| /* bnx2x_init.h: Broadcom Everest network driver. |
| * |
| * Copyright (c) 2007-2008 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Written by: Eliezer Tamir <eliezert@broadcom.com> |
| */ |
| |
| #ifndef BNX2X_INIT_H |
| #define BNX2X_INIT_H |
| |
| #define COMMON 0x1 |
| #define PORT0 0x2 |
| #define PORT1 0x4 |
| |
| #define INIT_EMULATION 0x1 |
| #define INIT_FPGA 0x2 |
| #define INIT_ASIC 0x4 |
| #define INIT_HARDWARE 0x7 |
| |
| #define STORM_INTMEM_SIZE (0x5800 / 4) |
| #define TSTORM_INTMEM_ADDR 0x1a0000 |
| #define CSTORM_INTMEM_ADDR 0x220000 |
| #define XSTORM_INTMEM_ADDR 0x2a0000 |
| #define USTORM_INTMEM_ADDR 0x320000 |
| |
| |
| /* Init operation types and structures */ |
| |
| #define OP_RD 0x1 /* read single register */ |
| #define OP_WR 0x2 /* write single register */ |
| #define OP_IW 0x3 /* write single register using mailbox */ |
| #define OP_SW 0x4 /* copy a string to the device */ |
| #define OP_SI 0x5 /* copy a string using mailbox */ |
| #define OP_ZR 0x6 /* clear memory */ |
| #define OP_ZP 0x7 /* unzip then copy with DMAE */ |
| #define OP_WB 0x8 /* copy a string using DMAE */ |
| |
| struct raw_op { |
| u32 op :8; |
| u32 offset :24; |
| u32 raw_data; |
| }; |
| |
| struct op_read { |
| u32 op :8; |
| u32 offset :24; |
| u32 pad; |
| }; |
| |
| struct op_write { |
| u32 op :8; |
| u32 offset :24; |
| u32 val; |
| }; |
| |
| struct op_string_write { |
| u32 op :8; |
| u32 offset :24; |
| #ifdef __LITTLE_ENDIAN |
| u16 data_off; |
| u16 data_len; |
| #else /* __BIG_ENDIAN */ |
| u16 data_len; |
| u16 data_off; |
| #endif |
| }; |
| |
| struct op_zero { |
| u32 op :8; |
| u32 offset :24; |
| u32 len; |
| }; |
| |
| union init_op { |
| struct op_read read; |
| struct op_write write; |
| struct op_string_write str_wr; |
| struct op_zero zero; |
| struct raw_op raw; |
| }; |
| |
| #include "bnx2x_init_values.h" |
| |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); |
| |
| static void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, |
| u32 dst_addr, u32 len32); |
| |
| static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len); |
| |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| #define INIT_MEM_WR(reg, data, reg_off, len) \ |
| bnx2x_init_str_wr(bp, reg + reg_off*4, data, len) |
| |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| u16 len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| REG_WR_IND(bp, addr + i*4, data[i]); |
| if (!(i % 10000)) { |
| touch_softlockup_watchdog(); |
| cpu_relax(); |
| } |
| } |
| } |
| |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, |
| u32 len, int gunzip) |
| { |
| int offset = 0; |
| |
| if (gunzip) { |
| int rc; |
| #ifdef __BIG_ENDIAN |
| int i, size; |
| u32 *temp; |
| |
| temp = kmalloc(len, GFP_KERNEL); |
| size = (len / 4) + ((len % 4) ? 1 : 0); |
| for (i = 0; i < size; i++) |
| temp[i] = swab32(data[i]); |
| data = temp; |
| #endif |
| rc = bnx2x_gunzip(bp, (u8 *)data, len); |
| if (rc) { |
| DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc); |
| return; |
| } |
| len = bp->gunzip_outlen; |
| #ifdef __BIG_ENDIAN |
| kfree(temp); |
| for (i = 0; i < len; i++) |
| ((u32 *)bp->gunzip_buf)[i] = |
| swab32(((u32 *)bp->gunzip_buf)[i]); |
| #endif |
| } else { |
| if ((len * 4) > FW_BUF_SIZE) { |
| BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4); |
| return; |
| } |
| memcpy(bp->gunzip_buf, data, len * 4); |
| } |
| |
| while (len > DMAE_LEN32_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_MAX); |
| offset += DMAE_LEN32_MAX * 4; |
| len -= DMAE_LEN32_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); |
| } |
| |
| #define INIT_MEM_WB(reg, data, reg_off, len) \ |
| bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0) |
| |
| #define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \ |
| bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1) |
| |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) |
| { |
| int offset = 0; |
| |
| if ((len * 4) > FW_BUF_SIZE) { |
| BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4); |
| return; |
| } |
| memset(bp->gunzip_buf, fill, len * 4); |
| |
| while (len > DMAE_LEN32_MAX) { |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| addr + offset, DMAE_LEN32_MAX); |
| offset += DMAE_LEN32_MAX * 4; |
| len -= DMAE_LEN32_MAX; |
| } |
| bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); |
| } |
| |
| static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end) |
| { |
| int i; |
| union init_op *op; |
| u32 op_type, addr, len; |
| const u32 *data; |
| |
| for (i = op_start; i < op_end; i++) { |
| |
| op = (union init_op *)&(init_ops[i]); |
| |
| op_type = op->str_wr.op; |
| addr = op->str_wr.offset; |
| len = op->str_wr.data_len; |
| data = init_data + op->str_wr.data_off; |
| |
| switch (op_type) { |
| case OP_RD: |
| REG_RD(bp, addr); |
| break; |
| case OP_WR: |
| REG_WR(bp, addr, op->write.val); |
| break; |
| case OP_SW: |
| bnx2x_init_str_wr(bp, addr, data, len); |
| break; |
| case OP_WB: |
| bnx2x_init_wr_wb(bp, addr, data, len, 0); |
| break; |
| case OP_SI: |
| bnx2x_init_ind_wr(bp, addr, data, len); |
| break; |
| case OP_ZR: |
| bnx2x_init_fill(bp, addr, 0, op->zero.len); |
| break; |
| case OP_ZP: |
