blob: e2f9ef50b1bd3999f6b7cc2989c24e407e9bd72a [file] [log] [blame]
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include "core.h"
#include "debug.h"
#include "targaddrs.h"
#include "bmi.h"
#include "hif.h"
#include "htc.h"
#include "ce.h"
#include "pci.h"
static unsigned int ath10k_target_ps;
module_param(ath10k_target_ps, uint, 0644);
MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
#define QCA988X_1_0_DEVICE_ID (0xabcd)
#define QCA988X_2_0_DEVICE_ID (0x003c)
static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
{ PCI_VDEVICE(ATHEROS, QCA988X_1_0_DEVICE_ID) }, /* PCI-E QCA988X V1 */
{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
{0}
};
static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
u32 *data);
static void ath10k_pci_process_ce(struct ath10k *ar);
static int ath10k_pci_post_rx(struct ath10k *ar);
static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
int num);
static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info);
static void ath10k_pci_stop_ce(struct ath10k *ar);
static void ath10k_pci_device_reset(struct ath10k *ar);
static int ath10k_pci_reset_target(struct ath10k *ar);
static int ath10k_pci_start_intr(struct ath10k *ar);
static void ath10k_pci_stop_intr(struct ath10k *ar);
static const struct ce_attr host_ce_config_wlan[] = {
/* host->target HTC control and raw streams */
{ /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,},
/* could be moved to share CE3 */
/* target->host HTT + HTC control */
{ /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,},
/* target->host WMI */
{ /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,},
/* host->target WMI */
{ /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,},
/* host->target HTT */
{ /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0,
CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,},
/* unused */
{ /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
/* Target autonomous hif_memcpy */
{ /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
/* ce_diag, the Diagnostic Window */
{ /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,},
};
/* Target firmware's Copy Engine configuration. */
static const struct ce_pipe_config target_ce_config_wlan[] = {
/* host->target HTC control and raw streams */
{ /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,},
/* target->host HTT + HTC control */
{ /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,},
/* target->host WMI */
{ /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,},
/* host->target WMI */
{ /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
/* host->target HTT */
{ /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,},
/* NB: 50% of src nentries, since tx has 2 frags */
/* unused */
{ /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
/* Reserved for target autonomous hif_memcpy */
{ /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,},
/* CE7 used only by Host */
};
/*
* Diagnostic read/write access is provided for startup/config/debug usage.
* Caller must guarantee proper alignment, when applicable, and single user
* at any moment.
*/
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 buf;
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
unsigned int id;
unsigned int flags;
struct ce_state *ce_diag;
/* Host buffer address in CE space */
u32 ce_data;
dma_addr_t ce_data_base = 0;
void *data_buf = NULL;
int i;
/*
* This code cannot handle reads to non-memory space. Redirect to the
* register read fn but preserve the multi word read capability of
* this fn
*/
if (address < DRAM_BASE_ADDRESS) {
if (!IS_ALIGNED(address, 4) ||
!IS_ALIGNED((unsigned long)data, 4))
return -EIO;
while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
ar, address, (u32 *)data)) == 0)) {
nbytes -= sizeof(u32);
address += sizeof(u32);
data += sizeof(u32);
}
return ret;
}
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed from Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
orig_nbytes = nbytes;
data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
orig_nbytes,
&ce_data_base);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
memset(data_buf, 0, orig_nbytes);
remaining_bytes = orig_nbytes;
ce_data = ce_data_base;
while (remaining_bytes) {
nbytes = min_t(unsigned int, remaining_bytes,
DIAG_TRANSFER_LIMIT);
ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
if (ret != 0)
goto done;
/* Request CE to send from Target(!) address to Host buffer */
/*
* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from Target CPU virtual address space
* to CE address space
*/
ath10k_pci_wake(ar);
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
address);
ath10k_pci_sleep(ar);
ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
0);
if (ret)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != (u32) address) {
ret = -EIO;
goto done;
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id, &flags) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != ce_data) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
address += nbytes;
ce_data += nbytes;
}
done:
if (ret == 0) {
/* Copy data from allocated DMA buf to caller's buf */
WARN_ON_ONCE(orig_nbytes & 3);
for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
((u32 *)data)[i] =
__le32_to_cpu(((__le32 *)data_buf)[i]);
}
} else
ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
__func__, address);
if (data_buf)
pci_free_consistent(ar_pci->pdev, orig_nbytes,
data_buf, ce_data_base);
return ret;
}
/* Read 4-byte aligned data from Target memory or register */
static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
u32 *data)
{
/* Assume range doesn't cross this boundary */
if (address >= DRAM_BASE_ADDRESS)
return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
ath10k_pci_wake(ar);
*data = ath10k_pci_read32(ar, address);
ath10k_pci_sleep(ar);
return 0;
}
static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
const void *data, int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 buf;
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
unsigned int id;
unsigned int flags;
struct ce_state *ce_diag;
void *data_buf = NULL;
u32 ce_data; /* Host buffer address in CE space */
dma_addr_t ce_data_base = 0;
int i;
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed to Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
orig_nbytes = nbytes;
data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
orig_nbytes,
&ce_data_base);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
/* Copy caller's data to allocated DMA buf */
WARN_ON_ONCE(orig_nbytes & 3);
for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
/*
* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from
* Target CPU virtual address space
* to
* CE address space
*/
ath10k_pci_wake(ar);
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
ath10k_pci_sleep(ar);
remaining_bytes = orig_nbytes;
ce_data = ce_data_base;
while (remaining_bytes) {
/* FIXME: check cast */
nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
/* Set up to receive directly into Target(!) address */
ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
if (ret != 0)
goto done;
/*
* Request CE to send caller-supplied data that
* was copied to bounce buffer to Target(!) address.
