKET BIT(26)
#define TSIF_STS_CTL_OVERFLOW BIT(25)
#define TSIF_STS_CTL_LOST_SYNC BIT(24)
#define TSIF_STS_CTL_TIMEOUT BIT(23)
#define TSIF_STS_CTL_INV_SYNC BIT(21)
#define TSIF_STS_CTL_INV_NULL BIT(20)
#define TSIF_STS_CTL_INV_ERROR BIT(19)
#define TSIF_STS_CTL_INV_ENABLE BIT(18)
#define TSIF_STS_CTL_INV_DATA BIT(17)
#define TSIF_STS_CTL_INV_CLOCK BIT(16)
#define TSIF_STS_CTL_SPARE BIT(15)
#define TSIF_STS_CTL_EN_NULL BIT(11)
#define TSIF_STS_CTL_EN_ERROR BIT(10)
#define TSIF_STS_CTL_LAST_BIT BIT(9)
#define TSIF_STS_CTL_EN_TIME_LIM BIT(8)
#define TSIF_STS_CTL_EN_TCR BIT(7)
#define TSIF_STS_CTL_TEST_MODE BIT(6)
#define TSIF_STS_CTL_MODE_2 BIT(5)
#define TSIF_STS_CTL_EN_DM BIT(4)
#define TSIF_STS_CTL_STOP BIT(3)
#define TSIF_STS_CTL_START BIT(0)
/* bits for TSIF_TTS_CTRL register */
#define TSIF_TTS_CTL_TTS_ENDIANNESS BIT(4)
#define TSIF_TTS_CTL_TTS_SOURCE BIT(3)
#define TSIF_TTS_CTL_TTS_LENGTH_1 BIT(1)
#define TSIF_TTS_CTL_TTS_LENGTH_0 BIT(0)
/*
* TSPP register offsets
*/
#define TSPP_RST 0x00
#define TSPP_CLK_CONTROL 0x04
#define TSPP_CONFIG 0x08
#define TSPP_CONTROL 0x0C
#define TSPP_PS_DISABLE 0x10
#define TSPP_MSG_IRQ_STATUS 0x14
#define TSPP_MSG_IRQ_MASK 0x18
#define TSPP_IRQ_STATUS 0x1C
#define TSPP_IRQ_MASK 0x20
#define TSPP_IRQ_CLEAR 0x24
#define TSPP_PIPE_ERROR_STATUS(_n) (0x28 + (_n << 2))
#define TSPP_STATUS 0x68
#define TSPP_CURR_TSP_HEADER 0x6C
#define TSPP_CURR_PID_FILTER 0x70
#define TSPP_SYSTEM_KEY(_n) (0x74 + (_n << 2))
#define TSPP_CBC_INIT_VAL(_n) (0x94 + (_n << 2))
#define TSPP_DATA_KEY_RESET 0x9C
#define TSPP_KEY_VALID 0xA0
#define TSPP_KEY_ERROR 0xA4
#define TSPP_TEST_CTRL 0xA8
#define TSPP_VERSION 0xAC
#define TSPP_GENERICS 0xB0
#define TSPP_NOP 0xB4
/*
* Register bit definitions
*/
/* TSPP_RST */
#define TSPP_RST_RESET BIT(0)
/* TSPP_CLK_CONTROL */
#define TSPP_CLK_CONTROL_FORCE_CRYPTO BIT(9)
#define TSPP_CLK_CONTROL_FORCE_PES_PL BIT(8)
#define TSPP_CLK_CONTROL_FORCE_PES_AF BIT(7)
#define TSPP_CLK_CONTROL_FORCE_RAW_CTRL BIT(6)
#define TSPP_CLK_CONTROL_FORCE_PERF_CNT BIT(5)
#define TSPP_CLK_CONTROL_FORCE_CTX_SEARCH BIT(4)
#define TSPP_CLK_CONTROL_FORCE_TSP_PROC BIT(3)
#define TSPP_CLK_CONTROL_FORCE_CONS_AHB2MEM BIT(2)
#define TSPP_CLK_CONTROL_FORCE_TS_AHB2MEM BIT(1)
#define TSPP_CLK_CONTROL_SET_CLKON BIT(0)
/* TSPP_CONFIG */
#define TSPP_CONFIG_SET_PACKET_LENGTH(_a, _b) (_a = (_a & 0xF0) | \
((_b & 0xF) << 8))
#define TSPP_CONFIG_GET_PACKET_LENGTH(_a) ((_a >> 8) & 0xF)
#define TSPP_CONFIG_DUP_WITH_DISC_EN BIT(7)
#define TSPP_CONFIG_PES_SYNC_ERROR_MASK BIT(6)
#define TSPP_CONFIG_PS_LEN_ERR_MASK BIT(5)
#define TSPP_CONFIG_PS_CONT_ERR_UNSP_MASK BIT(4)
#define TSPP_CONFIG_PS_CONT_ERR_MASK BIT(3)
#define TSPP_CONFIG_PS_DUP_TSP_MASK BIT(2)
#define TSPP_CONFIG_TSP_ERR_IND_MASK BIT(1)
#define TSPP_CONFIG_TSP_SYNC_ERR_MASK BIT(0)
/* TSPP_CONTROL */
#define TSPP_CONTROL_PID_FILTER_LOCK BIT(5)
#define TSPP_CONTROL_FORCE_KEY_CALC BIT(4)
#define TSPP_CONTROL_TSP_CONS_SRC_DIS BIT(3)
#define TSPP_CONTROL_TSP_TSIF1_SRC_DIS BIT(2)
#define TSPP_CONTROL_TSP_TSIF0_SRC_DIS BIT(1)
#define TSPP_CONTROL_PERF_COUNT_INIT BIT(0)
/* TSPP_MSG_IRQ_STATUS + TSPP_MSG_IRQ_MASK */
#define TSPP_MSG_TSPP_IRQ BIT(2)
#define TSPP_MSG_TSIF_1_IRQ BIT(1)
#define TSPP_MSG_TSIF_0_IRQ BIT(0)
/* TSPP_IRQ_STATUS + TSPP_IRQ_MASK + TSPP_IRQ_CLEAR */
#define TSPP_IRQ_STATUS_TSP_RD_CMPL BIT(19)
#define TSPP_IRQ_STATUS_KEY_ERROR BIT(18)
#define TSPP_IRQ_STATUS_KEY_SWITCHED_BAD BIT(17)
#define TSPP_IRQ_STATUS_KEY_SWITCHED BIT(16)
#define TSPP_IRQ_STATUS_PS_BROKEN(_n) BIT((_n))
/* TSPP_PIPE_ERROR_STATUS */
#define TSPP_PIPE_PES_SYNC_ERROR BIT(3)
#define TSPP_PIPE_PS_LENGTH_ERROR BIT(2)
#define TSPP_PIPE_PS_CONTINUITY_ERROR BIT(1)
#define TSPP_PIP_PS_LOST_START BIT(0)
/* TSPP_STATUS */
#define TSPP_STATUS_TSP_PKT_AVAIL BIT(10)
#define TSPP_STATUS_TSIF1_DM_REQ BIT(6)
#define TSPP_STATUS_TSIF0_DM_REQ BIT(2)
#define TSPP_CURR_FILTER_TABLE BIT(0)
/* TSPP_GENERICS */
#define TSPP_GENERICS_CRYPTO_GEN BIT(12)
#define TSPP_GENERICS_MAX_CONS_PIPES BIT(7)
#define TSPP_GENERICS_MAX_PIPES BIT(2)
#define TSPP_GENERICS_TSIF_1_GEN BIT(1)
#define TSPP_GENERICS_TSIF_0_GEN BIT(0)
/*
* TSPP memory regions
*/
#define TSPP_PID_FILTER_TABLE0 0x800
#define TSPP_PID_FILTER_TABLE1 0x880
#define TSPP_PID_FILTER_TABLE2 0x900
#define TSPP_GLOBAL_PERFORMANCE 0x980 /* see tspp_global_performance */
#define TSPP_PIPE_CONTEXT 0x990 /* see tspp_pipe_context */
#define TSPP_PIPE_PERFORMANCE 0x998 /* see tspp_pipe_performance */
#define TSPP_TSP_BUFF_WORD(_n) (0xC10 + (_n << 2))
#define TSPP_DATA_KEY 0xCD0
struct debugfs_entry {
const char *name;
mode_t mode;
int offset;
};
static const struct debugfs_entry debugfs_tsif_regs[] = {
{"sts_ctl", 0644, TSIF_STS_CTL_OFF},
{"time_limit", 0644, TSIF_TIME_LIMIT_OFF},
{"clk_ref", 0644, TSIF_CLK_REF_OFF},
{"lpbk_flags", 0644, TSIF_LPBK_FLAGS_OFF},
{"lpbk_data", 0644, TSIF_LPBK_DATA_OFF},
{"test_ctl", 0644, TSIF_TEST_CTL_OFF},
{"test_mode", 0644, TSIF_TEST_MODE_OFF},
{"test_reset", 0200, TSIF_TEST_RESET_OFF},
{"test_export", 0644, TSIF_TEST_EXPORT_OFF},
{"test_current", 0444, TSIF_TEST_CURRENT_OFF},
{"data_port", 0400, TSIF_DATA_PORT_OFF},
{"tts_source", 0600, TSIF_TTS_CTL_OFF},
};
static const struct debugfs_entry debugfs_tspp_regs[] = {
{"rst", 0644, TSPP_RST},
{"clk_control", 0644, TSPP_CLK_CONTROL},
{"config", 0644, TSPP_CONFIG},
{"control", 0644, TSPP_CONTROL},
{"ps_disable", 0644, TSPP_PS_DISABLE},
{"msg_irq_status", 0644, TSPP_MSG_IRQ_STATUS},
{"msg_irq_mask", 0644, TSPP_MSG_IRQ_MASK},
{"irq_status", 0644, TSPP_IRQ_STATUS},
{"irq_mask", 0644, TSPP_IRQ_MASK},
{"irq_clear", 0644, TSPP_IRQ_CLEAR},
/* {"pipe_error_status",S_IRUGO | S_IWUSR, TSPP_PIPE_ERROR_STATUS}, */
{"status", 0644, TSPP_STATUS},
{"curr_tsp_header", 0644, TSPP_CURR_TSP_HEADER},
{"curr_pid_filter", 0644, TSPP_CURR_PID_FILTER},
/* {"system_key", S_IRUGO | S_IWUSR, TSPP_SYSTEM_KEY}, */
/* {"cbc_init_val", S_IRUGO | S_IWUSR, TSPP_CBC_INIT_VAL}, */
{"data_key_reset", 0644, TSPP_DATA_KEY_RESET},
{"key_valid", 0644, TSPP_KEY_VALID},
{"key_error", 0644, TSPP_KEY_ERROR},
{"test_ctrl", 0644, TSPP_TEST_CTRL},
{"version", 0644, TSPP_VERSION},
{"generics", 0644, TSPP_GENERICS},
{"pid_filter_table0", 0644, TSPP_PID_FILTER_TABLE0},
{"pid_filter_table1", 0644, TSPP_PID_FILTER_TABLE1},
{"pid_filter_table2", 0644, TSPP_PID_FILTER_TABLE2},
{"tsp_total_num", 0644, TSPP_GLOBAL_PERFORMANCE},
{"tsp_ignored_num", 0644, TSPP_GLOBAL_PERFORMANCE + 4},
{"tsp_err_ind_num", 0644, TSPP_GLOBAL_PERFORMANCE + 8},
{"tsp_sync_err_num", 0644, TSPP_GLOBAL_PERFORMANCE + 16},
{"pipe_context", 0644, TSPP_PIPE_CONTEXT},
{"pipe_performance", 0644, TSPP_PIPE_PERFORMANCE},
{"data_key", 0644, TSPP_DATA_KEY}
};
struct tspp_pid_filter {
u32 filter; /* see FILTER_ macros */
u32 config; /* see FILTER_ macros */
};
/* tsp_info */
#define FILTER_HEADER_ERROR_MASK BIT(7)
#define FILTER_TRANS_END_DISABLE BIT(6)
#define FILTER_DEC_ON_ERROR_EN BIT(5)
#define FILTER_DECRYPT BIT(4)
#define FILTER_HAS_ENCRYPTION(_p) (_p->config & FILTER_DECRYPT)
#define FILTER_GET_PIPE_NUMBER0(_p) (_p->config & 0xF)
#define FILTER_SET_PIPE_NUMBER0(_p, _b) (_p->config = \
(_p->config & ~0xF) | (_b & 0xF))
#define FILTER_GET_PIPE_PROCESS0(_p) ((_p->filter >> 30) & 0x3)
#define FILTER_SET_PIPE_PROCESS0(_p, _b) (_p->filter = \
(_p->filter & ~(0x3<<30)) | ((_b & 0x3) << 30))
#define FILTER_GET_PIPE_PID(_p) ((_p->filter >> 13) & 0x1FFF)
#define FILTER_SET_PIPE_PID(_p, _b) (_p->filter = \
(_p->filter & ~(0x1FFF<<13)) | ((_b & 0x1FFF) << 13))
#define FILTER_GET_PID_MASK(_p) (_p->filter & 0x1FFF)
#define FILTER_SET_PID_MASK(_p, _b) (_p->filter = \
(_p->filter & ~0x1FFF) | (_b & 0x1FFF))
#define FILTER_GET_PIPE_PROCESS1(_p) ((_p->config >> 30) & 0x3)
#define FILTER_SET_PIPE_PROCESS1(_p, _b) (_p->config = \
(_p->config & ~(0x3<<30)) | ((_b & 0x3) << 30))
#define FILTER_GET_KEY_NUMBER(_p) ((_p->config >> 8) & 0x7)
#define FILTER_SET_KEY_NUMBER(_p, _b) (_p->config = \
(_p->config & ~(0x7<<8)) | ((_b & 0x7) << 8))
struct tspp_global_performance_regs {
u32 tsp_total;
u32 tsp_ignored;
u32 tsp_error;
u32 tsp_sync;
};
struct tspp_pipe_context_regs {
u16 pes_bytes_left;
u16 count;
u32 tsif_suffix;
} __packed;
#define CONTEXT_GET_STATE(_a) (_a & 0x3)
#define CONTEXT_UNSPEC_LENGTH BIT(11)
#define CONTEXT_GET_CONT_COUNT(_a) ((_a >> 12) & 0xF)
#define MSEC_TO_JIFFIES(msec) ((msec) * HZ / 1000)
struct tspp_pipe_performance_regs {
u32 tsp_total;
u32 ps_duplicate_tsp;
u32 tsp_no_payload;
u32 tsp_broken_ps;
u32 ps_total_num;
u32 ps_continuity_error;
u32 ps_length_error;
u32 pes_sync_error;
};
struct tspp_tsif_device {
void __iomem *base;
u32 time_limit;
u32 ref_count;
enum tspp_tsif_mode mode;
int clock_inverse;
int data_inverse;
int sync_inverse;
int enable_inverse;
