| /* |
| * net/dsa/mv88e6352.c - Marvell 88e6352 switch chip support |
| * |
| * Copyright (c) 2014 Guenter Roeck |
| * |
| * Derived from mv88e6123_61_65.c |
| * Copyright (c) 2008-2009 Marvell Semiconductor |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/jiffies.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/platform_device.h> |
| #include <linux/phy.h> |
| #include <net/dsa.h> |
| #include "mv88e6xxx.h" |
| |
| static int mv88e6352_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) |
| { |
| unsigned long timeout = jiffies + HZ / 10; |
| |
| while (time_before(jiffies, timeout)) { |
| int ret; |
| |
| ret = REG_READ(reg, offset); |
| if (!(ret & mask)) |
| return 0; |
| |
| usleep_range(1000, 2000); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static inline int mv88e6352_phy_wait(struct dsa_switch *ds) |
| { |
| return mv88e6352_wait(ds, REG_GLOBAL2, 0x18, 0x8000); |
| } |
| |
| static inline int mv88e6352_eeprom_load_wait(struct dsa_switch *ds) |
| { |
| return mv88e6352_wait(ds, REG_GLOBAL2, 0x14, 0x0800); |
| } |
| |
| static inline int mv88e6352_eeprom_busy_wait(struct dsa_switch *ds) |
| { |
| return mv88e6352_wait(ds, REG_GLOBAL2, 0x14, 0x8000); |
| } |
| |
| static int __mv88e6352_phy_read(struct dsa_switch *ds, int addr, int regnum) |
| { |
| int ret; |
| |
| REG_WRITE(REG_GLOBAL2, 0x18, 0x9800 | (addr << 5) | regnum); |
| |
| ret = mv88e6352_phy_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return REG_READ(REG_GLOBAL2, 0x19); |
| } |
| |
| static int __mv88e6352_phy_write(struct dsa_switch *ds, int addr, int regnum, |
| u16 val) |
| { |
| REG_WRITE(REG_GLOBAL2, 0x19, val); |
| REG_WRITE(REG_GLOBAL2, 0x18, 0x9400 | (addr << 5) | regnum); |
| |
| return mv88e6352_phy_wait(ds); |
| } |
| |
| static char *mv88e6352_probe(struct device *host_dev, int sw_addr) |
| { |
| struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev); |
| int ret; |
| |
| if (bus == NULL) |
| return NULL; |
| |
| ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03); |
| if (ret >= 0) { |
| if ((ret & 0xfff0) == 0x1760) |
| return "Marvell 88E6176"; |
| if (ret == 0x3521) |
| return "Marvell 88E6352 (A0)"; |
| if (ret == 0x3522) |
| return "Marvell 88E6352 (A1)"; |
| if ((ret & 0xfff0) == 0x3520) |
| return "Marvell 88E6352"; |
| } |
| |
| return NULL; |
| } |
| |
| static int mv88e6352_switch_reset(struct dsa_switch *ds) |
| { |
| unsigned long timeout; |
| int ret; |
| int i; |
| |
| /* Set all ports to the disabled state. */ |
| for (i = 0; i < 7; i++) { |
| ret = REG_READ(REG_PORT(i), 0x04); |
| REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc); |
| } |
| |
| /* Wait for transmit queues to drain. */ |
| usleep_range(2000, 4000); |
| |
| /* Reset the switch. Keep PPU active (bit 14, undocumented). |
| * The PPU needs to be active to support indirect phy register |
| * accesses through global registers 0x18 and 0x19. |
| */ |
| REG_WRITE(REG_GLOBAL, 0x04, 0xc000); |
| |
| /* Wait up to one second for reset to complete. */ |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = REG_READ(REG_GLOBAL, 0x00); |
| if ((ret & 0x8800) == 0x8800) |
| break; |
| usleep_range(1000, 2000); |
| } |
| if (time_after(jiffies, timeout)) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static int mv88e6352_setup_global(struct dsa_switch *ds) |