*/
ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
nbytes, 0, 0);
if (ret != 0)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != ce_data) {
ret = -EIO;
goto done;
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
&completed_nbytes,
&id, &flags) != 0) {
mdelay(1);
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (buf != address) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
address += nbytes;
ce_data += nbytes;
}
done:
if (data_buf) {
pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
ce_data_base);
}
if (ret != 0)
ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
address);
return ret;
}
/* Write 4B data to Target memory or register */
static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
u32 data)
{
/* Assume range doesn't cross this boundary */
if (address >= DRAM_BASE_ADDRESS)
return ath10k_pci_diag_write_mem(ar, address, &data,
sizeof(u32));
ath10k_pci_wake(ar);
ath10k_pci_write32(ar, address, data);
ath10k_pci_sleep(ar);
return 0;
}
static bool ath10k_pci_target_is_awake(struct ath10k *ar)
{
void __iomem *mem = ath10k_pci_priv(ar)->mem;
u32 val;
val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
RTC_STATE_ADDRESS);
return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
}
static void ath10k_pci_wait(struct ath10k *ar)
{
int n = 100;
while (n-- && !ath10k_pci_target_is_awake(ar))
msleep(10);
if (n < 0)
ath10k_warn("Unable to wakeup target\n");
}
void ath10k_do_pci_wake(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
void __iomem *pci_addr = ar_pci->mem;
int tot_delay = 0;
int curr_delay = 5;
if (atomic_read(&ar_pci->keep_awake_count) == 0) {
/* Force AWAKE */
iowrite32(PCIE_SOC_WAKE_V_MASK,
pci_addr + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
}
atomic_inc(&ar_pci->keep_awake_count);
if (ar_pci->verified_awake)
return;
for (;;) {
if (ath10k_pci_target_is_awake(ar)) {
ar_pci->verified_awake = true;
break;
}
if (tot_delay > PCIE_WAKE_TIMEOUT) {
ath10k_warn("target takes too long to wake up (awake count %d)\n",
atomic_read(&ar_pci->keep_awake_count));
break;
}
udelay(curr_delay);
tot_delay += curr_delay;
if (curr_delay < 50)
curr_delay += 5;
}
}
void ath10k_do_pci_sleep(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
void __iomem *pci_addr = ar_pci->mem;
if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
/* Allow sleep */
ar_pci->verified_awake = false;
iowrite32(PCIE_SOC_WAKE_RESET,
pci_addr + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
}
}
/*
* FIXME: Handle OOM properly.
*/
static inline
struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info)
{
struct ath10k_pci_compl *compl = NULL;
spin_lock_bh(&pipe_info->pipe_lock);
if (list_empty(&pipe_info->compl_free)) {
ath10k_warn("Completion buffers are full\n");
goto exit;
}
compl = list_first_entry(&pipe_info->compl_free,
struct ath10k_pci_compl, list);
list_del(&compl->list);
exit:
spin_unlock_bh(&pipe_info->pipe_lock);
return compl;
}
/* Called by lower (CE) layer when a send to Target completes. */
static void ath10k_pci_ce_send_done(struct ce_state *ce_state,
void *transfer_context,
u32 ce_data,
unsigned int nbytes,
unsigned int transfer_id)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id];
struct ath10k_pci_compl *compl;
bool process = false;
do {
/*
* For the send completion of an item in sendlist, just
* increment num_sends_allowed. The upper layer callback will
* be triggered when last fragment is done with send.
*/
if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
spin_lock_bh(&pipe_info->pipe_lock);
pipe_info->num_sends_allowed++;
spin_unlock_bh(&pipe_info->pipe_lock);
continue;
}
compl = get_free_compl(pipe_info);
if (!compl)
break;
compl->send_or_recv = HIF_CE_COMPLETE_SEND;
compl->ce_state = ce_state;
compl->pipe_info = pipe_info;
compl->transfer_context = transfer_context;
compl->nbytes = nbytes;
compl->transfer_id = transfer_id;
compl->flags = 0;
/*
* Add the completion to the processing queue.
*/
spin_lock_bh(&ar_pci->compl_lock);
list_add_tail(&compl->list, &ar_pci->compl_process);
spin_unlock_bh(&ar_pci->compl_lock);
process = true;
} while (ath10k_ce_completed_send_next(ce_state,
&transfer_context,
&ce_data, &nbytes,
&transfer_id) == 0);
/*
* If only some of the items within a sendlist have completed,
* don't invoke completion processing until the entire sendlist
* has been sent.
*/
if (!process)
return;
ath10k_pci_process_ce(ar);
}
/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_ce_recv_data(struct ce_state *ce_state,
void *transfer_context, u32 ce_data,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id];
struct ath10k_pci_compl *compl;
struct sk_buff *skb;
do {
compl = get_free_compl(pipe_info);
if (!compl)
break;
compl->send_or_recv = HIF_CE_COMPLETE_RECV;
compl->ce_state = ce_state;
compl->pipe_info = pipe_info;
compl->transfer_context = transfer_context;
compl->nbytes = nbytes;
compl->transfer_id = transfer_id;
compl->flags = flags;
skb = transfer_context;
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
/*
* Add the completion to the processing queue.
*/
spin_lock_bh(&ar_pci->compl_lock);
list_add_tail(&compl->list, &ar_pci->compl_process);
spin_unlock_bh(&ar_pci->compl_lock);
} while (ath10k_ce_completed_recv_next(ce_state,
&transfer_context,
&ce_data, &nbytes,
&transfer_id,
&flags) == 0);
ath10k_pci_process_ce(ar);
}
/* Send the first nbytes bytes of the buffer */
static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
unsigned int transfer_id,
unsigned int bytes, struct sk_buff *nbuf)
{
struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]);
struct ce_state *ce_hdl = pipe_info->ce_hdl;
struct ce_sendlist sendlist;
unsigned int len;
u32 flags = 0;
int ret;
memset(&sendlist, 0, sizeof(struct ce_sendlist));
len = min(bytes, nbuf->len);
bytes -= len;
if (len & 3)
ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
ath10k_dbg(ATH10K_DBG_PCI,
"pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
nbuf->data, (unsigned long long) skb_cb->paddr,
nbuf->len, len);
ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
"ath10k tx: data: ",
nbuf->data, nbuf->len);
ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
/* Make sure we have resources to handle this request */
spin_lock_bh(&pipe_info->pipe_lock);
if (!pipe_info->num_sends_allowed) {
ath10k_warn("Pipe: %d is full\n", pipe_id);
spin_unlock_bh(&pipe_info->pipe_lock);
return -ENOSR;
}
pipe_info->num_sends_allowed--;
spin_unlock_bh(&pipe_info->pipe_lock);
ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
if (ret)
ath10k_warn("CE send failed: %p\n", nbuf);
return ret;
}
static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]);
int ret;
spin_lock_bh(&pipe_info->pipe_lock);
ret = pipe_info->num_sends_allowed;
spin_unlock_bh(&pipe_info->pipe_lock);
return ret;
}
static void ath10k_pci_hif_dump_area(struct ath10k *ar)
{
u32 reg_dump_area = 0;
u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
u32 host_addr;
int ret;
u32 i;
ath10k_err("firmware crashed!\n");
ath10k_err("hardware name %s version 0x%x\n",
ar->hw_params.name, ar->target_version);
ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
ar->fw_version_minor, ar->fw_version_release,
ar->fw_version_build);
host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
if (ath10k_pci_diag_read_mem(ar, host_addr,
&reg_dump_area, sizeof(u32)) != 0) {
ath10k_warn("could not read hi_failure_state\n");
return;
}
ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
&reg_dump_values[0],
REG_DUMP_COUNT_QCA988X * sizeof(u32));
if (ret != 0) {
ath10k_err("could not dump FW Dump Area\n");
return;
}
BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
ath10k_err("target Register Dump\n");
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i,
reg_dump_values[i],
reg_dump_values[i + 1],
reg_dump_values[i + 2],
reg_dump_values[i + 3]);
ieee80211_queue_work(ar->hw, &ar->restart_work);
}
static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
int force)
{
if (!force) {
int resources;
/*
* Decide whether to actually poll for completions, or just
* wait for a later chance.