u32 tsif_irq;
/* debugfs */
struct dentry *dent_tsif;
struct dentry *debugfs_tsif_regs[ARRAY_SIZE(debugfs_tsif_regs)];
u32 stat_rx;
u32 stat_overflow;
u32 stat_lost_sync;
u32 stat_timeout;
enum tsif_tts_source tts_source;
u32 lpass_timer_enable;
};
enum tspp_buf_state {
TSPP_BUF_STATE_EMPTY, /* buffer has been allocated, but not waiting */
TSPP_BUF_STATE_WAITING, /* buffer is waiting to be filled */
TSPP_BUF_STATE_DATA, /* buffer is not empty and can be read */
TSPP_BUF_STATE_LOCKED /* buffer is being read by a client */
};
struct tspp_mem_buffer {
struct tspp_mem_buffer *next;
struct sps_mem_buffer sps;
struct tspp_data_descriptor desc; /* buffer descriptor for kernel api */
enum tspp_buf_state state;
size_t filled; /* how much data this buffer is holding */
int read_index; /* where to start reading data from */
};
/* this represents each char device 'channel' */
struct tspp_channel {
struct tspp_device *pdev; /* can use container_of instead? */
struct sps_pipe *pipe;
struct sps_connect config;
struct sps_register_event event;
struct tspp_mem_buffer *data; /* list of buffers */
struct tspp_mem_buffer *read; /* first buffer ready to be read */
struct tspp_mem_buffer *waiting; /* first outstanding transfer */
struct tspp_mem_buffer *locked; /* buffer currently being read */
wait_queue_head_t in_queue; /* set when data is received */
u32 id; /* channel id (0-15) */
int used; /* is this channel in use? */
int key; /* which encryption key index is used */
u32 buffer_size; /* size of the sps transfer buffers */
u32 max_buffers; /* how many buffers should be allocated */
u32 buffer_count; /* how many buffers are actually allocated */
u32 filter_count; /* how many filters have been added to this channel */
u32 int_freq; /* generate interrupts every x descriptors */
enum tspp_source src;
enum tspp_mode mode;
tspp_notifier *notifier; /* used only with kernel api */
void *notify_data; /* data to be passed with the notifier */
u32 expiration_period_ms; /* notification on partially filled buffers */
struct timer_list expiration_timer;
struct dma_pool *dma_pool;
tspp_memfree *memfree; /* user defined memory free function */
void *user_info; /* user cookie passed to memory alloc/free function */
};
struct tspp_pid_filter_table {
struct tspp_pid_filter filter[TSPP_NUM_PRIORITIES];
};
struct tspp_key_entry {
u32 even_lsb;
u32 even_msb;
u32 odd_lsb;
u32 odd_msb;
};
struct tspp_key_table {
struct tspp_key_entry entry[TSPP_NUM_KEYS];
};
struct tspp_pinctrl {
struct pinctrl *pinctrl;
struct pinctrl_state *disabled;
struct pinctrl_state *tsif0_mode1;
struct pinctrl_state *tsif0_mode2;
struct pinctrl_state *tsif1_mode1;
struct pinctrl_state *tsif1_mode2;
struct pinctrl_state *dual_mode1;
struct pinctrl_state *dual_mode2;
bool tsif0_active;
bool tsif1_active;
};
/* this represents the actual hardware device */
struct tspp_device {
struct list_head devlist; /* list of all devices */
struct platform_device *pdev;
void __iomem *base;
uint32_t tsif_bus_client;
unsigned int tspp_irq;
unsigned int bam_irq;
unsigned long bam_handle;
struct sps_bam_props bam_props;
struct wakeup_source ws;
spinlock_t spinlock;
struct tasklet_struct tlet;
struct tspp_tsif_device tsif[TSPP_TSIF_INSTANCES];
/* clocks */
struct clk *tsif_pclk;
struct clk *tsif_ref_clk;
/* regulators */
struct regulator *tsif_vreg;
/* data */
struct tspp_pid_filter_table *filters[TSPP_FILTER_TABLES];
struct tspp_channel channels[TSPP_NUM_CHANNELS];
struct tspp_key_table *tspp_key_table;
struct tspp_global_performance_regs *tspp_global_performance;
struct tspp_pipe_context_regs *tspp_pipe_context;
struct tspp_pipe_performance_regs *tspp_pipe_performance;
bool req_irqs;
/* pinctrl */
struct mutex mutex;
struct tspp_pinctrl pinctrl;
unsigned int tts_source; /* Time stamp source type LPASS timer/TCR */
struct dentry *dent;
struct dentry *debugfs_regs[ARRAY_SIZE(debugfs_tspp_regs)];
};
static int tspp_key_entry;
static u32 channel_id; /* next channel id number to assign */
static LIST_HEAD(tspp_devices);
/*** IRQ ***/
static irqreturn_t tspp_isr(int irq, void *dev)
{
struct tspp_device *device = dev;
u32 status, mask;
u32 data;
status = readl_relaxed(device->base + TSPP_IRQ_STATUS);
mask = readl_relaxed(device->base + TSPP_IRQ_MASK);
status &= mask;
if (!status) {
dev_warn(&device->pdev->dev, "Spurious interrupt");
return IRQ_NONE;
}
/* if (status & TSPP_IRQ_STATUS_TSP_RD_CMPL) */
if (status & TSPP_IRQ_STATUS_KEY_ERROR) {
/* read the key error info */
data = readl_relaxed(device->base + TSPP_KEY_ERROR);
dev_info(&device->pdev->dev, "key error 0x%x", data);
}
if (status & TSPP_IRQ_STATUS_KEY_SWITCHED_BAD) {
data = readl_relaxed(device->base + TSPP_KEY_VALID);
dev_info(&device->pdev->dev, "key invalidated: 0x%x", data);
}
if (status & TSPP_IRQ_STATUS_KEY_SWITCHED)
dev_info(&device->pdev->dev, "key switched");
if (status & 0xffff)
dev_info(&device->pdev->dev, "broken pipe %i", status & 0xffff);
writel_relaxed(status, device->base + TSPP_IRQ_CLEAR);
/*
* Before returning IRQ_HANDLED to the generic interrupt handling
* framework need to make sure all operations including clearing of
* interrupt status registers in the hardware is performed.
* Thus a barrier after clearing the interrupt status register
* is required to guarantee that the interrupt status register has
* really been cleared by the time we return from this handler.
*/
wmb();
return IRQ_HANDLED;
}
static irqreturn_t tsif_isr(int irq, void *dev)
{
struct tspp_tsif_device *tsif_device = dev;
u32 sts_ctl = ioread32(tsif_device->base + TSIF_STS_CTL_OFF);
if (!(sts_ctl & (TSIF_STS_CTL_PACK_AVAIL |
TSIF_STS_CTL_OVERFLOW |
TSIF_STS_CTL_LOST_SYNC |
TSIF_STS_CTL_TIMEOUT)))
return IRQ_NONE;
if (sts_ctl & TSIF_STS_CTL_OVERFLOW)
tsif_device->stat_overflow++;
if (sts_ctl & TSIF_STS_CTL_LOST_SYNC)
tsif_device->stat_lost_sync++;
if (sts_ctl & TSIF_STS_CTL_TIMEOUT)
tsif_device->stat_timeout++;
iowrite32(sts_ctl, tsif_device->base + TSIF_STS_CTL_OFF);
/*
* Before returning IRQ_HANDLED to the generic interrupt handling
* framework need to make sure all operations including clearing of
* interrupt status registers in the hardware is performed.
* Thus a barrier after clearing the interrupt status register
* is required to guarantee that the interrupt status register has
* really been cleared by the time we return from this handler.
*/
wmb();
return IRQ_HANDLED;
}
/*** callbacks ***/
static void tspp_sps_complete_cb(struct sps_event_notify *notify)
{
struct tspp_device *pdev;
if (!notify || !notify->user)
return;
pdev = notify->user;
tasklet_schedule(&pdev->tlet);
}
static void tspp_expiration_timer(unsigned long data)
{
struct tspp_device *pdev = (struct tspp_device *)data;
if (pdev)
tasklet_schedule(&pdev->tlet);
}
/*** tasklet ***/
static void tspp_sps_complete_tlet(unsigned long data)
{
int i;
int complete;
unsigned long flags;
struct sps_iovec iovec;
struct tspp_channel *channel;
struct tspp_device *device = (struct tspp_device *)data;
spin_lock_irqsave(&device->spinlock, flags);
for (i = 0; i < TSPP_NUM_CHANNELS; i++) {
complete = 0;
channel = &device->channels[i];
if (!channel->used || !channel->waiting)
continue;
/* stop the expiration timer */
if (channel->expiration_period_ms)
del_timer(&channel->expiration_timer);
/* get completions */
while (channel->waiting->state == TSPP_BUF_STATE_WAITING) {
if (sps_get_iovec(channel->pipe, &iovec) != 0) {
pr_err("tspp: Error in iovec on channel %i",
channel->id);
break;
}
if (iovec.size == 0)
break;
if (DESC_FULL_ADDR(iovec.flags, iovec.addr)
!= channel->waiting->sps.phys_base)
pr_err("tspp: buffer mismatch %pa",
&channel->waiting->sps.phys_base);
complete = 1;
channel->waiting->state = TSPP_BUF_STATE_DATA;
channel->waiting->filled = iovec.size;
channel->waiting->read_index = 0;
if (channel->src == TSPP_SOURCE_TSIF0)
device->tsif[0].stat_rx++;
else if (channel->src == TSPP_SOURCE_TSIF1)
device->tsif[1].stat_rx++;
/* update the pointers */
channel->waiting = channel->waiting->next;
}
/* wake any waiting processes */
if (complete) {
wake_up_interruptible(&channel->in_queue);
/* call notifiers */
if (channel->notifier)
channel->notifier(channel->id,
channel->notify_data);
}
/* restart expiration timer */
if (channel->expiration_period_ms)
mod_timer(&channel->expiration_timer,
jiffies +
MSEC_TO_JIFFIES(
channel->expiration_period_ms));
}
spin_unlock_irqrestore(&device->spinlock, flags);
}
static int tspp_config_gpios(struct tspp_device *device,
enum tspp_source source,
int enable)
{
int ret;
struct pinctrl_state *s;
struct tspp_pinctrl *p = &device->pinctrl;
bool mode2;
/*
* TSIF devices are handled separately, however changing of the pinctrl
* state must be protected from race condition.