| { |
| int ret; |
| int i; |
| |
| /* Discard packets with excessive collisions, |
| * mask all interrupt sources, enable PPU (bit 14, undocumented). |
| */ |
| REG_WRITE(REG_GLOBAL, 0x04, 0x6000); |
| |
| /* Set the default address aging time to 5 minutes, and |
| * enable address learn messages to be sent to all message |
| * ports. |
| */ |
| REG_WRITE(REG_GLOBAL, 0x0a, 0x0148); |
| |
| /* Configure the priority mapping registers. */ |
| ret = mv88e6xxx_config_prio(ds); |
| if (ret < 0) |
| return ret; |
| |
| /* Configure the upstream port, and configure the upstream |
| * port as the port to which ingress and egress monitor frames |
| * are to be sent. |
| */ |
| REG_WRITE(REG_GLOBAL, 0x1a, (dsa_upstream_port(ds) * 0x1110)); |
| |
| /* Disable remote management for now, and set the switch's |
| * DSA device number. |
| */ |
| REG_WRITE(REG_GLOBAL, 0x1c, ds->index & 0x1f); |
| |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:2x to the CPU port. |
| */ |
| REG_WRITE(REG_GLOBAL2, 0x02, 0xffff); |
| |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:0x to the CPU port. |
| */ |
| REG_WRITE(REG_GLOBAL2, 0x03, 0xffff); |
| |
| /* Disable the loopback filter, disable flow control |
| * messages, disable flood broadcast override, disable |
| * removing of provider tags, disable ATU age violation |
| * interrupts, disable tag flow control, force flow |
| * control priority to the highest, and send all special |
| * multicast frames to the CPU at the highest priority. |
| */ |
| REG_WRITE(REG_GLOBAL2, 0x05, 0x00ff); |
| |
| /* Program the DSA routing table. */ |
| for (i = 0; i < 32; i++) { |
| int nexthop = 0x1f; |
| |
| if (i != ds->index && i < ds->dst->pd->nr_chips) |
| nexthop = ds->pd->rtable[i] & 0x1f; |
| |
| REG_WRITE(REG_GLOBAL2, 0x06, 0x8000 | (i << 8) | nexthop); |
| } |
| |
| /* Clear all trunk masks. */ |
| for (i = 0; i < 8; i++) |
| REG_WRITE(REG_GLOBAL2, 0x07, 0x8000 | (i << 12) | 0x7f); |
| |
| /* Clear all trunk mappings. */ |
| for (i = 0; i < 16; i++) |
| REG_WRITE(REG_GLOBAL2, 0x08, 0x8000 | (i << 11)); |
| |
| /* Disable ingress rate limiting by resetting all ingress |
| * rate limit registers to their initial state. |
| */ |
| for (i = 0; i < 7; i++) |
| REG_WRITE(REG_GLOBAL2, 0x09, 0x9000 | (i << 8)); |
| |
| /* Initialise cross-chip port VLAN table to reset defaults. */ |
| REG_WRITE(REG_GLOBAL2, 0x0b, 0x9000); |
| |
| /* Clear the priority override table. */ |
| for (i = 0; i < 16; i++) |
| REG_WRITE(REG_GLOBAL2, 0x0f, 0x8000 | (i << 8)); |
| |
| /* @@@ initialise AVB (22/23) watchdog (27) sdet (29) registers */ |
| |
| return 0; |
| } |
| |
| static int mv88e6352_setup_port(struct dsa_switch *ds, int p) |
| { |
| int addr = REG_PORT(p); |
| u16 val; |
| |
| /* MAC Forcing register: don't force link, speed, duplex |
| * or flow control state to any particular values on physical |
| * ports, but force the CPU port and all DSA ports to 1000 Mb/s |
| * full duplex. |
| */ |
| if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p)) |
| REG_WRITE(addr, 0x01, 0x003e); |
| else |
| REG_WRITE(addr, 0x01, 0x0003); |
| |
| /* Do not limit the period of time that this port can be |
| * paused for by the remote end or the period of time that |