* If there seem to be plenty of resources left, then just wait
* since checking involves reading a CE register, which is a
* relatively expensive operation.
*/
resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
/*
* If at least 50% of the total resources are still available,
* don't bother checking again yet.
*/
if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
return;
}
ath10k_ce_per_engine_service(ar, pipe);
}
static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
struct ath10k_hif_cb *callbacks)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
memcpy(&ar_pci->msg_callbacks_current, callbacks,
sizeof(ar_pci->msg_callbacks_current));
}
static int ath10k_pci_start_ce(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ce_state *ce_diag = ar_pci->ce_diag;
const struct ce_attr *attr;
struct hif_ce_pipe_info *pipe_info;
struct ath10k_pci_compl *compl;
int i, pipe_num, completions, disable_interrupts;
spin_lock_init(&ar_pci->compl_lock);
INIT_LIST_HEAD(&ar_pci->compl_process);
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
spin_lock_init(&pipe_info->pipe_lock);
INIT_LIST_HEAD(&pipe_info->compl_free);
/* Handle Diagnostic CE specially */
if (pipe_info->ce_hdl == ce_diag)
continue;
attr = &host_ce_config_wlan[pipe_num];
completions = 0;
if (attr->src_nentries) {
disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
ath10k_ce_send_cb_register(pipe_info->ce_hdl,
ath10k_pci_ce_send_done,
disable_interrupts);
completions += attr->src_nentries;
pipe_info->num_sends_allowed = attr->src_nentries - 1;
}
if (attr->dest_nentries) {
ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
ath10k_pci_ce_recv_data);
completions += attr->dest_nentries;
}
if (completions == 0)
continue;
for (i = 0; i < completions; i++) {
compl = kmalloc(sizeof(struct ath10k_pci_compl),
GFP_KERNEL);
if (!compl) {
ath10k_warn("No memory for completion state\n");
ath10k_pci_stop_ce(ar);
return -ENOMEM;
}
compl->send_or_recv = HIF_CE_COMPLETE_FREE;
list_add_tail(&compl->list, &pipe_info->compl_free);
}
}
return 0;
}
static void ath10k_pci_stop_ce(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_compl *compl;
struct sk_buff *skb;
int i;
ath10k_ce_disable_interrupts(ar);
/* Cancel the pending tasklet */
tasklet_kill(&ar_pci->intr_tq);
for (i = 0; i < CE_COUNT; i++)
tasklet_kill(&ar_pci->pipe_info[i].intr);
/* Mark pending completions as aborted, so that upper layers free up
* their associated resources */
spin_lock_bh(&ar_pci->compl_lock);
list_for_each_entry(compl, &ar_pci->compl_process, list) {
skb = (struct sk_buff *)compl->transfer_context;
ATH10K_SKB_CB(skb)->is_aborted = true;
}
spin_unlock_bh(&ar_pci->compl_lock);
}
static void ath10k_pci_cleanup_ce(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_compl *compl, *tmp;
struct hif_ce_pipe_info *pipe_info;
struct sk_buff *netbuf;
int pipe_num;
/* Free pending completions. */
spin_lock_bh(&ar_pci->compl_lock);
if (!list_empty(&ar_pci->compl_process))
ath10k_warn("pending completions still present! possible memory leaks.\n");
list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
list_del(&compl->list);
netbuf = (struct sk_buff *)compl->transfer_context;
dev_kfree_skb_any(netbuf);
kfree(compl);
}
spin_unlock_bh(&ar_pci->compl_lock);
/* Free unused completions for each pipe. */
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
spin_lock_bh(&pipe_info->pipe_lock);
list_for_each_entry_safe(compl, tmp,
&pipe_info->compl_free, list) {
list_del(&compl->list);
kfree(compl);
}
spin_unlock_bh(&pipe_info->pipe_lock);
}
}
static void ath10k_pci_process_ce(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ar->hif.priv;
struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
struct ath10k_pci_compl *compl;
struct sk_buff *skb;
unsigned int nbytes;
int ret, send_done = 0;
/* Upper layers aren't ready to handle tx/rx completions in parallel so
* we must serialize all completion processing. */
spin_lock_bh(&ar_pci->compl_lock);
if (ar_pci->compl_processing) {
spin_unlock_bh(&ar_pci->compl_lock);
return;
}
ar_pci->compl_processing = true;
spin_unlock_bh(&ar_pci->compl_lock);
for (;;) {
spin_lock_bh(&ar_pci->compl_lock);
if (list_empty(&ar_pci->compl_process)) {
spin_unlock_bh(&ar_pci->compl_lock);
break;
}
compl = list_first_entry(&ar_pci->compl_process,
struct ath10k_pci_compl, list);
list_del(&compl->list);
spin_unlock_bh(&ar_pci->compl_lock);
if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) {
cb->tx_completion(ar,
compl->transfer_context,
compl->transfer_id);
send_done = 1;
} else {
ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
if (ret) {
ath10k_warn("Unable to post recv buffer for pipe: %d\n",
compl->pipe_info->pipe_num);
break;
}
skb = (struct sk_buff *)compl->transfer_context;
nbytes = compl->nbytes;
ath10k_dbg(ATH10K_DBG_PCI,
"ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
skb, nbytes);
ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
"ath10k rx: ", skb->data, nbytes);
if (skb->len + skb_tailroom(skb) >= nbytes) {
skb_trim(skb, 0);
skb_put(skb, nbytes);
cb->rx_completion(ar, skb,
compl->pipe_info->pipe_num);
} else {
ath10k_warn("rxed more than expected (nbytes %d, max %d)",
nbytes,
skb->len + skb_tailroom(skb));
}
}
compl->send_or_recv = HIF_CE_COMPLETE_FREE;
/*
* Add completion back to the pipe's free list.