*/
if (mutex_lock_interruptible(&device->mutex))
return -ERESTARTSYS;
switch (source) {
case TSPP_SOURCE_TSIF0:
mode2 = device->tsif[0].mode == TSPP_TSIF_MODE_2;
if (enable == p->tsif1_active) {
if (enable)
/* Both tsif enabled */
s = mode2 ? p->dual_mode2 : p->dual_mode1;
else
/* Both tsif disabled */
s = p->disabled;
} else if (enable) {
/* Only tsif0 is enabled */
s = mode2 ? p->tsif0_mode2 : p->tsif0_mode1;
} else {
/* Only tsif1 is enabled */
s = mode2 ? p->tsif1_mode2 : p->tsif1_mode1;
}
ret = pinctrl_select_state(p->pinctrl, s);
if (!ret)
p->tsif0_active = enable;
break;
case TSPP_SOURCE_TSIF1:
mode2 = device->tsif[1].mode == TSPP_TSIF_MODE_2;
if (enable == p->tsif0_active) {
if (enable)
/* Both tsif enabled */
s = mode2 ? p->dual_mode2 : p->dual_mode1;
else
/* Both tsif disabled */
s = p->disabled;
} else if (enable) {
/* Only tsif1 is enabled */
s = mode2 ? p->tsif1_mode2 : p->tsif1_mode1;
} else {
/* Only tsif0 is enabled */
s = mode2 ? p->tsif0_mode2 : p->tsif0_mode1;
}
ret = pinctrl_select_state(p->pinctrl, s);
if (!ret)
p->tsif1_active = enable;
break;
default:
pr_err("%s: invalid source %d\n", __func__, source);
mutex_unlock(&device->mutex);
return -EINVAL;
}
if (ret)
pr_err("%s: failed to change pinctrl state, ret=%d\n",
__func__, ret);
mutex_unlock(&device->mutex);
return ret;
}
static int tspp_get_pinctrl(struct tspp_device *device)
{
struct pinctrl *pinctrl;
struct pinctrl_state *state;
pinctrl = devm_pinctrl_get(&device->pdev->dev);
if (IS_ERR_OR_NULL(pinctrl)) {
pr_err("%s: Unable to get pinctrl handle\n", __func__);
return -EINVAL;
}
device->pinctrl.pinctrl = pinctrl;
state = pinctrl_lookup_state(pinctrl, "disabled");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "disabled");
return -EINVAL;
}
device->pinctrl.disabled = state;
state = pinctrl_lookup_state(pinctrl, "tsif0-mode1");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "tsif0-mode1");
return -EINVAL;
}
device->pinctrl.tsif0_mode1 = state;
state = pinctrl_lookup_state(pinctrl, "tsif0-mode2");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "tsif0-mode2");
return -EINVAL;
}
device->pinctrl.tsif0_mode2 = state;
state = pinctrl_lookup_state(pinctrl, "tsif1-mode1");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "tsif1-mode1");
return -EINVAL;
}
device->pinctrl.tsif1_mode1 = state;
state = pinctrl_lookup_state(pinctrl, "tsif1-mode2");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "tsif1-mode2");
return -EINVAL;
}
device->pinctrl.tsif1_mode2 = state;
state = pinctrl_lookup_state(pinctrl, "dual-tsif-mode1");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "dual-tsif-mode1");
return -EINVAL;
}
device->pinctrl.dual_mode1 = state;
state = pinctrl_lookup_state(pinctrl, "dual-tsif-mode2");
if (IS_ERR_OR_NULL(state)) {
pr_err("%s: Unable to find state %s\n",
__func__, "dual-tsif-mode2");
return -EINVAL;
}
device->pinctrl.dual_mode2 = state;
device->pinctrl.tsif0_active = false;
device->pinctrl.tsif1_active = false;
return 0;
}
/*** Clock functions ***/
static int tspp_clock_start(struct tspp_device *device)
{
int rc;
if (device == NULL) {
pr_err("tspp: Can't start clocks, invalid device\n");
return -EINVAL;
}
if (device->tsif_bus_client) {
rc = msm_bus_scale_client_update_request(
device->tsif_bus_client, 1);
if (rc) {
pr_err("tspp: Can't enable bus\n");
return -EBUSY;
}
}
if (device->tsif_vreg) {
rc = regulator_set_voltage(device->tsif_vreg,
RPMH_REGULATOR_LEVEL_OFF,
RPMH_REGULATOR_LEVEL_MAX);
if (rc) {
pr_err("Unable to set CX voltage.\n");
if (device->tsif_bus_client)
msm_bus_scale_client_update_request(
device->tsif_bus_client, 0);
return rc;
}
}
if (device->tsif_pclk && clk_prepare_enable(device->tsif_pclk) != 0) {
pr_err("tspp: Can't start pclk");
if (device->tsif_vreg) {
regulator_set_voltage(device->tsif_vreg,
RPMH_REGULATOR_LEVEL_OFF,
RPMH_REGULATOR_LEVEL_MAX);
}
if (device->tsif_bus_client)
msm_bus_scale_client_update_request(
device->tsif_bus_client, 0);
return -EBUSY;
}
if (device->tsif_ref_clk &&
clk_prepare_enable(device->tsif_ref_clk) != 0) {
pr_err("tspp: Can't start ref clk");
clk_disable_unprepare(device->tsif_pclk);
if (device->tsif_vreg) {
regulator_set_voltage(device->tsif_vreg,
RPMH_REGULATOR_LEVEL_OFF,
RPMH_REGULATOR_LEVEL_MAX);
}
if (device->tsif_bus_client)
msm_bus_scale_client_update_request(
device->tsif_bus_client, 0);
return -EBUSY;
}
return 0;
}
static void tspp_clock_stop(struct tspp_device *device)
{
int rc;
if (device == NULL) {
pr_err("tspp: Can't stop clocks, invalid device\n");
return;
}
if (device->tsif_pclk)
clk_disable_unprepare(device->tsif_pclk);
if (device->tsif_ref_clk)
clk_disable_unprepare(device->tsif_ref_clk);
if (device->tsif_vreg) {
rc = regulator_set_voltage(device->tsif_vreg,
RPMH_REGULATOR_LEVEL_OFF,
RPMH_REGULATOR_LEVEL_MAX);
if (rc)
pr_err("Unable to set CX voltage.\n");
}
if (device->tsif_bus_client) {
rc = msm_bus_scale_client_update_request(
device->tsif_bus_client, 0);
if (rc)
pr_err("tspp: Can't disable bus\n");
}
}
/*** TSIF functions ***/
static int tspp_start_tsif(struct tspp_tsif_device *tsif_device)
{
int start_hardware = 0;
u32 ctl;
u32 tts_ctl;
int retval;
if (tsif_device->ref_count == 0) {
start_hardware = 1;
} else if (tsif_device->ref_count > 0) {
ctl = readl_relaxed(tsif_device->base + TSIF_STS_CTL_OFF);
if ((ctl & TSIF_STS_CTL_START) != 1) {
/* this hardware should already be running */
pr_warn("tspp: tsif hw not started but ref count > 0");
start_hardware = 1;
}
}
if (start_hardware) {
ctl = TSIF_STS_CTL_EN_IRQ |
TSIF_STS_CTL_EN_DM |
TSIF_STS_CTL_PACK_AVAIL |
TSIF_STS_CTL_OVERFLOW |
TSIF_STS_CTL_LOST_SYNC;
if (tsif_device->clock_inverse)
ctl |= TSIF_STS_CTL_INV_CLOCK;
if (tsif_device->data_inverse)
ctl |= TSIF_STS_CTL_INV_DATA;
if (tsif_device->sync_inverse)
ctl |= TSIF_STS_CTL_INV_SYNC;
if (tsif_device->enable_inverse)
ctl |= TSIF_STS_CTL_INV_ENABLE;
switch (tsif_device->mode) {
case TSPP_TSIF_MODE_LOOPBACK:
ctl |= TSIF_STS_CTL_EN_NULL |
TSIF_STS_CTL_EN_ERROR |
TSIF_STS_CTL_TEST_MODE;
break;
case TSPP_TSIF_MODE_1:
ctl |= TSIF_STS_CTL_EN_TIME_LIM;
if (tsif_device->tts_source != TSIF_TTS_LPASS_TIMER)
ctl |= TSIF_STS_CTL_EN_TCR;
break;
case TSPP_TSIF_MODE_2:
ctl |= TSIF_STS_CTL_EN_TIME_LIM |
TSIF_STS_CTL_MODE_2;
if (tsif_device->tts_source != TSIF_TTS_LPASS_TIMER)
ctl |= TSIF_STS_CTL_EN_TCR;
break;
default:
pr_warn("tspp: unknown tsif mode 0x%x",
tsif_device->mode);
}
/* Set 4bytes Time Stamp for TCR */
if (tsif_device->tts_source == TSIF_TTS_LPASS_TIMER) {
if (tsif_device->lpass_timer_enable == 0) {
retval = avcs_core_open();
if (retval < 0) {
pr_warn("tspp: avcs open fail:%d\n",
retval);
return retval;
}
retval = avcs_core_disable_power_collapse(1);
if (retval < 0) {
pr_warn("tspp: avcs power enable:%d\n",
retval);
return retval;
}
tsif_device->lpass_timer_enable = 1;
}
tts_ctl = readl_relaxed(tsif_device->base +
TSIF_TTS_CTL_OFF);
tts_ctl = 0;
/* Set LPASS Timer TTS source */
tts_ctl |= TSIF_TTS_CTL_TTS_SOURCE;
/* Set 4 byte TTS */
tts_ctl |= TSIF_TTS_CTL_TTS_LENGTH_0;
writel_relaxed(tts_ctl, tsif_device->base +
TSIF_TTS_CTL_OFF);
/* write TTS control register */
wmb();
tts_ctl = readl_relaxed(tsif_device->base +
TSIF_TTS_CTL_OFF);
}
writel_relaxed(ctl, tsif_device->base + TSIF_STS_CTL_OFF);
/* write Status control register */
wmb();
writel_relaxed(tsif_device->time_limit,
tsif_device->base + TSIF_TIME_LIMIT_OFF);
/* assure register configuration is done before starting TSIF */
wmb();
writel_relaxed(ctl | TSIF_STS_CTL_START,
tsif_device->base + TSIF_STS_CTL_OFF);
/* assure TSIF start configuration */
wmb();
}
ctl = readl_relaxed(tsif_device->base + TSIF_STS_CTL_OFF);
if (!(ctl & TSIF_STS_CTL_START))
return -EBUSY;
tsif_device->ref_count++;
return 0;
}
static void tspp_stop_tsif(struct tspp_tsif_device *tsif_device)
{
if (tsif_device->ref_count == 0) {
if (tsif_device->lpass_timer_enable == 1) {
if (avcs_core_disable_power_collapse(0) == 0)
tsif_device->lpass_timer_enable = 0;
}
return;
}
tsif_device->ref_count--;
if (tsif_device->ref_count == 0) {
writel_relaxed(TSIF_STS_CTL_STOP,
tsif_device->base + TSIF_STS_CTL_OFF);
/* assure TSIF stop configuration */
wmb();
}
}
/*** local TSPP functions ***/
static int tspp_channels_in_use(struct tspp_device *pdev)
{
int i;
int count = 0;
for (i = 0; i < TSPP_NUM_CHANNELS; i++)
count += (pdev->channels[i].used ? 1 : 0);