| * this port can pause the remote end. |
| */ |
| REG_WRITE(addr, 0x02, 0x0000); |
| |
| /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, |
| * disable Header mode, enable IGMP/MLD snooping, disable VLAN |
| * tunneling, determine priority by looking at 802.1p and IP |
| * priority fields (IP prio has precedence), and set STP state |
| * to Forwarding. |
| * |
| * If this is the CPU link, use DSA or EDSA tagging depending |
| * on which tagging mode was configured. |
| * |
| * If this is a link to another switch, use DSA tagging mode. |
| * |
| * If this is the upstream port for this switch, enable |
| * forwarding of unknown unicasts and multicasts. |
| */ |
| val = 0x0433; |
| if (dsa_is_cpu_port(ds, p)) { |
| if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| val |= 0x3300; |
| else |
| val |= 0x0100; |
| } |
| if (ds->dsa_port_mask & (1 << p)) |
| val |= 0x0100; |
| if (p == dsa_upstream_port(ds)) |
| val |= 0x000c; |
| REG_WRITE(addr, 0x04, val); |
| |
| /* Port Control 1: disable trunking. Also, if this is the |
| * CPU port, enable learn messages to be sent to this port. |
| */ |
| REG_WRITE(addr, 0x05, dsa_is_cpu_port(ds, p) ? 0x8000 : 0x0000); |
| |
| /* Port based VLAN map: give each port its own address |
| * database, allow the CPU port to talk to each of the 'real' |
| * ports, and allow each of the 'real' ports to only talk to |
| * the upstream port. |
| */ |
| val = (p & 0xf) << 12; |
| if (dsa_is_cpu_port(ds, p)) |
| val |= ds->phys_port_mask; |
| else |
| val |= 1 << dsa_upstream_port(ds); |
| REG_WRITE(addr, 0x06, val); |
| |
| /* Default VLAN ID and priority: don't set a default VLAN |
| * ID, and set the default packet priority to zero. |
| */ |
| REG_WRITE(addr, 0x07, 0x0000); |
| |
| /* Port Control 2: don't force a good FCS, set the maximum |
| * frame size to 10240 bytes, don't let the switch add or |
| * strip 802.1q tags, don't discard tagged or untagged frames |
| * on this port, do a destination address lookup on all |
| * received packets as usual, disable ARP mirroring and don't |
| * send a copy of all transmitted/received frames on this port |
| * to the CPU. |
| */ |
| REG_WRITE(addr, 0x08, 0x2080); |
| |
| /* Egress rate control: disable egress rate control. */ |
| REG_WRITE(addr, 0x09, 0x0001); |
| |
| /* Egress rate control 2: disable egress rate control. */ |
| REG_WRITE(addr, 0x0a, 0x0000); |
| |
| /* Port Association Vector: when learning source addresses |
| * of packets, add the address to the address database using |
| * a port bitmap that has only the bit for this port set and |
| * the other bits clear. |
| */ |
| REG_WRITE(addr, 0x0b, 1 << p); |
| |
| /* Port ATU control: disable limiting the number of address |
| * database entries that this port is allowed to use. |
| */ |
| REG_WRITE(addr, 0x0c, 0x0000); |
| |
| /* Priority Override: disable DA, SA and VTU priority override. */ |
| REG_WRITE(addr, 0x0d, 0x0000); |
| |
| /* Port Ethertype: use the Ethertype DSA Ethertype value. */ |
| REG_WRITE(addr, 0x0f, ETH_P_EDSA); |
| |
| /* Tag Remap: use an identity 802.1p prio -> switch prio |
| * mapping. |
| */ |
| REG_WRITE(addr, 0x18, 0x3210); |
| |
| /* Tag Remap 2: use an identity 802.1p prio -> switch prio |
| * mapping. |
| */ |