*/
spin_lock_bh(&compl->pipe_info->pipe_lock);
list_add_tail(&compl->list, &compl->pipe_info->compl_free);
compl->pipe_info->num_sends_allowed += send_done;
spin_unlock_bh(&compl->pipe_info->pipe_lock);
}
spin_lock_bh(&ar_pci->compl_lock);
ar_pci->compl_processing = false;
spin_unlock_bh(&ar_pci->compl_lock);
}
/* TODO - temporary mapping while we have too few CE's */
static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
u16 service_id, u8 *ul_pipe,
u8 *dl_pipe, int *ul_is_polled,
int *dl_is_polled)
{
int ret = 0;
/* polling for received messages not supported */
*dl_is_polled = 0;
switch (service_id) {
case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
/*
* Host->target HTT gets its own pipe, so it can be polled
* while other pipes are interrupt driven.
*/
*ul_pipe = 4;
/*
* Use the same target->host pipe for HTC ctrl, HTC raw
* streams, and HTT.
*/
*dl_pipe = 1;
break;
case ATH10K_HTC_SVC_ID_RSVD_CTRL:
case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
/*
* Note: HTC_RAW_STREAMS_SVC is currently unused, and
* HTC_CTRL_RSVD_SVC could share the same pipe as the
* WMI services. So, if another CE is needed, change
* this to *ul_pipe = 3, which frees up CE 0.
*/
/* *ul_pipe = 3; */
*ul_pipe = 0;
*dl_pipe = 1;
break;
case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
case ATH10K_HTC_SVC_ID_WMI_CONTROL:
*ul_pipe = 3;
*dl_pipe = 2;
break;
/* pipe 5 unused */
/* pipe 6 reserved */
/* pipe 7 reserved */
default:
ret = -1;
break;
}
*ul_is_polled =
(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
return ret;
}
static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
int ul_is_polled, dl_is_polled;
(void)ath10k_pci_hif_map_service_to_pipe(ar,
ATH10K_HTC_SVC_ID_RSVD_CTRL,
ul_pipe,
dl_pipe,
&ul_is_polled,
&dl_is_polled);
}
static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
int num)
{
struct ath10k *ar = pipe_info->hif_ce_state;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ce_state *ce_state = pipe_info->ce_hdl;
struct sk_buff *skb;
dma_addr_t ce_data;
int i, ret = 0;
if (pipe_info->buf_sz == 0)
return 0;
for (i = 0; i < num; i++) {
skb = dev_alloc_skb(pipe_info->buf_sz);
if (!skb) {
ath10k_warn("could not allocate skbuff for pipe %d\n",
num);
ret = -ENOMEM;
goto err;
}
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
ce_data = dma_map_single(ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
ath10k_warn("could not dma map skbuff\n");
dev_kfree_skb_any(skb);
ret = -EIO;
goto err;
}
ATH10K_SKB_CB(skb)->paddr = ce_data;
pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
pipe_info->buf_sz,
PCI_DMA_FROMDEVICE);
ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
ce_data);
if (ret) {
ath10k_warn("could not enqueue to pipe %d (%d)\n",
num, ret);
goto err;
}
}
return ret;
err:
ath10k_pci_rx_pipe_cleanup(pipe_info);
return ret;
}
static int ath10k_pci_post_rx(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info;
const struct ce_attr *attr;
int pipe_num, ret = 0;
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
attr = &host_ce_config_wlan[pipe_num];
if (attr->dest_nentries == 0)
continue;
ret = ath10k_pci_post_rx_pipe(pipe_info,
attr->dest_nentries - 1);
if (ret) {
ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
pipe_num);
for (; pipe_num >= 0; pipe_num--) {
pipe_info = &ar_pci->pipe_info[pipe_num];
ath10k_pci_rx_pipe_cleanup(pipe_info);
}
return ret;
}
}
return 0;
}
static int ath10k_pci_hif_start(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = ath10k_pci_start_ce(ar);
if (ret) {
ath10k_warn("could not start CE (%d)\n", ret);
return ret;
}
/* Post buffers once to start things off. */
ret = ath10k_pci_post_rx(ar);
if (ret) {
ath10k_warn("could not post rx pipes (%d)\n", ret);
return ret;
}
ar_pci->started = 1;
return 0;
}
static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
{
struct ath10k *ar;
struct ath10k_pci *ar_pci;
struct ce_state *ce_hdl;
u32 buf_sz;
struct sk_buff *netbuf;
u32 ce_data;
buf_sz = pipe_info->buf_sz;
/* Unused Copy Engine */
if (buf_sz == 0)
return;
ar = pipe_info->hif_ce_state;
ar_pci = ath10k_pci_priv(ar);
if (!ar_pci->started)
return;
ce_hdl = pipe_info->ce_hdl;
while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
&ce_data) == 0) {
dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
netbuf->len + skb_tailroom(netbuf),
DMA_FROM_DEVICE);
dev_kfree_skb_any(netbuf);
}
}
static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
{
struct ath10k *ar;
struct ath10k_pci *ar_pci;
struct ce_state *ce_hdl;
struct sk_buff *netbuf;
u32 ce_data;
unsigned int nbytes;
unsigned int id;
u32 buf_sz;
buf_sz = pipe_info->buf_sz;
/* Unused Copy Engine */
if (buf_sz == 0)
return;
ar = pipe_info->hif_ce_state;
ar_pci = ath10k_pci_priv(ar);
if (!ar_pci->started)
return;
ce_hdl = pipe_info->ce_hdl;
while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
&ce_data, &nbytes, &id) == 0) {
if (netbuf != CE_SENDLIST_ITEM_CTXT)
/*
* Indicate the completion to higer layer to free
* the buffer
*/
ATH10K_SKB_CB(netbuf)->is_aborted = true;
ar_pci->msg_callbacks_current.tx_completion(ar,
netbuf,
id);
}
}
/*
* Cleanup residual buffers for device shutdown:
* buffers that were enqueued for receive
* buffers that were to be sent
* Note: Buffers that had completed but which were
* not yet processed are on a completion queue. They
* are handled when the completion thread shuts down.