return count;
}
static struct tspp_device *tspp_find_by_id(int id)
{
struct tspp_device *dev;
list_for_each_entry(dev, &tspp_devices, devlist) {
if (dev->pdev->id == id)
return dev;
}
return NULL;
}
static int tspp_get_key_entry(void)
{
int i;
for (i = 0; i < TSPP_NUM_KEYS; i++) {
if (!(tspp_key_entry & (1 << i))) {
tspp_key_entry |= (1 << i);
return i;
}
}
return 1 < TSPP_NUM_KEYS;
}
static void tspp_free_key_entry(int entry)
{
if (entry > TSPP_NUM_KEYS) {
pr_err("tspp_free_key_entry: index out of bounds");
return;
}
tspp_key_entry &= ~(1 << entry);
}
static int tspp_alloc_buffer(u32 channel_id, struct tspp_data_descriptor *desc,
u32 size, struct dma_pool *dma_pool, tspp_allocator *alloc, void *user)
{
if (size < TSPP_MIN_BUFFER_SIZE ||
size > TSPP_MAX_BUFFER_SIZE) {
pr_err("tspp: bad buffer size %i", size);
return -ENOMEM;
}
if (alloc) {
TSPP_DEBUG("tspp using alloc function");
desc->virt_base = alloc(channel_id, size,
&desc->phys_base, user);
} else {
if (!dma_pool)
desc->virt_base = dma_alloc_coherent(NULL, size,
&desc->phys_base, GFP_KERNEL);
else
desc->virt_base = dma_pool_alloc(dma_pool, GFP_KERNEL,
&desc->phys_base);
if (desc->virt_base == 0) {
pr_err("tspp: dma buffer allocation failed %i\n", size);
return -ENOMEM;
}
}
desc->size = size;
return 0;
}
static int tspp_queue_buffer(struct tspp_channel *channel,
struct tspp_mem_buffer *buffer)
{
int rc;
u32 flags = 0;
/* make sure the interrupt frequency is valid */
if (channel->int_freq < 1)
channel->int_freq = 1;
/* generate interrupt according to requested frequency */
if (buffer->desc.id % channel->int_freq == channel->int_freq-1)
flags = SPS_IOVEC_FLAG_INT;
/* start the transfer */
rc = sps_transfer_one(channel->pipe,
buffer->sps.phys_base,
buffer->sps.size,
flags ? channel->pdev : NULL,
flags);
if (rc < 0)
return rc;
buffer->state = TSPP_BUF_STATE_WAITING;
return 0;
}
static int tspp_global_reset(struct tspp_device *pdev)
{
u32 i, val;
/* stop all TSIFs */
for (i = 0; i < TSPP_TSIF_INSTANCES; i++) {
pdev->tsif[i].ref_count = 1; /* allows stopping hw */
tspp_stop_tsif(&pdev->tsif[i]); /* will reset ref_count to 0 */
pdev->tsif[i].time_limit = TSPP_TSIF_DEFAULT_TIME_LIMIT;
pdev->tsif[i].clock_inverse = 0;
pdev->tsif[i].data_inverse = 0;
pdev->tsif[i].sync_inverse = 0;
pdev->tsif[i].enable_inverse = 0;
pdev->tsif[i].lpass_timer_enable = 0;
}
writel_relaxed(TSPP_RST_RESET, pdev->base + TSPP_RST);
/* assure state is reset before continuing with configuration */
wmb();
/* TSPP tables */
for (i = 0; i < TSPP_FILTER_TABLES; i++)
memset_io(pdev->filters[i],
0, sizeof(struct tspp_pid_filter_table));
/* disable all filters */
val = (2 << TSPP_NUM_CHANNELS) - 1;
writel_relaxed(val, pdev->base + TSPP_PS_DISABLE);
/* TSPP registers */
val = readl_relaxed(pdev->base + TSPP_CONTROL);
writel_relaxed(val | TSPP_CLK_CONTROL_FORCE_PERF_CNT,
pdev->base + TSPP_CONTROL);
/* assure tspp performance count clock is set to 0 */
wmb();
memset_io(pdev->tspp_global_performance, 0,
sizeof(struct tspp_global_performance_regs));
memset_io(pdev->tspp_pipe_context, 0,
sizeof(struct tspp_pipe_context_regs));
memset_io(pdev->tspp_pipe_performance, 0,
sizeof(struct tspp_pipe_performance_regs));
/* assure tspp pipe context registers are set to 0 */
wmb();
writel_relaxed(val & ~TSPP_CLK_CONTROL_FORCE_PERF_CNT,
pdev->base + TSPP_CONTROL);
/* assure tspp performance count clock is reset */
wmb();
val = readl_relaxed(pdev->base + TSPP_CONFIG);
val &= ~(TSPP_CONFIG_PS_LEN_ERR_MASK |
TSPP_CONFIG_PS_CONT_ERR_UNSP_MASK |
TSPP_CONFIG_PS_CONT_ERR_MASK);
TSPP_CONFIG_SET_PACKET_LENGTH(val, TSPP_PACKET_LENGTH);
writel_relaxed(val, pdev->base + TSPP_CONFIG);
writel_relaxed(0x0007ffff, pdev->base + TSPP_IRQ_MASK);
writel_relaxed(0x000fffff, pdev->base + TSPP_IRQ_CLEAR);
writel_relaxed(0, pdev->base + TSPP_RST);
/* assure tspp reset clear */
wmb();
tspp_key_entry = 0;
return 0;
}
static void tspp_channel_init(struct tspp_channel *channel,
struct tspp_device *pdev)
{
channel->pdev = pdev;
channel->data = NULL;
channel->read = NULL;
channel->waiting = NULL;
channel->locked = NULL;
channel->id = channel_id++;
channel->used = 0;
channel->buffer_size = TSPP_MIN_BUFFER_SIZE;
channel->max_buffers = TSPP_NUM_BUFFERS;
channel->buffer_count = 0;
channel->filter_count = 0;
channel->int_freq = 1;
channel->src = TSPP_SOURCE_NONE;
channel->mode = TSPP_MODE_DISABLED;
channel->notifier = NULL;
channel->notify_data = NULL;
channel->expiration_period_ms = 0;
channel->memfree = NULL;
channel->user_info = NULL;
init_waitqueue_head(&channel->in_queue);
}
static void tspp_set_tsif_mode(struct tspp_channel *channel,
enum tspp_tsif_mode mode)
{
int index;
switch (channel->src) {
case TSPP_SOURCE_TSIF0:
index = 0;
break;
case TSPP_SOURCE_TSIF1:
index = 1;
break;
default:
pr_warn("tspp: can't set mode for non-tsif source %d",
channel->src);
return;
}
channel->pdev->tsif[index].mode = mode;
}
static void tspp_set_signal_inversion(struct tspp_channel *channel,
int clock_inverse, int data_inverse,
int sync_inverse, int enable_inverse)
{
int index;
switch (channel->src) {
case TSPP_SOURCE_TSIF0:
index = 0;
break;
case TSPP_SOURCE_TSIF1:
index = 1;
break;
default:
return;
}
channel->pdev->tsif[index].clock_inverse = clock_inverse;
channel->pdev->tsif[index].data_inverse = data_inverse;
channel->pdev->tsif[index].sync_inverse = sync_inverse;
channel->pdev->tsif[index].enable_inverse = enable_inverse;
}
static int tspp_is_buffer_size_aligned(u32 size, enum tspp_mode mode)
{
u32 alignment;
switch (mode) {
case TSPP_MODE_RAW:
/* must be a multiple of 192 */
alignment = (TSPP_PACKET_LENGTH + 4);
if (size % alignment)
return 0;
return 1;
case TSPP_MODE_RAW_NO_SUFFIX:
/* must be a multiple of 188 */
alignment = TSPP_PACKET_LENGTH;
if (size % alignment)
return 0;
return 1;
case TSPP_MODE_DISABLED:
case TSPP_MODE_PES:
default:
/* no alignment requirement */
return 1;
}
}
static u32 tspp_align_buffer_size_by_mode(u32 size, enum tspp_mode mode)
{
u32 new_size;
u32 alignment;
switch (mode) {
case TSPP_MODE_RAW:
/* must be a multiple of 192 */
alignment = (TSPP_PACKET_LENGTH + 4);
break;
case TSPP_MODE_RAW_NO_SUFFIX:
/* must be a multiple of 188 */
alignment = TSPP_PACKET_LENGTH;
break;
case TSPP_MODE_DISABLED:
case TSPP_MODE_PES:
default:
/* no alignment requirement - give the user what he asks for */
alignment = 1;
break;
}
/* align up */
new_size = (((size + alignment - 1) / alignment) * alignment);
return new_size;
}
static void tspp_destroy_buffers(u32 channel_id, struct tspp_channel *channel)
{
int i;
struct tspp_mem_buffer *pbuf, *temp;
pbuf = channel->data;
for (i = 0; i < channel->buffer_count; i++) {
if (pbuf->desc.phys_base) {
if (channel->memfree) {
channel->memfree(channel_id,
pbuf->desc.size,
pbuf->desc.virt_base,
pbuf->desc.phys_base,
channel->user_info);
} else {
if (!channel->dma_pool)
dma_free_coherent(
&channel->pdev->pdev->dev,
pbuf->desc.size,
pbuf->desc.virt_base,
pbuf->desc.phys_base);
else
dma_pool_free(channel->dma_pool,
pbuf->desc.virt_base,
pbuf->desc.phys_base);
}
pbuf->desc.phys_base = 0;
}
pbuf->desc.virt_base = 0;
pbuf->state = TSPP_BUF_STATE_EMPTY;
temp = pbuf;
pbuf = pbuf->next;
kfree(temp);
}
}
static int msm_tspp_req_irqs(struct tspp_device *device)
{
int rc;
int i;
int j;
rc = request_irq(device->tspp_irq, tspp_isr, IRQF_SHARED,
dev_name(&device->pdev->dev), device);
if (rc) {
dev_err(&device->pdev->dev,
"failed to request TSPP IRQ %d : %d",
device->tspp_irq, rc);
return rc;
}
for (i = 0; i < TSPP_TSIF_INSTANCES; i++) {
rc = request_irq(device->tsif[i].tsif_irq,
tsif_isr, IRQF_SHARED, dev_name(&device->pdev->dev),
&device->tsif[i]);
if (rc) {
dev_err(&device->pdev->dev,
"failed to request TSIF%d IRQ: %d",
i, rc);
goto failed;
}
}
device->req_irqs = true;
return 0;
failed:
free_irq(device->tspp_irq, device);
for (j = 0; j < i; j++)
free_irq(device->tsif[j].tsif_irq, device);
return rc;
}
static inline void msm_tspp_free_irqs(struct tspp_device *device)
{
int i;
for (i = 0; i < TSPP_TSIF_INSTANCES; i++) {
if (device->tsif[i].tsif_irq)
free_irq(device->tsif[i].tsif_irq, &device->tsif[i]);
}
if (device->tspp_irq)
free_irq(device->tspp_irq, device);
device->req_irqs = false;
}
/*** TSPP API functions ***/
/**
* tspp_open_stream - open a TSPP stream for use.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @source: stream source parameters.