| REG_WRITE(addr, 0x19, 0x7654); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_DSA_HWMON |
| |
| static int mv88e6352_phy_page_read(struct dsa_switch *ds, |
| int port, int page, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->phy_mutex); |
| ret = __mv88e6352_phy_write(ds, port, 0x16, page); |
| if (ret < 0) |
| goto error; |
| ret = __mv88e6352_phy_read(ds, port, reg); |
| error: |
| __mv88e6352_phy_write(ds, port, 0x16, 0x0); |
| mutex_unlock(&ps->phy_mutex); |
| return ret; |
| } |
| |
| static int mv88e6352_phy_page_write(struct dsa_switch *ds, |
| int port, int page, int reg, int val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->phy_mutex); |
| ret = __mv88e6352_phy_write(ds, port, 0x16, page); |
| if (ret < 0) |
| goto error; |
| |
| ret = __mv88e6352_phy_write(ds, port, reg, val); |
| error: |
| __mv88e6352_phy_write(ds, port, 0x16, 0x0); |
| mutex_unlock(&ps->phy_mutex); |
| return ret; |
| } |
| |
| static int mv88e6352_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| int ret; |
| |
| *temp = 0; |
| |
| ret = mv88e6352_phy_page_read(ds, 0, 6, 27); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (ret & 0xff) - 25; |
| |
| return 0; |
| } |
| |
| static int mv88e6352_get_temp_limit(struct dsa_switch *ds, int *temp) |
| { |
| int ret; |
| |
| *temp = 0; |
| |
| ret = mv88e6352_phy_page_read(ds, 0, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (((ret >> 8) & 0x1f) * 5) - 25; |
| |
| return 0; |
| } |
| |
| static int mv88e6352_set_temp_limit(struct dsa_switch *ds, int temp) |
| { |
| int ret; |
| |
| ret = mv88e6352_phy_page_read(ds, 0, 6, 26); |
| if (ret < 0) |
| return ret; |
| temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); |
| return mv88e6352_phy_page_write(ds, 0, 6, 26, |
| (ret & 0xe0ff) | (temp << 8)); |
| } |
| |
| static int mv88e6352_get_temp_alarm(struct dsa_switch *ds, bool *alarm) |
| { |
| int ret; |
| |
| *alarm = false; |
| |
| ret = mv88e6352_phy_page_read(ds, 0, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *alarm = !!(ret & 0x40); |
| |
| return 0; |
| } |
| #endif /* CONFIG_NET_DSA_HWMON */ |
| |
| static int mv88e6352_setup(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int i; |
| |
| mutex_init(&ps->smi_mutex); |
| mutex_init(&ps->stats_mutex); |
| mutex_init(&ps->phy_mutex); |
| mutex_init(&ps->eeprom_mutex); |
| |
| ps->id = REG_READ(REG_PORT(0), 0x03) & 0xfff0; |
| |
| ret = mv88e6352_switch_reset(ds); |
| if (ret < 0) |
| return ret; |
| |
| /* @@@ initialise vtu and atu */ |
| |
| ret = mv88e6352_setup_global(ds); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < 7; i++) { |
| ret = mv88e6352_setup_port(ds, i); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int mv88e6352_port_to_phy_addr(int port) |
| { |
| if (port >= 0 && port <= 4) |
| return port; |
| return -EINVAL; |
| } |
| |
| static int |
| mv88e6352_phy_read(struct dsa_switch *ds, int port, int regnum) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6352_port_to_phy_addr(port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->phy_mutex); |
| ret = __mv88e6352_phy_read(ds, addr, regnum); |
| mutex_unlock(&ps->phy_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| mv88e6352_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6352_port_to_phy_addr(port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->phy_mutex); |