*/
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int pipe_num;
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
struct hif_ce_pipe_info *pipe_info;
pipe_info = &ar_pci->pipe_info[pipe_num];
ath10k_pci_rx_pipe_cleanup(pipe_info);
ath10k_pci_tx_pipe_cleanup(pipe_info);
}
}
static void ath10k_pci_ce_deinit(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info;
int pipe_num;
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
if (pipe_info->ce_hdl) {
ath10k_ce_deinit(pipe_info->ce_hdl);
pipe_info->ce_hdl = NULL;
pipe_info->buf_sz = 0;
}
}
}
static void ath10k_pci_disable_irqs(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
disable_irq(ar_pci->pdev->irq + i);
}
static void ath10k_pci_hif_stop(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
/* Irqs are never explicitly re-enabled. They are implicitly re-enabled
* by ath10k_pci_start_intr(). */
ath10k_pci_disable_irqs(ar);
ath10k_pci_stop_ce(ar);
/* At this point, asynchronous threads are stopped, the target should
* not DMA nor interrupt. We process the leftovers and then free
* everything else up. */
ath10k_pci_process_ce(ar);
ath10k_pci_cleanup_ce(ar);
ath10k_pci_buffer_cleanup(ar);
ar_pci->started = 0;
}
static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
void *req, u32 req_len,
void *resp, u32 *resp_len)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl;
struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl;
dma_addr_t req_paddr = 0;
dma_addr_t resp_paddr = 0;
struct bmi_xfer xfer = {};
void *treq, *tresp = NULL;
int ret = 0;
if (resp && !resp_len)
return -EINVAL;
if (resp && resp_len && *resp_len == 0)
return -EINVAL;
treq = kmemdup(req, req_len, GFP_KERNEL);
if (!treq)
return -ENOMEM;
req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
ret = dma_mapping_error(ar->dev, req_paddr);
if (ret)
goto err_dma;
if (resp && resp_len) {
tresp = kzalloc(*resp_len, GFP_KERNEL);
if (!tresp) {
ret = -ENOMEM;
goto err_req;
}
resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
DMA_FROM_DEVICE);
ret = dma_mapping_error(ar->dev, resp_paddr);
if (ret)
goto err_req;
xfer.wait_for_resp = true;
xfer.resp_len = 0;
ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
}
init_completion(&xfer.done);
ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
if (ret)
goto err_resp;
ret = wait_for_completion_timeout(&xfer.done,
BMI_COMMUNICATION_TIMEOUT_HZ);
if (ret <= 0) {
u32 unused_buffer;
unsigned int unused_nbytes;
unsigned int unused_id;
ret = -ETIMEDOUT;
ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
&unused_nbytes, &unused_id);
} else {
/* non-zero means we did not time out */
ret = 0;
}
err_resp:
if (resp) {
u32 unused_buffer;
ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
dma_unmap_single(ar->dev, resp_paddr,
*resp_len, DMA_FROM_DEVICE);
}
err_req:
dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
if (ret == 0 && resp_len) {
*resp_len = min(*resp_len, xfer.resp_len);
memcpy(resp, tresp, xfer.resp_len);
}
err_dma:
kfree(treq);
kfree(tresp);
return ret;
}
static void ath10k_pci_bmi_send_done(struct ce_state *ce_state,
void *transfer_context,
u32 data,
unsigned int nbytes,
unsigned int transfer_id)
{
struct bmi_xfer *xfer = transfer_context;
if (xfer->wait_for_resp)
return;
complete(&xfer->done);
}
static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state,
void *transfer_context,
u32 data,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct bmi_xfer *xfer = transfer_context;
if (!xfer->wait_for_resp) {
ath10k_warn("unexpected: BMI data received; ignoring\n");
return;
}
xfer->resp_len = nbytes;
complete(&xfer->done);
}
/*
* Map from service/endpoint to Copy Engine.
* This table is derived from the CE_PCI TABLE, above.
* It is passed to the Target at startup for use by firmware.
*/
static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
{
ATH10K_HTC_SVC_ID_WMI_DATA_VO,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_VO,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_BK,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_BK,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_BE,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_BE,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_VI,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
ATH10K_HTC_SVC_ID_WMI_DATA_VI,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
ATH10K_HTC_SVC_ID_WMI_CONTROL,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
ATH10K_HTC_SVC_ID_WMI_CONTROL,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
ATH10K_HTC_SVC_ID_RSVD_CTRL,
PIPEDIR_OUT, /* out = UL = host -> target */
0, /* could be moved to 3 (share with WMI) */
},
{
ATH10K_HTC_SVC_ID_RSVD_CTRL,
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
{
ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
PIPEDIR_OUT, /* out = UL = host -> target */
0,
},
{
ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
{
ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
PIPEDIR_OUT, /* out = UL = host -> target */
4,
},
{
ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
/* (Additions here) */
{ /* Must be last */
0,
0,
0,
},
};
/*
* Send an interrupt to the device to wake up the Target CPU
* so it has an opportunity to notice any changed state.