*
* Return error status
*
*/
int tspp_open_stream(u32 dev, u32 channel_id,
struct tspp_select_source *source)
{
u32 val;
int rc;
struct tspp_device *pdev;
struct tspp_channel *channel;
bool req_irqs = false;
TSPP_DEBUG("tspp_open_stream %i %i %i %i",
dev, channel_id, source->source, source->mode);
if (dev >= TSPP_MAX_DEVICES) {
pr_err("tspp: device id out of range");
return -ENODEV;
}
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_str: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
channel->src = source->source;
tspp_set_tsif_mode(channel, source->mode);
tspp_set_signal_inversion(channel, source->clk_inverse,
source->data_inverse, source->sync_inverse,
source->enable_inverse);
/* Request IRQ resources on first open */
if (!pdev->req_irqs && (source->source == TSPP_SOURCE_TSIF0 ||
source->source == TSPP_SOURCE_TSIF1)) {
rc = msm_tspp_req_irqs(pdev);
if (rc) {
pr_err("tspp: error requesting irqs\n");
return rc;
}
req_irqs = true;
}
switch (source->source) {
case TSPP_SOURCE_TSIF0:
if (tspp_config_gpios(pdev, channel->src, 1) != 0) {
rc = -EBUSY;
pr_err("tspp: error enabling tsif0 GPIOs\n");
goto free_irq;
}
/* make sure TSIF0 is running & enabled */
if (tspp_start_tsif(&pdev->tsif[0]) != 0) {
rc = -EBUSY;
pr_err("tspp: error starting tsif0");
goto free_irq;
}
if (pdev->tsif[0].ref_count == 1) {
val = readl_relaxed(pdev->base + TSPP_CONTROL);
writel_relaxed(val & ~TSPP_CONTROL_TSP_TSIF0_SRC_DIS,
pdev->base + TSPP_CONTROL);
/* Assure BAM TS PKT packet processing is enabled */
wmb();
}
break;
case TSPP_SOURCE_TSIF1:
if (tspp_config_gpios(pdev, channel->src, 1) != 0) {
rc = -EBUSY;
pr_err("tspp: error enabling tsif1 GPIOs\n");
goto free_irq;
}
/* make sure TSIF1 is running & enabled */
if (tspp_start_tsif(&pdev->tsif[1]) != 0) {
rc = -EBUSY;
pr_err("tspp: error starting tsif1");
goto free_irq;
}
if (pdev->tsif[1].ref_count == 1) {
val = readl_relaxed(pdev->base + TSPP_CONTROL);
writel_relaxed(val & ~TSPP_CONTROL_TSP_TSIF1_SRC_DIS,
pdev->base + TSPP_CONTROL);
/* Assure BAM TS PKT packet processing is enabled */
wmb();
}
break;
case TSPP_SOURCE_MEM:
break;
default:
pr_err("tspp: channel %i invalid source %i",
channel->id, source->source);
return -EBUSY;
}
return 0;
free_irq:
/* Free irqs only if were requested during opening of this stream */
if (req_irqs)
msm_tspp_free_irqs(pdev);
return rc;
}
EXPORT_SYMBOL(tspp_open_stream);
/**
* tspp_close_stream - close a TSPP stream.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
*
* Return error status
*
*/
int tspp_close_stream(u32 dev, u32 channel_id)
{
u32 val;
u32 prev_ref_count = 0;
struct tspp_device *pdev;
struct tspp_channel *channel;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_cs: can't find device %i", dev);
return -EBUSY;
}
channel = &pdev->channels[channel_id];
switch (channel->src) {
case TSPP_SOURCE_TSIF0:
prev_ref_count = pdev->tsif[0].ref_count;
tspp_stop_tsif(&pdev->tsif[0]);
if (tspp_config_gpios(pdev, channel->src, 0) != 0)
pr_err("tspp: error disabling tsif0 GPIOs\n");
if (prev_ref_count == 1) {
val = readl_relaxed(pdev->base + TSPP_CONTROL);
writel_relaxed(val | TSPP_CONTROL_TSP_TSIF0_SRC_DIS,
pdev->base + TSPP_CONTROL);
/* Assure BAM TS PKT packet processing is disabled */
wmb();
}
break;
case TSPP_SOURCE_TSIF1:
prev_ref_count = pdev->tsif[1].ref_count;
tspp_stop_tsif(&pdev->tsif[1]);
if (tspp_config_gpios(pdev, channel->src, 0) != 0)
pr_err("tspp: error disabling tsif0 GPIOs\n");
if (prev_ref_count == 1) {
val = readl_relaxed(pdev->base + TSPP_CONTROL);
writel_relaxed(val | TSPP_CONTROL_TSP_TSIF1_SRC_DIS,
pdev->base + TSPP_CONTROL);
/* Assure BAM TS PKT packet processing is disabled */
wmb();
}
break;
case TSPP_SOURCE_MEM:
break;
case TSPP_SOURCE_NONE:
break;
}
channel->src = TSPP_SOURCE_NONE;
/* Free requested interrupts to save power */
if ((pdev->tsif[0].ref_count + pdev->tsif[1].ref_count) == 0 &&
prev_ref_count)
msm_tspp_free_irqs(pdev);
return 0;
}
EXPORT_SYMBOL(tspp_close_stream);
static int tspp_init_sps_device(struct tspp_device *dev)
{
int ret;
ret = sps_register_bam_device(&dev->bam_props, &dev->bam_handle);
if (ret) {
pr_err("tspp: failed to register bam device, err-%d\n", ret);
return ret;
}
ret = sps_device_reset(dev->bam_handle);
if (ret) {
sps_deregister_bam_device(dev->bam_handle);
pr_err("tspp: error resetting bam device, err=%d\n", ret);
return ret;
}
return 0;
}
/**
* tspp_open_channel - open a TSPP channel.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
*
* Return error status
*
*/
int tspp_open_channel(u32 dev, u32 channel_id)
{
int rc = 0;
struct sps_connect *config;
struct sps_register_event *event;
struct tspp_channel *channel;
struct tspp_device *pdev;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_oc: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
if (channel->used) {
pr_err("tspp channel already in use");
return -EBUSY;
}
config = &channel->config;
event = &channel->event;
/* start the clocks if needed */
if (tspp_channels_in_use(pdev) == 0) {
rc = tspp_clock_start(pdev);
if (rc)
return rc;
if (pdev->bam_handle == SPS_DEV_HANDLE_INVALID) {
rc = tspp_init_sps_device(pdev);
if (rc) {
pr_err("tspp: failed to init sps device, err=%d\n",
rc);
tspp_clock_stop(pdev);
return rc;
}
}
__pm_stay_awake(&pdev->ws);
}
/* mark it as used */
channel->used = 1;
/* start the bam */
channel->pipe = sps_alloc_endpoint();
if (channel->pipe == 0) {
pr_err("tspp: error allocating endpoint");
rc = -ENOMEM;
goto err_sps_alloc;
}
/* get default configuration */
sps_get_config(channel->pipe, config);
config->source = pdev->bam_handle;
config->destination = SPS_DEV_HANDLE_MEM;
config->mode = SPS_MODE_SRC;
config->options =
SPS_O_AUTO_ENABLE | /* connection is auto-enabled */
SPS_O_STREAMING | /* streaming mode */
SPS_O_DESC_DONE | /* interrupt on end of descriptor */
SPS_O_ACK_TRANSFERS | /* must use sps_get_iovec() */
SPS_O_HYBRID; /* Read actual descriptors in sps_get_iovec() */
config->src_pipe_index = channel->id;
config->desc.size =
TSPP_SPS_DESCRIPTOR_COUNT * SPS_DESCRIPTOR_SIZE;
config->desc.base = dma_alloc_coherent(&pdev->pdev->dev,
config->desc.size,
&config->desc.phys_base,
GFP_KERNEL);
if (config->desc.base == 0) {
pr_err("tspp: error allocating sps descriptors");
rc = -ENOMEM;
goto err_desc_alloc;
}
memset(config->desc.base, 0, config->desc.size);
rc = sps_connect(channel->pipe, config);
if (rc) {
pr_err("tspp: error connecting bam");
goto err_connect;
}
event->mode = SPS_TRIGGER_CALLBACK;
event->options = SPS_O_DESC_DONE;
event->callback = tspp_sps_complete_cb;
event->xfer_done = NULL;
event->user = pdev;
rc = sps_register_event(channel->pipe, event);
if (rc) {
pr_err("tspp: error registering event");
goto err_event;
}
init_timer(&channel->expiration_timer);
channel->expiration_timer.function = tspp_expiration_timer;
channel->expiration_timer.data = (unsigned long)pdev;
channel->expiration_timer.expires = 0xffffffffL;
rc = pm_runtime_get(&pdev->pdev->dev);
if (rc < 0) {
dev_err(&pdev->pdev->dev,
"Runtime PM: Unable to wake up tspp device, rc = %d",
rc);
}
return 0;
err_event:
sps_disconnect(channel->pipe);
err_connect:
dma_free_coherent(&pdev->pdev->dev, config->desc.size,
config->desc.base, config->desc.phys_base);
err_desc_alloc:
sps_free_endpoint(channel->pipe);
err_sps_alloc:
channel->used = 0;
return rc;
}
EXPORT_SYMBOL(tspp_open_channel);
/**
* tspp_close_channel - close a TSPP channel.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
*
* Return error status
*
*/
int tspp_close_channel(u32 dev, u32 channel_id)
{
int i;
int id;
int table_idx;
u32 val;
unsigned long flags;
struct sps_connect *config;
struct tspp_device *pdev;
struct tspp_channel *channel;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_close: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
/* if the channel is not used, we are done */
if (!channel->used)
return 0;
/*
* Need to protect access to used and waiting fields, as they are
* used by the tasklet which is invoked from interrupt context
*/
spin_lock_irqsave(&pdev->spinlock, flags);
channel->used = 0;
channel->waiting = NULL;
spin_unlock_irqrestore(&pdev->spinlock, flags);
if (channel->expiration_period_ms)
del_timer(&channel->expiration_timer);
channel->notifier = NULL;
channel->notify_data = NULL;
channel->expiration_period_ms = 0;
config = &channel->config;
pdev = channel->pdev;
/* disable pipe (channel) */
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
writel_relaxed(val | channel->id, pdev->base + TSPP_PS_DISABLE);
/* Assure PS_DISABLE register is set */
wmb();
/* unregister all filters for this channel */
for (table_idx = 0; table_idx < TSPP_FILTER_TABLES; table_idx++) {
for (i = 0; i < TSPP_NUM_PRIORITIES; i++) {
struct tspp_pid_filter *filter =
&pdev->filters[table_idx]->filter[i];
id = FILTER_GET_PIPE_NUMBER0(filter);
if (id == channel->id) {
if (FILTER_HAS_ENCRYPTION(filter))
tspp_free_key_entry(
FILTER_GET_KEY_NUMBER(filter));
filter->config = 0;
filter->filter = 0;
}
}
}
channel->filter_count = 0;
/* disconnect the bam */
if (sps_disconnect(channel->pipe) != 0)
pr_warn("tspp: Error freeing sps endpoint (%i)", channel->id);
/* destroy the buffers */
dma_free_coherent(&pdev->pdev->dev, config->desc.size,
config->desc.base, config->desc.phys_base);
sps_free_endpoint(channel->pipe);
tspp_destroy_buffers(channel_id, channel);
dma_pool_destroy(channel->dma_pool);
channel->dma_pool = NULL;
channel->src = TSPP_SOURCE_NONE;
channel->mode = TSPP_MODE_DISABLED;
channel->memfree = NULL;
channel->user_info = NULL;
channel->buffer_count = 0;
channel->data = NULL;
channel->read = NULL;
channel->locked = NULL;
if (tspp_channels_in_use(pdev) == 0) {
sps_deregister_bam_device(pdev->bam_handle);
pdev->bam_handle = SPS_DEV_HANDLE_INVALID;
__pm_relax(&pdev->ws);
tspp_clock_stop(pdev);
}
pm_runtime_put(&pdev->pdev->dev);
return 0;
}
EXPORT_SYMBOL(tspp_close_channel);
/**
* tspp_get_ref_clk_counter - return the TSIF clock reference (TCR) counter.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @source: The TSIF source from which the counter should be read
* @tcr_counter: the value of TCR counter
*
* Return error status
*
* TCR increments at a rate equal to 27 MHz/256 = 105.47 kHz.