| ret = __mv88e6352_phy_write(ds, addr, regnum, val); |
| mutex_unlock(&ps->phy_mutex); |
| |
| return ret; |
| } |
| |
| static struct mv88e6xxx_hw_stat mv88e6352_hw_stats[] = { |
| { "in_good_octets", 8, 0x00, }, |
| { "in_bad_octets", 4, 0x02, }, |
| { "in_unicast", 4, 0x04, }, |
| { "in_broadcasts", 4, 0x06, }, |
| { "in_multicasts", 4, 0x07, }, |
| { "in_pause", 4, 0x16, }, |
| { "in_undersize", 4, 0x18, }, |
| { "in_fragments", 4, 0x19, }, |
| { "in_oversize", 4, 0x1a, }, |
| { "in_jabber", 4, 0x1b, }, |
| { "in_rx_error", 4, 0x1c, }, |
| { "in_fcs_error", 4, 0x1d, }, |
| { "out_octets", 8, 0x0e, }, |
| { "out_unicast", 4, 0x10, }, |
| { "out_broadcasts", 4, 0x13, }, |
| { "out_multicasts", 4, 0x12, }, |
| { "out_pause", 4, 0x15, }, |
| { "excessive", 4, 0x11, }, |
| { "collisions", 4, 0x1e, }, |
| { "deferred", 4, 0x05, }, |
| { "single", 4, 0x14, }, |
| { "multiple", 4, 0x17, }, |
| { "out_fcs_error", 4, 0x03, }, |
| { "late", 4, 0x1f, }, |
| { "hist_64bytes", 4, 0x08, }, |
| { "hist_65_127bytes", 4, 0x09, }, |
| { "hist_128_255bytes", 4, 0x0a, }, |
| { "hist_256_511bytes", 4, 0x0b, }, |
| { "hist_512_1023bytes", 4, 0x0c, }, |
| { "hist_1024_max_bytes", 4, 0x0d, }, |
| { "sw_in_discards", 4, 0x110, }, |
| { "sw_in_filtered", 2, 0x112, }, |
| { "sw_out_filtered", 2, 0x113, }, |
| }; |
| |
| static int mv88e6352_read_eeprom_word(struct dsa_switch *ds, int addr) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->eeprom_mutex); |
| |
| ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14, |
| 0xc000 | (addr & 0xff)); |
| if (ret < 0) |
| goto error; |
| |
| ret = mv88e6352_eeprom_busy_wait(ds); |
| if (ret < 0) |
| goto error; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x15); |
| error: |
| mutex_unlock(&ps->eeprom_mutex); |
| return ret; |
| } |
| |
| static int mv88e6352_get_eeprom(struct dsa_switch *ds, |
| struct ethtool_eeprom *eeprom, u8 *data) |
| { |
| int offset; |
| int len; |
| int ret; |
| |
| offset = eeprom->offset; |
| len = eeprom->len; |
| eeprom->len = 0; |
| |
| eeprom->magic = 0xc3ec4951; |
| |
| ret = mv88e6352_eeprom_load_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| if (offset & 1) { |
| int word; |
| |
| word = mv88e6352_read_eeprom_word(ds, offset >> 1); |
| if (word < 0) |
| return word; |
| |
| *data++ = (word >> 8) & 0xff; |
| |
| offset++; |
| len--; |
| eeprom->len++; |
| } |
| |
| while (len >= 2) { |
| int word; |
| |
| word = mv88e6352_read_eeprom_word(ds, offset >> 1); |
| if (word < 0) |
| return word; |
| |
| *data++ = word & 0xff; |
| *data++ = (word >> 8) & 0xff; |
| |
| offset += 2; |
| len -= 2; |
| eeprom->len += 2; |
| } |
| |
| if (len) { |
| int word; |
| |
| word = mv88e6352_read_eeprom_word(ds, offset >> 1); |
| if (word < 0) |
| return word; |
| |
| *data++ = word & 0xff; |
| |
| offset++; |
| len--; |
| eeprom->len++; |
| } |
| |
| return 0; |
| } |
| |
| static int mv88e6352_eeprom_is_readonly(struct dsa_switch *ds) |
| { |
| int ret; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x14); |
| if (ret < 0) |
| return ret; |
| |
| if (!(ret & 0x0400)) |
| return -EROFS; |
| |
| return 0; |
| } |
| |
| static int mv88e6352_write_eeprom_word(struct dsa_switch *ds, int addr, |