*/
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
int ret;
u32 core_ctrl;
ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
CORE_CTRL_ADDRESS,
&core_ctrl);
if (ret) {
ath10k_warn("Unable to read core ctrl\n");
return ret;
}
/* A_INUM_FIRMWARE interrupt to Target CPU */
core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
CORE_CTRL_ADDRESS,
core_ctrl);
if (ret)
ath10k_warn("Unable to set interrupt mask\n");
return ret;
}
static int ath10k_pci_init_config(struct ath10k *ar)
{
u32 interconnect_targ_addr;
u32 pcie_state_targ_addr = 0;
u32 pipe_cfg_targ_addr = 0;
u32 svc_to_pipe_map = 0;
u32 pcie_config_flags = 0;
u32 ealloc_value;
u32 ealloc_targ_addr;
u32 flag2_value;
u32 flag2_targ_addr;
int ret = 0;
/* Download to Target the CE Config and the service-to-CE map */
interconnect_targ_addr =
host_interest_item_address(HI_ITEM(hi_interconnect_state));
/* Supply Target-side CE configuration */
ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
&pcie_state_targ_addr);
if (ret != 0) {
ath10k_err("Failed to get pcie state addr: %d\n", ret);
return ret;
}
if (pcie_state_targ_addr == 0) {
ret = -EIO;
ath10k_err("Invalid pcie state addr\n");
return ret;
}
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
offsetof(struct pcie_state,
pipe_cfg_addr),
&pipe_cfg_targ_addr);
if (ret != 0) {
ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
return ret;
}
if (pipe_cfg_targ_addr == 0) {
ret = -EIO;
ath10k_err("Invalid pipe cfg addr\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
target_ce_config_wlan,
sizeof(target_ce_config_wlan));
if (ret != 0) {
ath10k_err("Failed to write pipe cfg: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
offsetof(struct pcie_state,
svc_to_pipe_map),
&svc_to_pipe_map);
if (ret != 0) {
ath10k_err("Failed to get svc/pipe map: %d\n", ret);
return ret;
}
if (svc_to_pipe_map == 0) {
ret = -EIO;
ath10k_err("Invalid svc_to_pipe map\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
target_service_to_ce_map_wlan,
sizeof(target_service_to_ce_map_wlan));
if (ret != 0) {
ath10k_err("Failed to write svc/pipe map: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
offsetof(struct pcie_state,
config_flags),
&pcie_config_flags);
if (ret != 0) {
ath10k_err("Failed to get pcie config_flags: %d\n", ret);
return ret;
}
pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
offsetof(struct pcie_state, config_flags),
&pcie_config_flags,
sizeof(pcie_config_flags));
if (ret != 0) {
ath10k_err("Failed to write pcie config_flags: %d\n", ret);
return ret;
}
/* configure early allocation */
ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
if (ret != 0) {
ath10k_err("Faile to get early alloc val: %d\n", ret);
return ret;
}
/* first bank is switched to IRAM */
ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
HI_EARLY_ALLOC_MAGIC_MASK);
ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
HI_EARLY_ALLOC_IRAM_BANKS_MASK);
ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
if (ret != 0) {
ath10k_err("Failed to set early alloc val: %d\n", ret);
return ret;
}
/* Tell Target to proceed with initialization */
flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
if (ret != 0) {
ath10k_err("Failed to get option val: %d\n", ret);
return ret;
}
flag2_value |= HI_OPTION_EARLY_CFG_DONE;
ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
if (ret != 0) {
ath10k_err("Failed to set option val: %d\n", ret);
return ret;
}
return 0;
}
static int ath10k_pci_ce_init(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct hif_ce_pipe_info *pipe_info;
const struct ce_attr *attr;
int pipe_num;
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
pipe_info = &ar_pci->pipe_info[pipe_num];
pipe_info->pipe_num = pipe_num;
pipe_info->hif_ce_state = ar;
attr = &host_ce_config_wlan[pipe_num];
pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
if (pipe_info->ce_hdl == NULL) {
ath10k_err("Unable to initialize CE for pipe: %d\n",
pipe_num);
/* It is safe to call it here. It checks if ce_hdl is
* valid for each pipe */
ath10k_pci_ce_deinit(ar);
return -1;
}
if (pipe_num == ar_pci->ce_count - 1) {
/*
* Reserve the ultimate CE for
* diagnostic Window support
*/
ar_pci->ce_diag =
ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
continue;
}
pipe_info->buf_sz = (size_t) (attr->src_sz_max);
}
/*
* Initially, establish CE completion handlers for use with BMI.
* These are overwritten with generic handlers after we exit BMI phase.
*/
pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
ath10k_ce_send_cb_register(pipe_info->ce_hdl,
ath10k_pci_bmi_send_done, 0);
pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
ath10k_pci_bmi_recv_data);
return 0;
}
static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 fw_indicator_address, fw_indicator;
ath10k_pci_wake(ar);
fw_indicator_address = ar_pci->fw_indicator_address;
fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
if (fw_indicator & FW_IND_EVENT_PENDING) {
/* ACK: clear Target-side pending event */
ath10k_pci_write32(ar, fw_indicator_address,
fw_indicator & ~FW_IND_EVENT_PENDING);
if (ar_pci->started) {
ath10k_pci_hif_dump_area(ar);
} else {
/*
* Probable Target failure before we're prepared
* to handle it. Generally unexpected.
*/
ath10k_warn("early firmware event indicated\n");
}
}
ath10k_pci_sleep(ar);
}
static int ath10k_pci_hif_power_up(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = ath10k_pci_start_intr(ar);
if (ret) {
ath10k_err("could not start interrupt handling (%d)\n", ret);
goto err;
}
/*
* Bring the target up cleanly.
*
* The target may be in an undefined state with an AUX-powered Target
* and a Host in WoW mode. If the Host crashes, loses power, or is
* restarted (without unloading the driver) then the Target is left
* (aux) powered and running. On a subsequent driver load, the Target
* is in an unexpected state. We try to catch that here in order to
* reset the Target and retry the probe.
*/
ath10k_pci_device_reset(ar);
ret = ath10k_pci_reset_target(ar);
if (ret)
goto err_irq;
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
/* Force AWAKE forever */
ath10k_do_pci_wake(ar);
ret = ath10k_pci_ce_init(ar);
if (ret)
goto err_ps;
ret = ath10k_pci_init_config(ar);
if (ret)
goto err_ce;
ret = ath10k_pci_wake_target_cpu(ar);
if (ret) {
ath10k_err("could not wake up target CPU (%d)\n", ret);
goto err_ce;
}
return 0;
err_ce:
ath10k_pci_ce_deinit(ar);
err_ps:
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
ath10k_do_pci_sleep(ar);
err_irq:
ath10k_pci_stop_intr(ar);
err:
return ret;
}
static void ath10k_pci_hif_power_down(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_pci_stop_intr(ar);
ath10k_pci_ce_deinit(ar);
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
ath10k_do_pci_sleep(ar);
}
#ifdef CONFIG_PM
#define ATH10K_PCI_PM_CONTROL 0x44
static int ath10k_pci_hif_suspend(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 val;
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
if ((val & 0x000000ff) != 0x3) {
pci_save_state(pdev);
pci_disable_device(pdev);
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
(val & 0xffffff00) | 0x03);
}
return 0;
}
static int ath10k_pci_hif_resume(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 val;
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
if ((val & 0x000000ff) != 0) {
pci_restore_state(pdev);
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
val & 0xffffff00);
/*
* Suspend/Resume resets the PCI configuration space,
* so we have to re-disable the RETRY_TIMEOUT register (0x41)
* to keep PCI Tx retries from interfering with C3 CPU state
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
}
return 0;
}
#endif
static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
.send_head = ath10k_pci_hif_send_head,
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
.start = ath10k_pci_hif_start,
.stop = ath10k_pci_hif_stop,
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
.send_complete_check = ath10k_pci_hif_send_complete_check,
.set_callbacks = ath10k_pci_hif_set_callbacks,
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
.power_up = ath10k_pci_hif_power_up,
.power_down = ath10k_pci_hif_power_down,
#ifdef CONFIG_PM
.suspend = ath10k_pci_hif_suspend,
.resume = ath10k_pci_hif_resume,
#endif
};
static void ath10k_pci_ce_tasklet(unsigned long ptr)
{
struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr;
struct ath10k_pci *ar_pci = pipe->ar_pci;
ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
}
static void ath10k_msi_err_tasklet(unsigned long data)
{
struct ath10k *ar = (struct ath10k *)data;
ath10k_pci_fw_interrupt_handler(ar);
}
/*
* Handler for a per-engine interrupt on a PARTICULAR CE.