* If source is neither TSIF 0 or TSIF1 0 is returned.
*/
int tspp_get_ref_clk_counter(u32 dev, enum tspp_source source, u32 *tcr_counter)
{
struct tspp_device *pdev;
struct tspp_tsif_device *tsif_device;
if (!tcr_counter)
return -EINVAL;
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_get_ref_clk_counter: can't find device %i\n", dev);
return -ENODEV;
}
switch (source) {
case TSPP_SOURCE_TSIF0:
tsif_device = &pdev->tsif[0];
break;
case TSPP_SOURCE_TSIF1:
tsif_device = &pdev->tsif[1];
break;
default:
tsif_device = NULL;
break;
}
if (tsif_device && tsif_device->ref_count)
*tcr_counter = ioread32(tsif_device->base + TSIF_CLK_REF_OFF);
else
*tcr_counter = 0;
return 0;
}
EXPORT_SYMBOL(tspp_get_ref_clk_counter);
/**
* tspp_get_lpass_time_counter - return the LPASS Timer counter value.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @source: The TSIF source from which the counter should be read
* @tcr_counter: the value of TCR counter
*
* Return error status
*
* If source is neither TSIF 0 or TSIF1 0 is returned.
*/
int tspp_get_lpass_time_counter(u32 dev, enum tspp_source source,
u64 *lpass_time_counter)
{
struct tspp_device *pdev;
struct tspp_tsif_device *tsif_device;
if (!lpass_time_counter)
return -EINVAL;
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_get_lpass_time_counter: can't find device %i\n",
dev);
return -ENODEV;
}
switch (source) {
case TSPP_SOURCE_TSIF0:
tsif_device = &pdev->tsif[0];
break;
case TSPP_SOURCE_TSIF1:
tsif_device = &pdev->tsif[1];
break;
default:
tsif_device = NULL;
break;
}
if (tsif_device && tsif_device->ref_count) {
if (avcs_core_query_timer(lpass_time_counter) < 0) {
pr_err("tspp_get_lpass_time_counter: read error\n");
*lpass_time_counter = 0;
return -ENETRESET;
}
} else
*lpass_time_counter = 0;
return 0;
}
EXPORT_SYMBOL(tspp_get_lpass_time_counter);
/**
* tspp_get_tts_source - Return the TTS source value.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @tts_source:Updated TTS source type
*
* Return error status
*
*/
int tspp_get_tts_source(u32 dev, int *tts_source)
{
struct tspp_device *pdev;
if (tts_source == NULL)
return -EINVAL;
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_get_tts_source: can't find device %i\n",
dev);
return -ENODEV;
}
*tts_source = pdev->tts_source;
return 0;
}
EXPORT_SYMBOL(tspp_get_tts_source);
/**
* tspp_add_filter - add a TSPP filter to a channel.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @filter: TSPP filter parameters
*
* Return error status
*
*/
int tspp_add_filter(u32 dev, u32 channel_id,
struct tspp_filter *filter)
{
int i, rc;
int other_channel;
int entry;
u32 val, pid, enabled;
struct tspp_device *pdev;
struct tspp_pid_filter p;
struct tspp_channel *channel;
TSPP_DEBUG("tspp: add filter");
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_add: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
if (filter->source > TSPP_SOURCE_MEM) {
pr_err("tspp invalid source");
return -ENOSR;
}
if (filter->priority >= TSPP_NUM_PRIORITIES) {
pr_err("tspp invalid filter priority");
return -ENOSR;
}
channel->mode = filter->mode;
/*
* if buffers are already allocated, verify they fulfil
* the alignment requirements.
*/
if ((channel->buffer_count > 0) &&
(!tspp_is_buffer_size_aligned(channel->buffer_size, channel->mode)))
pr_warn("tspp: buffers allocated with incorrect alignment\n");
if (filter->mode == TSPP_MODE_PES) {
for (i = 0; i < TSPP_NUM_PRIORITIES; i++) {
struct tspp_pid_filter *tspp_filter =
&pdev->filters[channel->src]->filter[i];
pid = FILTER_GET_PIPE_PID((tspp_filter));
enabled = FILTER_GET_PIPE_PROCESS0(tspp_filter);
if (enabled && (pid == filter->pid)) {
other_channel =
FILTER_GET_PIPE_NUMBER0(tspp_filter);
pr_err("tspp: pid 0x%x already in use by channel %i",
filter->pid, other_channel);
return -EBADSLT;
}
}
}
/* make sure this priority is not already in use */
enabled = FILTER_GET_PIPE_PROCESS0(
(&(pdev->filters[channel->src]->filter[filter->priority])));
if (enabled) {
pr_err("tspp: filter priority %i source %i is already enabled\n",
filter->priority, channel->src);
return -ENOSR;
}
if (channel->mode == TSPP_MODE_PES) {
/*
* if we are already processing in PES mode, disable pipe
* (channel) and filter to be updated
*/
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
writel_relaxed(val | (1 << channel->id),
pdev->base + TSPP_PS_DISABLE);
/* Assure PS_DISABLE register is set */
wmb();
}
/* update entry */
p.filter = 0;
p.config = FILTER_TRANS_END_DISABLE;
FILTER_SET_PIPE_PROCESS0((&p), filter->mode);
FILTER_SET_PIPE_PID((&p), filter->pid);
FILTER_SET_PID_MASK((&p), filter->mask);
FILTER_SET_PIPE_NUMBER0((&p), channel->id);
FILTER_SET_PIPE_PROCESS1((&p), TSPP_MODE_DISABLED);
if (filter->decrypt) {
entry = tspp_get_key_entry();
if (entry == -1) {
pr_err("tspp: no more keys available!");
} else {
p.config |= FILTER_DECRYPT;
FILTER_SET_KEY_NUMBER((&p), entry);
}
}
pdev->filters[channel->src]->
filter[filter->priority].config = p.config;
pdev->filters[channel->src]->
filter[filter->priority].filter = p.filter;
/*
* allocate buffers if needed (i.e. if user did has not already called
* tspp_allocate_buffers() explicitly).
*/
if (channel->buffer_count == 0) {
channel->buffer_size =
tspp_align_buffer_size_by_mode(channel->buffer_size,
channel->mode);
rc = tspp_allocate_buffers(dev, channel->id,
channel->max_buffers,
channel->buffer_size,
channel->int_freq, NULL, NULL, NULL);
if (rc != 0) {
pr_err("tspp: tspp_allocate_buffers failed\n");
return rc;
}
}
/* reenable pipe */
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
writel_relaxed(val & ~(1 << channel->id), pdev->base + TSPP_PS_DISABLE);
/* Assure PS_DISABLE register is reset */
wmb();
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
channel->filter_count++;
return 0;
}
EXPORT_SYMBOL(tspp_add_filter);
/**
* tspp_remove_filter - remove a TSPP filter from a channel.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @filter: TSPP filter parameters
*
* Return error status
*
*/
int tspp_remove_filter(u32 dev, u32 channel_id,
struct tspp_filter *filter)
{
int entry;
u32 val;
struct tspp_device *pdev;
int src;
struct tspp_pid_filter *tspp_filter;
struct tspp_channel *channel;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
if (!filter) {
pr_err("tspp: NULL filter pointer");
return -EINVAL;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_remove: can't find device %i", dev);
return -ENODEV;
}
if (filter->priority >= TSPP_NUM_PRIORITIES) {
pr_err("tspp invalid filter priority");
return -ENOSR;
}
channel = &pdev->channels[channel_id];
src = channel->src;
if ((src == TSPP_SOURCE_TSIF0) || (src == TSPP_SOURCE_TSIF1))
tspp_filter = &(pdev->filters[src]->filter[filter->priority]);
else {
pr_err("tspp_remove: wrong source type %d", src);
return -EINVAL;
}
/* disable pipe (channel) */
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
writel_relaxed(val | channel->id, pdev->base + TSPP_PS_DISABLE);
/* Assure PS_DISABLE register is set */
wmb();
/* update data keys */
if (tspp_filter->config & FILTER_DECRYPT) {
entry = FILTER_GET_KEY_NUMBER(tspp_filter);
tspp_free_key_entry(entry);
}
/* update pid table */
tspp_filter->config = 0;
tspp_filter->filter = 0;
channel->filter_count--;
/* reenable pipe */
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
writel_relaxed(val & ~(1 << channel->id),
pdev->base + TSPP_PS_DISABLE);
/* Assure PS_DISABLE register is reset */
wmb();
val = readl_relaxed(pdev->base + TSPP_PS_DISABLE);
return 0;
}
EXPORT_SYMBOL(tspp_remove_filter);
/**
* tspp_set_key - set TSPP key in key table.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @key: TSPP key parameters
*
* Return error status
*
*/
int tspp_set_key(u32 dev, u32 channel_id, struct tspp_key *key)
{
int i;
int id;
int key_index;
int data;
struct tspp_channel *channel;
struct tspp_device *pdev;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_set: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
/* read the key index used by this channel */
for (i = 0; i < TSPP_NUM_PRIORITIES; i++) {
struct tspp_pid_filter *tspp_filter =
&(pdev->filters[channel->src]->filter[i]);
id = FILTER_GET_PIPE_NUMBER0(tspp_filter);
if (id == channel->id) {
if (FILTER_HAS_ENCRYPTION(tspp_filter)) {
key_index = FILTER_GET_KEY_NUMBER(tspp_filter);
break;
}
}
}
if (i == TSPP_NUM_PRIORITIES) {
pr_err("tspp: no encryption on this channel");
return -ENOKEY;
}
if (key->parity == TSPP_KEY_PARITY_EVEN) {
pdev->tspp_key_table->entry[key_index].even_lsb = key->lsb;
pdev->tspp_key_table->entry[key_index].even_msb = key->msb;
} else {
pdev->tspp_key_table->entry[key_index].odd_lsb = key->lsb;
pdev->tspp_key_table->entry[key_index].odd_msb = key->msb;
}
data = readl_relaxed(channel->pdev->base + TSPP_KEY_VALID);
return 0;
}
EXPORT_SYMBOL(tspp_set_key);
/**
* tspp_register_notification - register TSPP channel notification function.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @notify: notification function
* @userdata: user data to pass to notification function
* @timer_ms: notification for partially filled buffers
*
* Return error status
*
*/
int tspp_register_notification(u32 dev, u32 channel_id,
tspp_notifier *notify, void *userdata, u32 timer_ms)
{
struct tspp_channel *channel;
struct tspp_device *pdev;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_reg: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
channel->notifier = notify;
channel->notify_data = userdata;
channel->expiration_period_ms = timer_ms;
return 0;
}
EXPORT_SYMBOL(tspp_register_notification);
/**
* tspp_unregister_notification - unregister TSPP channel notification function.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
*
* Return error status
*
*/
int tspp_unregister_notification(u32 dev, u32 channel_id)
{
struct tspp_channel *channel;
struct tspp_device *pdev;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_unreg: can't find device %i", dev);
return -ENODEV;
}
channel = &pdev->channels[channel_id];
channel->notifier = NULL;
channel->notify_data = 0;
return 0;
}
EXPORT_SYMBOL(tspp_unregister_notification);
/**
* tspp_get_buffer - get TSPP data buffer.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
*
* Return error status
*
*/
const struct tspp_data_descriptor *tspp_get_buffer(u32 dev, u32 channel_id)
{
struct tspp_mem_buffer *buffer;
struct tspp_channel *channel;
struct tspp_device *pdev;
unsigned long flags;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return NULL;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp_get: can't find device %i", dev);
return NULL;
}
spin_lock_irqsave(&pdev->spinlock, flags);
channel = &pdev->channels[channel_id];
if (!channel->read) {
spin_unlock_irqrestore(&pdev->spinlock, flags);
pr_warn("tspp: no buffer to get on channel %i!",
channel->id);
return NULL;
}
buffer = channel->read;
/* see if we have any buffers ready to read */
if (buffer->state != TSPP_BUF_STATE_DATA) {
spin_unlock_irqrestore(&pdev->spinlock, flags);
return NULL;
}
if (buffer->state == TSPP_BUF_STATE_DATA) {
/* mark the buffer as busy */
buffer->state = TSPP_BUF_STATE_LOCKED;
/* increment the pointer along the list */
channel->read = channel->read->next;
}
spin_unlock_irqrestore(&pdev->spinlock, flags);
return &buffer->desc;
}
EXPORT_SYMBOL(tspp_get_buffer);
/**
* tspp_release_buffer - release TSPP data buffer back to TSPP.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @descriptor_id: buffer descriptor ID
*
* Return error status
*
*/
int tspp_release_buffer(u32 dev, u32 channel_id, u32 descriptor_id)
{
int i, found = 0;
struct tspp_mem_buffer *buffer;
struct tspp_channel *channel;
struct tspp_device *pdev;
unsigned long flags;
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("tspp: channel id out of range");
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("tspp: can't find device %i", dev);
return -ENODEV;
}
spin_lock_irqsave(&pdev->spinlock, flags);
channel = &pdev->channels[channel_id];
if (descriptor_id > channel->buffer_count)
pr_warn("tspp: desc id looks weird 0x%08x", descriptor_id);
/* find the correct descriptor */
buffer = channel->locked;
for (i = 0; i < channel->buffer_count; i++) {
if (buffer->desc.id == descriptor_id) {
found = 1;
break;
}
buffer = buffer->next;
}
channel->locked = channel->locked->next;
if (!found) {
spin_unlock_irqrestore(&pdev->spinlock, flags);
pr_err("tspp: cant find desc %i", descriptor_id);
return -EINVAL;
}
/* make sure the buffer is in the expected state */
if (buffer->state != TSPP_BUF_STATE_LOCKED) {
spin_unlock_irqrestore(&pdev->spinlock, flags);
pr_err("tspp: buffer %i not locked", descriptor_id);
return -EINVAL;
}
/* unlock the buffer and requeue it */
buffer->state = TSPP_BUF_STATE_WAITING;
if (tspp_queue_buffer(channel, buffer))
pr_warn("tspp: can't requeue buffer");
spin_unlock_irqrestore(&pdev->spinlock, flags);
return 0;
}
EXPORT_SYMBOL(tspp_release_buffer);
/**
* tspp_allocate_buffers - allocate TSPP data buffers.
