| /* |
| * Copyright (C) 2014-2015 Broadcom Corporation |
| * Copyright 2014 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/sched.h> |
| |
| #include <asm/smp.h> |
| #include <asm/smp_plat.h> |
| #include <asm/smp_scu.h> |
| |
| /* Size of mapped Cortex A9 SCU address space */ |
| #define CORTEX_A9_SCU_SIZE 0x58 |
| |
| #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ |
| #define BOOT_ADDR_CPUID_MASK 0x3 |
| |
| /* Name of device node property defining secondary boot register location */ |
| #define OF_SECONDARY_BOOT "secondary-boot-reg" |
| #define MPIDR_CPUID_BITMASK 0x3 |
| |
| /* I/O address of register used to coordinate secondary core startup */ |
| static u32 secondary_boot_addr; |
| |
| /* |
| * Enable the Cortex A9 Snoop Control Unit |
| * |
| * By the time this is called we already know there are multiple |
| * cores present. We assume we're running on a Cortex A9 processor, |
| * so any trouble getting the base address register or getting the |
| * SCU base is a problem. |
| * |
| * Return 0 if successful or an error code otherwise. |
| */ |
| static int __init scu_a9_enable(void) |
| { |
| unsigned long config_base; |
| void __iomem *scu_base; |
| |
| if (!scu_a9_has_base()) { |
| pr_err("no configuration base address register!\n"); |
| return -ENXIO; |
| } |
| |
| /* Config base address register value is zero for uniprocessor */ |
| config_base = scu_a9_get_base(); |
| if (!config_base) { |
| pr_err("hardware reports only one core\n"); |
| return -ENOENT; |
| } |
| |
| scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); |
| if (!scu_base) { |
| pr_err("failed to remap config base (%lu/%u) for SCU\n", |
| config_base, CORTEX_A9_SCU_SIZE); |
| return -ENOMEM; |
| } |
| |
| scu_enable(scu_base); |
| |
| iounmap(scu_base); /* That's the last we'll need of this */ |
| |
| return 0; |
| } |
| |
| static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; |
| struct device_node *cpus_node = NULL; |
| struct device_node *cpu_node = NULL; |
| int ret; |
| |
| /* |
| * This function is only called via smp_ops->smp_prepare_cpu(). |
| * That only happens if a "/cpus" device tree node exists |
| * and has an "enable-method" property that selects the SMP |
| * operations defined herein. |
| */ |
| cpus_node = of_find_node_by_path("/cpus"); |
| if (!cpus_node) |
| return; |
| |
| for_each_child_of_node(cpus_node, cpu_node) { |
| u32 cpuid; |
| |
| if (of_node_cmp(cpu_node->type, "cpu")) |
| continue; |
| |
| if (of_property_read_u32(cpu_node, "reg", &cpuid)) { |
| pr_debug("%s: missing reg property\n", |
| cpu_node->full_name); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| /* |
| * "secondary-boot-reg" property should be defined only |
| * for secondary cpu |
| */ |
| if ((cpuid & MPIDR_CPUID_BITMASK) == 1) { |
| /* |
| * Our secondary enable method requires a |
| * "secondary-boot-reg" property to specify a register |
| * address used to request the ROM code boot a secondary |
| * core. If we have any trouble getting this we fall |
| * back to uniprocessor mode. |
| */ |
| if (of_property_read_u32(cpu_node, |
| OF_SECONDARY_BOOT, |
| &secondary_boot_addr)) { |
| pr_warn("%s: no" OF_SECONDARY_BOOT "property\n", |
| cpu_node->name); |
| ret = -ENOENT; |
| goto out; |
| } |
| } |
| } |
| |
| /* |
| * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is |
| * returned, the SoC reported a uniprocessor configuration. |
| * We bail on any other error. |
| */ |
| ret = scu_a9_enable(); |
| out: |
| of_node_put(cpu_node); |
| of_node_put(cpus_node); |
| |
| if (ret) { |
| /* Update the CPU present map to reflect uniprocessor mode */ |
| pr_warn("disabling SMP\n"); |
| init_cpu_present(&only_cpu_0); |
| } |
| } |
| |
| /* |
| * The ROM code has the secondary cores looping, waiting for an event. |
| * When an event occurs each core examines the bottom two bits of the |
| * secondary boot register. When a core finds those bits contain its |
| * own core id, it performs initialization, including computing its boot |
| * address by clearing the boot register value's bottom two bits. The |
| * core signals that it is beginning its execution by writing its boot |
| * address back to the secondary boot register, and finally jumps to |
| * that address. |
| * |
| * So to start a core executing we need to: |
| * - Encode the (hardware) CPU id with the bottom bits of the secondary |
| * start address. |
| * - Write that value into the secondary boot register. |
| * - Generate an event to wake up the secondary CPU(s). |
| * - Wait for the secondary boot register to be re-written, which |
| * indicates the secondary core has started. |
| */ |
| static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| void __iomem *boot_reg; |
| phys_addr_t boot_func; |
| u64 start_clock; |
| u32 cpu_id; |
| u32 boot_val; |
| bool timeout = false; |
| |
| cpu_id = cpu_logical_map(cpu); |
| if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { |
| pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); |
| return -EINVAL; |
| } |
| |
| if (!secondary_boot_addr) { |
| pr_err("required secondary boot register not specified\n"); |
| return -EINVAL; |
| } |
| |
| boot_reg = ioremap_nocache( |
| (phys_addr_t)secondary_boot_addr, sizeof(u32)); |
| if (!boot_reg) { |
| pr_err("unable to map boot register for cpu %u\n", cpu_id); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Secondary cores will start in secondary_startup(), |
| * defined in "arch/arm/kernel/head.S" |
| */ |
| boot_func = virt_to_phys(secondary_startup); |
| BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); |
| BUG_ON(boot_func > (phys_addr_t)U32_MAX); |
| |
| /* The core to start is encoded in the low bits */ |
| boot_val = (u32)boot_func | cpu_id; |
| writel_relaxed(boot_val, boot_reg); |
| |
| sev(); |
| |
| /* The low bits will be cleared once the core has started */ |
| start_clock = local_clock(); |
| while (!timeout && readl_relaxed(boot_reg) == boot_val) |
| timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; |
| |
| iounmap(boot_reg); |
| |
| if (!timeout) |
| return 0; |
| |
| pr_err("timeout waiting for cpu %u to start\n", cpu_id); |
| |
| return -ENXIO; |
| } |
| |
| static struct smp_operations bcm_smp_ops __initdata = { |
| .smp_prepare_cpus = bcm_smp_prepare_cpus, |
| .smp_boot_secondary = kona_boot_secondary, |
| }; |
| CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", |
| &bcm_smp_ops); |