| bnx2x_init_wr_wb(bp, addr, data, len, 1); |
| break; |
| default: |
| BNX2X_ERR("BAD init operation!\n"); |
| } |
| } |
| } |
| |
| |
| /**************************************************************************** |
| * PXP |
| ****************************************************************************/ |
| /* |
| * This code configures the PCI read/write arbiter |
| * which implements a wighted round robin |
| * between the virtual queues in the chip. |
| * |
| * The values were derived for each PCI max payload and max request size. |
| * since max payload and max request size are only known at run time, |
| * this is done as a separate init stage. |
| */ |
| |
| #define NUM_WR_Q 13 |
| #define NUM_RD_Q 29 |
| #define MAX_RD_ORD 3 |
| #define MAX_WR_ORD 2 |
| |
| /* configuration for one arbiter queue */ |
| struct arb_line { |
| int l; |
| int add; |
| int ubound; |
| }; |
| |
| /* derived configuration for each read queue for each max request size */ |
| static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, |
| {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} }, |
| {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} }, |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, |
| {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} } |
| }; |
| |
| /* derived configuration for each write queue for each max request size */ |
| static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { |
| {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} }, |
| {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, |
| {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, |
| {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} }, |
| {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} }, |
| {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} }, |
| {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} } |
| }; |
| |
| /* register adresses for read queues */ |
| static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { |
| {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, |
| PXP2_REG_RQ_BW_RD_UBOUND0}, |
| {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, |
| PXP2_REG_RQ_BW_RD_UBOUND4}, |
| {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, |
| PXP2_REG_RQ_BW_RD_UBOUND5}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, |
| PXP2_REG_RQ_BW_RD_UBOUND12}, |
| {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, |
| PXP2_REG_RQ_BW_RD_UBOUND13}, |
| {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, |
| PXP2_REG_RQ_BW_RD_UBOUND14}, |
| {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, |
| PXP2_REG_RQ_BW_RD_UBOUND15}, |
| {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, |
| PXP2_REG_RQ_BW_RD_UBOUND16}, |
| {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, |
| PXP2_REG_RQ_BW_RD_UBOUND17}, |
| {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, |
| PXP2_REG_RQ_BW_RD_UBOUND18}, |
| {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, |
| PXP2_REG_RQ_BW_RD_UBOUND19}, |
| {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, |
| PXP2_REG_RQ_BW_RD_UBOUND20}, |
| {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, |
| PXP2_REG_RQ_BW_RD_UBOUND22}, |
| {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, |
| PXP2_REG_RQ_BW_RD_UBOUND23}, |
| {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, |
| PXP2_REG_RQ_BW_RD_UBOUND24}, |
| {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, |
| PXP2_REG_RQ_BW_RD_UBOUND25}, |
| {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, |
| PXP2_REG_RQ_BW_RD_UBOUND26}, |
| {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, |
| PXP2_REG_RQ_BW_RD_UBOUND27}, |
| {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28} |
| }; |
| |
| /* register adresses for wrtie queues */ |
| static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { |
| {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, |
| PXP2_REG_PSWRQ_BW_UB1}, |
| {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, |
| PXP2_REG_PSWRQ_BW_UB2}, |
| {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, |
| PXP2_REG_PSWRQ_BW_UB3}, |
| {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, |
| PXP2_REG_PSWRQ_BW_UB6}, |
| {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, |
| PXP2_REG_PSWRQ_BW_UB7}, |
| {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, |
| PXP2_REG_PSWRQ_BW_UB8}, |
| {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, |
| PXP2_REG_PSWRQ_BW_UB9}, |
| {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, |
| PXP2_REG_PSWRQ_BW_UB10}, |
| {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, |
| PXP2_REG_PSWRQ_BW_UB11}, |
| {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, |
| PXP2_REG_PSWRQ_BW_UB28}, |
| {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, |
| PXP2_REG_RQ_BW_WR_UBOUND29}, |
| {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, |
| PXP2_REG_RQ_BW_WR_UBOUND30} |
| }; |
| |
| static void bnx2x_init_pxp(struct bnx2x *bp) |
| { |
| int r_order, w_order; |
| u32 val, i; |
| |
| pci_read_config_word(bp->pdev, |
| bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val); |
| DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val); |
| w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12); |