*
* @dev: TSPP device (up to TSPP_MAX_DEVICES)
* @channel_id: Channel ID number (up to TSPP_NUM_CHANNELS)
* @count: number of buffers to allocate
* @size: size of each buffer to allocate
* @int_freq: interrupt frequency
* @alloc: user defined memory allocator function. Pass NULL for default.
* @memfree: user defined memory free function. Pass NULL for default.
* @user: user data to pass to the memory allocator/free function
*
* Return error status
*
* The user can optionally call this function explicitly to allocate the TSPP
* data buffers. Alternatively, if the user did not call this function, it
* is called implicitly by tspp_add_filter().
*/
int tspp_allocate_buffers(u32 dev, u32 channel_id, u32 count, u32 size,
u32 int_freq, tspp_allocator *alloc,
tspp_memfree *memfree, void *user)
{
struct tspp_channel *channel;
struct tspp_device *pdev;
struct tspp_mem_buffer *last = NULL;
TSPP_DEBUG("tspp_allocate_buffers");
if (channel_id >= TSPP_NUM_CHANNELS) {
pr_err("%s: channel id out of range", __func__);
return -ECHRNG;
}
pdev = tspp_find_by_id(dev);
if (!pdev) {
pr_err("%s: can't find device %i", __func__, dev);
return -ENODEV;
}
if (count < MIN_ACCEPTABLE_BUFFER_COUNT) {
pr_err("%s: tspp requires a minimum of %i buffers\n",
__func__, MIN_ACCEPTABLE_BUFFER_COUNT);
return -EINVAL;
}
if (count > TSPP_NUM_BUFFERS) {
pr_err("%s: tspp requires a maximum of %i buffers\n",
__func__, TSPP_NUM_BUFFERS);
return -EINVAL;
}
channel = &pdev->channels[channel_id];
/* allow buffer allocation only if there was no previous buffer
* allocation for this channel.
*/
if (channel->buffer_count > 0) {
pr_err("%s: buffers already allocated for channel %u",
__func__, channel_id);
return -EINVAL;
}
channel->max_buffers = count;
/* set up interrupt frequency */
if (int_freq > channel->max_buffers) {
int_freq = channel->max_buffers;
pr_warn("%s: setting interrupt frequency to %u\n",
__func__, int_freq);
}
channel->int_freq = int_freq;
/*
* it is the responsibility of the caller to tspp_allocate_buffers(),
* whether it's the user or the driver, to make sure the size parameter
* is compatible to the channel mode.
*/
channel->buffer_size = size;
/* save user defined memory free function for later use */
channel->memfree = memfree;
channel->user_info = user;
/*
* For small buffers, create a DMA pool so that memory
* is not wasted through dma_alloc_coherent.
*/
if (TSPP_USE_DMA_POOL(channel->buffer_size)) {
channel->dma_pool = dma_pool_create("tspp",
&pdev->pdev->dev, channel->buffer_size, 0, 0);
if (!channel->dma_pool) {
pr_err("%s: Can't allocate memory pool\n", __func__);
return -ENOMEM;
}
} else {
channel->dma_pool = NULL;
}
for (channel->buffer_count = 0;
channel->buffer_count < channel->max_buffers;
channel->buffer_count++) {
/* allocate the descriptor */
struct tspp_mem_buffer *desc = (struct tspp_mem_buffer *)
kmalloc(sizeof(struct tspp_mem_buffer), GFP_KERNEL);
if (!desc) {
pr_warn("%s: Can't allocate desc %i",
__func__, channel->buffer_count);
break;
}
desc->desc.id = channel->buffer_count;
/* allocate the buffer */
if (tspp_alloc_buffer(channel_id, &desc->desc,
channel->buffer_size, channel->dma_pool,
alloc, user) != 0) {
kfree(desc);
pr_warn("%s: Can't allocate buffer %i",
__func__, channel->buffer_count);
break;
}
/* add the descriptor to the list */
desc->filled = 0;
desc->read_index = 0;
if (!channel->data) {
channel->data = desc;
desc->next = channel->data;
} else {
if (last != NULL)
last->next = desc;
}
last = desc;
desc->next = channel->data;
/* prepare the sps descriptor */
desc->sps.phys_base = desc->desc.phys_base;
desc->sps.base = desc->desc.virt_base;
desc->sps.size = desc->desc.size;
/* start the transfer */
if (tspp_queue_buffer(channel, desc))
pr_err("%s: can't queue buffer %i",
__func__, desc->desc.id);
}
if (channel->buffer_count < channel->max_buffers) {
/*
* we failed to allocate the requested number of buffers.
* we don't allow a partial success, so need to clean up here.
*/
tspp_destroy_buffers(channel_id, channel);
channel->buffer_count = 0;
dma_pool_destroy(channel->dma_pool);
channel->dma_pool = NULL;
return -ENOMEM;
}
channel->waiting = channel->data;
channel->read = channel->data;
channel->locked = channel->data;
/* Now that buffers are scheduled to HW, kick data expiration timer */
if (channel->expiration_period_ms)
mod_timer(&channel->expiration_timer,
jiffies +
MSEC_TO_JIFFIES(
channel->expiration_period_ms));
return 0;
}
EXPORT_SYMBOL(tspp_allocate_buffers);
/*** debugfs ***/
static int debugfs_iomem_x32_set(void *data, u64 val)
{
int rc;
int clock_started = 0;
struct tspp_device *pdev;
pdev = tspp_find_by_id(0);
if (!pdev) {
pr_err("%s: can't find device 0\n", __func__);
return 0;
}
if (tspp_channels_in_use(pdev) == 0) {
rc = tspp_clock_start(pdev);
if (rc) {
pr_err("%s: tspp_clock_start failed %d\n",
__func__, rc);
return 0;
}
clock_started = 1;
}
writel_relaxed(val, data);
/* Assure register write */
wmb();
if (clock_started)
tspp_clock_stop(pdev);
return 0;
}
static int debugfs_iomem_x32_get(void *data, u64 *val)
{
int rc;
int clock_started = 0;
struct tspp_device *pdev;
pdev = tspp_find_by_id(0);
if (!pdev) {
pr_err("%s: can't find device 0\n", __func__);
*val = 0;
return 0;
}
if (tspp_channels_in_use(pdev) == 0) {
rc = tspp_clock_start(pdev);
if (rc) {
pr_err("%s: tspp_clock_start failed %d\n",
__func__, rc);
*val = 0;
return 0;
}
clock_started = 1;
}
*val = readl_relaxed(data);
if (clock_started)
tspp_clock_stop(pdev);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get,
debugfs_iomem_x32_set, "0x%08llx");
static void tsif_debugfs_init(struct tspp_tsif_device *tsif_device,
int instance)
{
char name[10];
snprintf(name, 10, "tsif%i", instance);
tsif_device->dent_tsif = debugfs_create_dir(
name, NULL);
if (tsif_device->dent_tsif) {
int i;
void __iomem *base = tsif_device->base;
for (i = 0; i < ARRAY_SIZE(debugfs_tsif_regs); i++) {
tsif_device->debugfs_tsif_regs[i] =
debugfs_create_file(
debugfs_tsif_regs[i].name,
debugfs_tsif_regs[i].mode,
tsif_device->dent_tsif,
base + debugfs_tsif_regs[i].offset,
&fops_iomem_x32);
}
debugfs_create_u32(
"stat_rx_chunks", 0664,
tsif_device->dent_tsif,
&tsif_device->stat_rx);
debugfs_create_u32(
"stat_overflow", 0664,
tsif_device->dent_tsif,
&tsif_device->stat_overflow);
debugfs_create_u32(
"stat_lost_sync", 0664,
tsif_device->dent_tsif,
&tsif_device->stat_lost_sync);
debugfs_create_u32(
"stat_timeout", 0664,
tsif_device->dent_tsif,
&tsif_device->stat_timeout);
}
}
static void tsif_debugfs_exit(struct tspp_tsif_device *tsif_device)
{
int i;
debugfs_remove_recursive(tsif_device->dent_tsif);
tsif_device->dent_tsif = NULL;
for (i = 0; i < ARRAY_SIZE(debugfs_tsif_regs); i++)
tsif_device->debugfs_tsif_regs[i] = NULL;
}
static void tspp_debugfs_init(struct tspp_device *device, int instance)
{
char name[10];
snprintf(name, 10, "tspp%i", instance);
device->dent = debugfs_create_dir(
name, NULL);
if (device->dent) {
int i;
void __iomem *base = device->base;
for (i = 0; i < ARRAY_SIZE(debugfs_tspp_regs); i++)
device->debugfs_regs[i] =
debugfs_create_file(
debugfs_tspp_regs[i].name,
debugfs_tspp_regs[i].mode,
device->dent,
base + debugfs_tspp_regs[i].offset,
&fops_iomem_x32);
}
}
static void tspp_debugfs_exit(struct tspp_device *device)
{
int i;
debugfs_remove_recursive(device->dent);
for (i = 0; i < ARRAY_SIZE(debugfs_tspp_regs); i++)
device->debugfs_regs[i] = NULL;
}
static int msm_tspp_map_irqs(struct platform_device *pdev,
struct tspp_device *device)
{
int rc;
/* get IRQ numbers from platform information */
/* map TSPP IRQ */
rc = platform_get_irq_byname(pdev, "TSIF_TSPP_IRQ");
if (rc > 0) {
device->tspp_irq = rc;
} else {
dev_err(&pdev->dev, "failed to get TSPP IRQ");
return -EINVAL;
}
/* map TSIF IRQs */
rc = platform_get_irq_byname(pdev, "TSIF0_IRQ");
if (rc > 0) {
device->tsif[0].tsif_irq = rc;
} else {
dev_err(&pdev->dev, "failed to get TSIF0 IRQ");
return -EINVAL;
}
rc = platform_get_irq_byname(pdev, "TSIF1_IRQ");
if (rc > 0) {
device->tsif[1].tsif_irq = rc;
} else {
dev_err(&pdev->dev, "failed to get TSIF1 IRQ");
return -EINVAL;
}
/* map BAM IRQ */
rc = platform_get_irq_byname(pdev, "TSIF_BAM_IRQ");
if (rc > 0) {
device->bam_irq = rc;
} else {
dev_err(&pdev->dev, "failed to get TSPP BAM IRQ");
return -EINVAL;
}
return 0;
}
static int msm_tspp_probe(struct platform_device *pdev)
{
int rc = -ENODEV;
u32 version;
u32 i;
struct tspp_device *device;
struct resource *mem_tsif0;
struct resource *mem_tsif1;
struct resource *mem_tspp;
struct resource *mem_bam;
struct msm_bus_scale_pdata *tspp_bus_pdata = NULL;
unsigned long rate;
if (pdev->dev.of_node) {
/* ID is always 0 since there is only 1 instance of TSPP */