* This is used in cases where each CE has a private MSI interrupt.
*/
static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
return IRQ_HANDLED;
}
/*
* NOTE: We are able to derive ce_id from irq because we
* use a one-to-one mapping for CE's 0..5.
* CE's 6 & 7 do not use interrupts at all.
*
* This mapping must be kept in sync with the mapping
* used by firmware.
*/
tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
return IRQ_HANDLED;
}
static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
tasklet_schedule(&ar_pci->msi_fw_err);
return IRQ_HANDLED;
}
/*
* Top-level interrupt handler for all PCI interrupts from a Target.
* When a block of MSI interrupts is allocated, this top-level handler
* is not used; instead, we directly call the correct sub-handler.
*/
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (ar_pci->num_msi_intrs == 0) {
/*
* IMPORTANT: INTR_CLR regiser has to be set after
* INTR_ENABLE is set to 0, otherwise interrupt can not be
* really cleared.
*/
iowrite32(0, ar_pci->mem +
(SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
iowrite32(PCIE_INTR_FIRMWARE_MASK |
PCIE_INTR_CE_MASK_ALL,
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
PCIE_INTR_CLR_ADDRESS));
/*
* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer.
*/
(void) ioread32(ar_pci->mem +
(SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
}
tasklet_schedule(&ar_pci->intr_tq);
return IRQ_HANDLED;
}
static void ath10k_pci_tasklet(unsigned long data)
{
struct ath10k *ar = (struct ath10k *)data;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
ath10k_ce_per_engine_service_any(ar);
if (ar_pci->num_msi_intrs == 0) {
/* Enable Legacy PCI line interrupts */
iowrite32(PCIE_INTR_FIRMWARE_MASK |
PCIE_INTR_CE_MASK_ALL,
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
/*
* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer
*/
(void) ioread32(ar_pci->mem +
(SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
}
}
static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
int i;
ret = pci_enable_msi_block(ar_pci->pdev, num);
if (ret)
return ret;
ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
ath10k_pci_msi_fw_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn("request_irq(%d) failed %d\n",
ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
pci_disable_msi(ar_pci->pdev);
return ret;
}
for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
ret = request_irq(ar_pci->pdev->irq + i,
ath10k_pci_per_engine_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn("request_irq(%d) failed %d\n",
ar_pci->pdev->irq + i, ret);
for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
free_irq(ar_pci->pdev->irq + i, ar);
free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
pci_disable_msi(ar_pci->pdev);
return ret;
}
}
ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
return 0;
}
static int ath10k_pci_start_intr_msi(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = pci_enable_msi(ar_pci->pdev);
if (ret < 0)
return ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret < 0) {
pci_disable_msi(ar_pci->pdev);
return ret;
}
ath10k_info("MSI interrupt handling\n");
return 0;
}
static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret < 0)
return ret;
/*
* Make sure to wake the Target before enabling Legacy
* Interrupt.
*/
iowrite32(PCIE_SOC_WAKE_V_MASK,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ath10k_pci_wait(ar);
/*
* A potential race occurs here: The CORE_BASE write
* depends on target correctly decoding AXI address but
* host won't know when target writes BAR to CORE_CTRL.
* This write might get lost if target has NOT written BAR.
* For now, fix the race by repeating the write in below
* synchronization checking.
*/
iowrite32(PCIE_INTR_FIRMWARE_MASK |
PCIE_INTR_CE_MASK_ALL,
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
iowrite32(PCIE_SOC_WAKE_RESET,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ath10k_info("legacy interrupt handling\n");
return 0;
}
static int ath10k_pci_start_intr(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int num = MSI_NUM_REQUEST;
int ret;
int i;
tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
(unsigned long) ar);
for (i = 0; i < CE_COUNT; i++) {
ar_pci->pipe_info[i].ar_pci = ar_pci;
tasklet_init(&ar_pci->pipe_info[i].intr,
ath10k_pci_ce_tasklet,
(unsigned long)&ar_pci->pipe_info[i]);
}
if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
num = 1;
if (num > 1) {
ret = ath10k_pci_start_intr_msix(ar, num);
if (ret == 0)
goto exit;
ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
num = 1;
}
if (num == 1) {
ret = ath10k_pci_start_intr_msi(ar);
if (ret == 0)
goto exit;
ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
ret);
num = 0;
}
ret = ath10k_pci_start_intr_legacy(ar);
exit:
ar_pci->num_msi_intrs = num;
ar_pci->ce_count = CE_COUNT;
return ret;
}
static void ath10k_pci_stop_intr(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
/* There's at least one interrupt irregardless whether its legacy INTR
* or MSI or MSI-X */
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
free_irq(ar_pci->pdev->irq + i, ar);
if (ar_pci->num_msi_intrs > 0)
pci_disable_msi(ar_pci->pdev);
}
static int ath10k_pci_reset_target(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int wait_limit = 300; /* 3 sec */
/* Wait for Target to finish initialization before we proceed. */
iowrite32(PCIE_SOC_WAKE_V_MASK,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ath10k_pci_wait(ar);
while (wait_limit-- &&
!(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
FW_IND_INITIALIZED)) {
if (ar_pci->num_msi_intrs == 0)
/* Fix potential race by repeating CORE_BASE writes */
iowrite32(PCIE_INTR_FIRMWARE_MASK |
PCIE_INTR_CE_MASK_ALL,
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
PCIE_INTR_ENABLE_ADDRESS));
mdelay(10);
}
if (wait_limit < 0) {
ath10k_err("Target stalled\n");