| u16 data) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->eeprom_mutex); |
| |
| ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x15, data); |
| if (ret < 0) |
| goto error; |
| |
| ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14, |
| 0xb000 | (addr & 0xff)); |
| if (ret < 0) |
| goto error; |
| |
| ret = mv88e6352_eeprom_busy_wait(ds); |
| error: |
| mutex_unlock(&ps->eeprom_mutex); |
| return ret; |
| } |
| |
| static int mv88e6352_set_eeprom(struct dsa_switch *ds, |
| struct ethtool_eeprom *eeprom, u8 *data) |
| { |
| int offset; |
| int ret; |
| int len; |
| |
| if (eeprom->magic != 0xc3ec4951) |
| return -EINVAL; |
| |
| ret = mv88e6352_eeprom_is_readonly(ds); |
| if (ret) |
| return ret; |
| |
| offset = eeprom->offset; |
| len = eeprom->len; |
| eeprom->len = 0; |
| |
| ret = mv88e6352_eeprom_load_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| if (offset & 1) { |
| int word; |
| |
| word = mv88e6352_read_eeprom_word(ds, offset >> 1); |
| if (word < 0) |
| return word; |
| |
| word = (*data++ << 8) | (word & 0xff); |
| |
| ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); |
| if (ret < 0) |
| return ret; |
| |
| offset++; |
| len--; |
| eeprom->len++; |
| } |
| |
| while (len >= 2) { |
| int word; |
| |
| word = *data++; |
| word |= *data++ << 8; |
| |
| ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); |
| if (ret < 0) |
| return ret; |
| |
| offset += 2; |
| len -= 2; |
| eeprom->len += 2; |
| } |
| |
| if (len) { |
| int word; |
| |
| word = mv88e6352_read_eeprom_word(ds, offset >> 1); |
| if (word < 0) |
| return word; |
| |
| word = (word & 0xff00) | *data++; |
| |
| ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word); |
| if (ret < 0) |
| return ret; |
| |
| offset++; |
| len--; |
| eeprom->len++; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| mv88e6352_get_strings(struct dsa_switch *ds, int port, uint8_t *data) |
| { |
| mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6352_hw_stats), |
| mv88e6352_hw_stats, port, data); |
| } |
| |
| static void |
| mv88e6352_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) |
| { |
| mv88e6xxx_get_ethtool_stats(ds, ARRAY_SIZE(mv88e6352_hw_stats), |
| mv88e6352_hw_stats, port, data); |
| } |
| |
| static int mv88e6352_get_sset_count(struct dsa_switch *ds) |
| { |
| return ARRAY_SIZE(mv88e6352_hw_stats); |
| } |
| |
| struct dsa_switch_driver mv88e6352_switch_driver = { |
| .tag_protocol = DSA_TAG_PROTO_EDSA, |
| .priv_size = sizeof(struct mv88e6xxx_priv_state), |
| .probe = mv88e6352_probe, |
| .setup = mv88e6352_setup, |
| .set_addr = mv88e6xxx_set_addr_indirect, |
| .phy_read = mv88e6352_phy_read, |
| .phy_write = mv88e6352_phy_write, |
| .poll_link = mv88e6xxx_poll_link, |
| .get_strings = mv88e6352_get_strings, |
| .get_ethtool_stats = mv88e6352_get_ethtool_stats, |
| .get_sset_count = mv88e6352_get_sset_count, |
| #ifdef CONFIG_NET_DSA_HWMON |
| .get_temp = mv88e6352_get_temp, |
| .get_temp_limit = mv88e6352_get_temp_limit, |
| .set_temp_limit = mv88e6352_set_temp_limit, |
| .get_temp_alarm = mv88e6352_get_temp_alarm, |
| #endif |
| .get_eeprom = mv88e6352_get_eeprom, |
| .set_eeprom = mv88e6352_set_eeprom, |
| .get_regs_len = mv88e6xxx_get_regs_len, |
| .get_regs = mv88e6xxx_get_regs, |
| }; |
| |
| MODULE_ALIAS("platform:mv88e6352"); |