pdev->id = 0;
tspp_bus_pdata = msm_bus_cl_get_pdata(pdev);
} else {
/* must have device tree data */
pr_err("tspp: Device tree data not available\n");
rc = -EINVAL;
goto out;
}
/* OK, we will use this device */
device = kzalloc(sizeof(struct tspp_device), GFP_KERNEL);
if (!device) {
rc = -ENOMEM;
goto out;
}
/* set up references */
device->pdev = pdev;
platform_set_drvdata(pdev, device);
/* setup pin control */
rc = tspp_get_pinctrl(device);
if (rc) {
pr_err("tspp: failed to get pin control data, rc=%d\n", rc);
goto err_pinctrl;
}
/* register bus client */
if (tspp_bus_pdata) {
device->tsif_bus_client =
msm_bus_scale_register_client(tspp_bus_pdata);
if (!device->tsif_bus_client)
pr_err("tspp: Unable to register bus client\n");
} else {
device->tsif_bus_client = 0;
}
/* map regulators */
device->tsif_vreg = devm_regulator_get_optional(&pdev->dev, "vdd_cx");
if (IS_ERR_OR_NULL(device->tsif_vreg)) {
rc = PTR_ERR(device->tsif_vreg);
device->tsif_vreg = NULL;
if (rc == -ENODEV) {
pr_notice("%s: vdd_cx regulator will not be used\n",
__func__);
} else {
dev_err(&pdev->dev,
"failed to get CX regulator, err=%d\n", rc);
goto err_regulator;
}
} else {
/* Set an initial voltage and enable the regulator */
rc = regulator_set_voltage(device->tsif_vreg,
RPMH_REGULATOR_LEVEL_OFF,
RPMH_REGULATOR_LEVEL_MAX);
if (rc) {
dev_err(&pdev->dev, "Unable to set CX voltage.\n");
goto err_regulator;
}
rc = regulator_enable(device->tsif_vreg);
if (rc) {
dev_err(&pdev->dev, "Unable to enable CX regulator.\n");
goto err_regulator;
}
}
/* map clocks */
device->tsif_pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR_OR_NULL(device->tsif_pclk)) {
rc = PTR_ERR(device->tsif_pclk);
device->tsif_pclk = NULL;
goto err_pclock;
}
device->tsif_ref_clk = clk_get(&pdev->dev, "ref_clk");
if (IS_ERR_OR_NULL(device->tsif_ref_clk)) {
rc = PTR_ERR(device->tsif_ref_clk);
device->tsif_ref_clk = NULL;
goto err_refclock;
}
rate = clk_round_rate(device->tsif_ref_clk, 1);
rc = clk_set_rate(device->tsif_ref_clk, rate);
if (rc)
goto err_res_tsif0;
/* map I/O memory */
mem_tsif0 = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "MSM_TSIF0_PHYS");
if (!mem_tsif0) {
pr_err("tspp: Missing tsif0 MEM resource\n");
rc = -ENXIO;
goto err_res_tsif0;
}
device->tsif[0].base = ioremap(mem_tsif0->start,
resource_size(mem_tsif0));
if (!device->tsif[0].base) {
pr_err("tspp: ioremap failed\n");
goto err_map_tsif0;
}
mem_tsif1 = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "MSM_TSIF1_PHYS");
if (!mem_tsif1) {
dev_err(&pdev->dev, "Missing tsif1 MEM resource\n");
rc = -ENXIO;
goto err_res_tsif1;
}
device->tsif[1].base = ioremap(mem_tsif1->start,
resource_size(mem_tsif1));
if (!device->tsif[1].base) {
dev_err(&pdev->dev, "ioremap failed");
goto err_map_tsif1;
}
mem_tspp = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "MSM_TSPP_PHYS");
if (!mem_tspp) {
dev_err(&pdev->dev, "Missing MEM resource");
rc = -ENXIO;
goto err_res_dev;
}
device->base = ioremap(mem_tspp->start, resource_size(mem_tspp));
if (!device->base) {
dev_err(&pdev->dev, "ioremap failed");
goto err_map_dev;
}
mem_bam = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "MSM_TSPP_BAM_PHYS");
if (!mem_bam) {
pr_err("tspp: Missing bam MEM resource");
rc = -ENXIO;
goto err_res_bam;
}
memset(&device->bam_props, 0, sizeof(device->bam_props));
device->bam_props.phys_addr = mem_bam->start;
device->bam_props.virt_addr = ioremap(mem_bam->start,
resource_size(mem_bam));
if (!device->bam_props.virt_addr) {
dev_err(&pdev->dev, "ioremap failed");
goto err_map_bam;
}
if (msm_tspp_map_irqs(pdev, device))
goto err_irq;
device->req_irqs = false;
/* Check whether AV timer time stamps are enabled */
if (!of_property_read_u32(pdev->dev.of_node, "qcom,lpass-timer-tts",
&device->tts_source)) {
if (device->tts_source == 1)
device->tts_source = TSIF_TTS_LPASS_TIMER;
else
device->tts_source = TSIF_TTS_TCR;
} else {
device->tts_source = TSIF_TTS_TCR;
}
for (i = 0; i < TSPP_TSIF_INSTANCES; i++)
device->tsif[i].tts_source = device->tts_source;
/* power management */
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
tspp_debugfs_init(device, 0);
for (i = 0; i < TSPP_TSIF_INSTANCES; i++)
tsif_debugfs_init(&device->tsif[i], i);
wakeup_source_init(&device->ws, dev_name(&pdev->dev));
/* set up pointers to ram-based 'registers' */
device->filters[0] = device->base + TSPP_PID_FILTER_TABLE0;
device->filters[1] = device->base + TSPP_PID_FILTER_TABLE1;
device->filters[2] = device->base + TSPP_PID_FILTER_TABLE2;
device->tspp_key_table = device->base + TSPP_DATA_KEY;
device->tspp_global_performance =
device->base + TSPP_GLOBAL_PERFORMANCE;
device->tspp_pipe_context =
device->base + TSPP_PIPE_CONTEXT;
device->tspp_pipe_performance =
device->base + TSPP_PIPE_PERFORMANCE;
device->bam_props.summing_threshold = 0x10;
device->bam_props.irq = device->bam_irq;
device->bam_props.manage = SPS_BAM_MGR_LOCAL;
/*add SPS BAM log level*/
device->bam_props.ipc_loglevel = TSPP_BAM_DEFAULT_IPC_LOGLVL;
if (tspp_clock_start(device) != 0) {
dev_err(&pdev->dev, "Can't start clocks");
goto err_clock;
}
device->bam_handle = SPS_DEV_HANDLE_INVALID;
spin_lock_init(&device->spinlock);
mutex_init(&device->mutex);
tasklet_init(&device->tlet, tspp_sps_complete_tlet,
(unsigned long)device);
/* initialize everything to a known state */
tspp_global_reset(device);
version = readl_relaxed(device->base + TSPP_VERSION);
/*
* TSPP version can be bits [7:0] or alternatively,
* TSPP major version is bits [31:28].
*/
if ((version != 0x1) && (((version >> 28) & 0xF) != 0x1))
pr_warn("tspp: unrecognized hw version=%i", version);
/* initialize the channels */
for (i = 0; i < TSPP_NUM_CHANNELS; i++)
tspp_channel_init(&(device->channels[i]), device);
/* stop the clocks for power savings */
tspp_clock_stop(device);
/* everything is ok, so add the device to the list */
list_add_tail(&(device->devlist), &tspp_devices);
return 0;
err_clock:
tspp_debugfs_exit(device);
for (i = 0; i < TSPP_TSIF_INSTANCES; i++)
tsif_debugfs_exit(&device->tsif[i]);
err_irq:
iounmap(device->bam_props.virt_addr);
err_map_bam:
err_res_bam:
iounmap(device->base);
err_map_dev:
err_res_dev:
iounmap(device->tsif[1].base);
err_map_tsif1:
err_res_tsif1:
iounmap(device->tsif[0].base);
err_map_tsif0:
err_res_tsif0:
if (device->tsif_ref_clk)
clk_put(device->tsif_ref_clk);
err_refclock:
if (device->tsif_pclk)
clk_put(device->tsif_pclk);
err_pclock:
if (device->tsif_vreg)
regulator_disable(device->tsif_vreg);
err_regulator:
if (device->tsif_bus_client)
msm_bus_scale_unregister_client(device->tsif_bus_client);
err_pinctrl:
kfree(device);
out:
return rc;
}
static int msm_tspp_remove(struct platform_device *pdev)
{
struct tspp_channel *channel;
u32 i;
struct tspp_device *device = platform_get_drvdata(pdev);
/* free the buffers, and delete the channels */
for (i = 0; i < TSPP_NUM_CHANNELS; i++) {
channel = &device->channels[i];
tspp_close_channel(device->pdev->id, i);
}
for (i = 0; i < TSPP_TSIF_INSTANCES; i++)
tsif_debugfs_exit(&device->tsif[i]);
mutex_destroy(&device->mutex);
if (device->tsif_bus_client)
msm_bus_scale_unregister_client(device->tsif_bus_client);
wakeup_source_trash(&device->ws);
if (device->req_irqs)
msm_tspp_free_irqs(device);
iounmap(device->bam_props.virt_addr);
iounmap(device->base);
for (i = 0; i < TSPP_TSIF_INSTANCES; i++)
iounmap(device->tsif[i].base);
if (device->tsif_ref_clk)
clk_put(device->tsif_ref_clk);
if (device->tsif_pclk)
clk_put(device->tsif_pclk);
if (device->tsif_vreg)
regulator_disable(device->tsif_vreg);
pm_runtime_disable(&pdev->dev);
kfree(device);
return 0;
}
/*** power management ***/
static int tspp_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...");
return 0;
}
static int tspp_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...");
return 0;
}
static const struct dev_pm_ops tspp_dev_pm_ops = {
.runtime_suspend = tspp_runtime_suspend,
.runtime_resume = tspp_runtime_resume,
};
static const struct of_device_id msm_match_table[] = {
{.compatible = "qcom,msm_tspp"},
{}
};
static struct platform_driver msm_tspp_driver = {
.probe = msm_tspp_probe,
.remove = msm_tspp_remove,
.driver = {
.name = "msm_tspp",
.pm = &tspp_dev_pm_ops,
.of_match_table = msm_match_table,
},
};
static int __init mod_init(void)
{
int rc;
/* register the driver, and check hardware */
rc = platform_driver_register(&msm_tspp_driver);
if (rc)
pr_err("tspp: platform_driver_register failed: %d", rc);
return rc;
}
static void __exit mod_exit(void)
{
/* delete low level driver */
platform_driver_unregister(&msm_tspp_driver);
}
module_init(mod_init);
module_exit(mod_exit);
MODULE_DESCRIPTION("TSPP platform device");
MODULE_LICENSE("GPL v2");