iowrite32(PCIE_SOC_WAKE_RESET,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
return -EIO;
}
iowrite32(PCIE_SOC_WAKE_RESET,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
return 0;
}
static void ath10k_pci_device_reset(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
void __iomem *mem = ar_pci->mem;
int i;
u32 val;
if (!SOC_GLOBAL_RESET_ADDRESS)
return;
if (!mem)
return;
ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
PCIE_SOC_WAKE_V_MASK);
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
if (ath10k_pci_target_is_awake(ar))
break;
msleep(1);
}
/* Put Target, including PCIe, into RESET. */
val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
val |= 1;
ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
RTC_STATE_COLD_RESET_MASK)
break;
msleep(1);
}
/* Pull Target, including PCIe, out of RESET. */
val &= ~1;
ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
RTC_STATE_COLD_RESET_MASK))
break;
msleep(1);
}
ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
}
static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
{
int i;
for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
if (!test_bit(i, ar_pci->features))
continue;
switch (i) {
case ATH10K_PCI_FEATURE_MSI_X:
ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
break;
case ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND:
ath10k_dbg(ATH10K_DBG_PCI, "QCA988X_1.0 workaround enabled\n");
break;
case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
ath10k_dbg(ATH10K_DBG_PCI, "QCA98XX SoC power save enabled\n");
break;
}
}
}
static int ath10k_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_dev)
{
void __iomem *mem;
int ret = 0;
struct ath10k *ar;
struct ath10k_pci *ar_pci;
u32 lcr_val;
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
if (ar_pci == NULL)
return -ENOMEM;
ar_pci->pdev = pdev;
ar_pci->dev = &pdev->dev;
switch (pci_dev->device) {
case QCA988X_1_0_DEVICE_ID:
set_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features);
break;
case QCA988X_2_0_DEVICE_ID:
set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
break;
default:
ret = -ENODEV;
ath10k_err("Unkown device ID: %d\n", pci_dev->device);
goto err_ar_pci;
}
if (ath10k_target_ps)
set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
ath10k_pci_dump_features(ar_pci);
ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
if (!ar) {
ath10k_err("ath10k_core_create failed!\n");
ret = -EINVAL;
goto err_ar_pci;
}
/* Enable QCA988X_1.0 HW workarounds */
if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features))
spin_lock_init(&ar_pci->hw_v1_workaround_lock);
ar_pci->ar = ar;
ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
atomic_set(&ar_pci->keep_awake_count, 0);
pci_set_drvdata(pdev, ar);
/*
* Without any knowledge of the Host, the Target may have been reset or
* power cycled and its Config Space may no longer reflect the PCI
* address space that was assigned earlier by the PCI infrastructure.
* Refresh it now.
*/
ret = pci_assign_resource(pdev, BAR_NUM);
if (ret) {
ath10k_err("cannot assign PCI space: %d\n", ret);
goto err_ar;
}
ret = pci_enable_device(pdev);
if (ret) {
ath10k_err("cannot enable PCI device: %d\n", ret);
goto err_ar;
}
/* Request MMIO resources */
ret = pci_request_region(pdev, BAR_NUM, "ath");
if (ret) {
ath10k_err("PCI MMIO reservation error: %d\n", ret);
goto err_device;
}
/*
* Target structures have a limit of 32 bit DMA pointers.
* DMA pointers can be wider than 32 bits by default on some systems.
*/
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err("32-bit DMA not available: %d\n", ret);
goto err_region;
}
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err("cannot enable 32-bit consistent DMA\n");
goto err_region;
}
/* Set bus master bit in PCI_COMMAND to enable DMA */
pci_set_master(pdev);
/*
* Temporary FIX: disable ASPM
* Will be removed after the OTP is programmed
*/
pci_read_config_dword(pdev, 0x80, &lcr_val);
pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
/* Arrange for access to Target SoC registers. */
mem = pci_iomap(pdev, BAR_NUM, 0);
if (!mem) {
ath10k_err("PCI iomap error\n");
ret = -EIO;
goto err_master;
}
ar_pci->mem = mem;
spin_lock_init(&ar_pci->ce_lock);
ar_pci->cacheline_sz = dma_get_cache_alignment();
ret = ath10k_core_register(ar);
if (ret) {
ath10k_err("could not register driver core (%d)\n", ret);
goto err_iomap;
}
return 0;
err_iomap:
pci_iounmap(pdev, mem);
err_master:
pci_clear_master(pdev);
err_region:
pci_release_region(pdev, BAR_NUM);
err_device:
pci_disable_device(pdev);
err_ar:
pci_set_drvdata(pdev, NULL);
ath10k_core_destroy(ar);
err_ar_pci:
/* call HIF PCI free here */
kfree(ar_pci);
return ret;
}
static void ath10k_pci_remove(struct pci_dev *pdev)
{
struct ath10k *ar = pci_get_drvdata(pdev);
struct ath10k_pci *ar_pci;
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
if (!ar)
return;
ar_pci = ath10k_pci_priv(ar);
if (!ar_pci)
return;
tasklet_kill(&ar_pci->msi_fw_err);
ath10k_core_unregister(ar);
pci_set_drvdata(pdev, NULL);
pci_iounmap(pdev, ar_pci->mem);
pci_release_region(pdev, BAR_NUM);
pci_clear_master(pdev);
pci_disable_device(pdev);
ath10k_core_destroy(ar);
kfree(ar_pci);
}
MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
static struct pci_driver ath10k_pci_driver = {
.name = "ath10k_pci",
.id_table = ath10k_pci_id_table,
.probe = ath10k_pci_probe,
.remove = ath10k_pci_remove,
};
static int __init ath10k_pci_init(void)
{
int ret;
ret = pci_register_driver(&ath10k_pci_driver);
if (ret)
ath10k_err("pci_register_driver failed [%d]\n", ret);
return ret;
}
module_init(ath10k_pci_init);
static void __exit ath10k_pci_exit(void)
{
pci_unregister_driver(&ath10k_pci_driver);
}
module_exit(ath10k_pci_exit);
MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_FW_FILE);
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_OTP_FILE);
MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);