| |
| if (r_order > MAX_RD_ORD) { |
| DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", |
| r_order, MAX_RD_ORD); |
| r_order = MAX_RD_ORD; |
| } |
| if (w_order > MAX_WR_ORD) { |
| DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", |
| w_order, MAX_WR_ORD); |
| w_order = MAX_WR_ORD; |
| } |
| DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); |
| |
| for (i = 0; i < NUM_RD_Q-1; i++) { |
| REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); |
| REG_WR(bp, read_arb_addr[i].add, |
| read_arb_data[i][r_order].add); |
| REG_WR(bp, read_arb_addr[i].ubound, |
| read_arb_data[i][r_order].ubound); |
| } |
| |
| for (i = 0; i < NUM_WR_Q-1; i++) { |
| if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || |
| (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { |
| |
| REG_WR(bp, write_arb_addr[i].l, |
| write_arb_data[i][w_order].l); |
| |
| REG_WR(bp, write_arb_addr[i].add, |
| write_arb_data[i][w_order].add); |
| |
| REG_WR(bp, write_arb_addr[i].ubound, |
| write_arb_data[i][w_order].ubound); |
| } else { |
| |
| val = REG_RD(bp, write_arb_addr[i].l); |
| REG_WR(bp, write_arb_addr[i].l, |
| val | (write_arb_data[i][w_order].l << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].add); |
| REG_WR(bp, write_arb_addr[i].add, |
| val | (write_arb_data[i][w_order].add << 10)); |
| |
| val = REG_RD(bp, write_arb_addr[i].ubound); |
| REG_WR(bp, write_arb_addr[i].ubound, |
| val | (write_arb_data[i][w_order].ubound << 7)); |
| } |
| } |
| |
| val = write_arb_data[NUM_WR_Q-1][w_order].add; |
| val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; |
| val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); |
| |
| val = read_arb_data[NUM_RD_Q-1][r_order].add; |
| val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; |
| val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; |
| REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); |
| |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); |
| REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); |
| REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); |
| |
| if (r_order == MAX_RD_ORD) |
| REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); |
| |
| REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); |
| REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16); |
| } |
| |
| |
| /**************************************************************************** |
| * CDU |
| ****************************************************************************/ |
| |
| #define CDU_REGION_NUMBER_XCM_AG 2 |
| #define CDU_REGION_NUMBER_UCM_AG 4 |
| |
| /** |
| * String-to-compress [31:8] = CID (all 24 bits) |
| * String-to-compress [7:4] = Region |
| * String-to-compress [3:0] = Type |
| */ |
| #define CDU_VALID_DATA(_cid, _region, _type) \ |
| (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) |
| #define CDU_CRC8(_cid, _region, _type) \ |
| calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) |
| #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ |
| (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) |
| #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ |
| (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) |
| #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) |
| |
| /***************************************************************************** |
| * Description: |
| * Calculates crc 8 on a word value: polynomial 0-1-2-8 |
| * Code was translated from Verilog. |
| ****************************************************************************/ |
| static u8 calc_crc8(u32 data, u8 crc) |
| { |
| u8 D[32]; |
| u8 NewCRC[8]; |
| u8 C[8]; |
| u8 crc_res; |
| u8 i; |
| |
| /* split the data into 31 bits */ |
| for (i = 0; i < 32; i++) { |
| D[i] = data & 1; |
| data = data >> 1; |
| } |
| |
| /* split the crc into 8 bits */ |
| for (i = 0; i < 8; i++) { |
| C[i] = crc & 1; |
| crc = crc >> 1; |
| } |
| |
| NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ |
| D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ |
| C[6] ^ C[7]; |
| NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ |
| D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ |
| D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; |
| NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ |
| D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ |
| C[0] ^ C[1] ^ C[4] ^ C[5]; |
| NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ |
| D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ |
| C[1] ^ C[2] ^ C[5] ^ C[6]; |
| NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ |
| D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ |
| C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; |
| NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ |
| C[3] ^ C[4] ^ C[7]; |
| NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ |
| D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ |
| C[5]; |
| NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ |
| D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ |
| C[6]; |
| |
| crc_res = 0; |
| for (i = 0; i < 8; i++) |
| crc_res |= (NewCRC[i] << i); |
| |
| return crc_res; |
| } |
| |
| |
| #endif /* BNX2X_INIT_H */ |
| |