| /* |
| * IA-32 Huge TLB Page Support for Kernel. |
| * |
| * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/sysctl.h> |
| #include <asm/mman.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgalloc.h> |
| |
| static unsigned long page_table_shareable(struct vm_area_struct *svma, |
| struct vm_area_struct *vma, |
| unsigned long addr, pgoff_t idx) |
| { |
| unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + |
| svma->vm_start; |
| unsigned long sbase = saddr & PUD_MASK; |
| unsigned long s_end = sbase + PUD_SIZE; |
| |
| /* |
| * match the virtual addresses, permission and the alignment of the |
| * page table page. |
| */ |
| if (pmd_index(addr) != pmd_index(saddr) || |
| vma->vm_flags != svma->vm_flags || |
| sbase < svma->vm_start || svma->vm_end < s_end) |
| return 0; |
| |
| return saddr; |
| } |
| |
| static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) |
| { |
| unsigned long base = addr & PUD_MASK; |
| unsigned long end = base + PUD_SIZE; |
| |
| /* |
| * check on proper vm_flags and page table alignment |
| */ |
| if (vma->vm_flags & VM_MAYSHARE && |
| vma->vm_start <= base && end <= vma->vm_end) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * search for a shareable pmd page for hugetlb. |
| */ |
| static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) |
| { |
| struct vm_area_struct *vma = find_vma(mm, addr); |
| struct address_space *mapping = vma->vm_file->f_mapping; |
| pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + |
| vma->vm_pgoff; |
| struct prio_tree_iter iter; |
| struct vm_area_struct *svma; |
| unsigned long saddr; |
| pte_t *spte = NULL; |
| |
| if (!vma_shareable(vma, addr)) |
| return; |
| |
| spin_lock(&mapping->i_mmap_lock); |
| vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) { |
| if (svma == vma) |
| continue; |
| |
| saddr = page_table_shareable(svma, vma, addr, idx); |
| if (saddr) { |
| spte = huge_pte_offset(svma->vm_mm, saddr); |
| if (spte) { |
| get_page(virt_to_page(spte)); |
| break; |
| } |
| } |
| } |
| |
| if (!spte) |
| goto out; |
| |
| spin_lock(&mm->page_table_lock); |
| if (pud_none(*pud)) |
| pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); |
| else |
| put_page(virt_to_page(spte)); |
| spin_unlock(&mm->page_table_lock); |
| out: |
| spin_unlock(&mapping->i_mmap_lock); |
| } |
| |
| /* |
| * unmap huge page backed by shared pte. |
| * |
| * Hugetlb pte page is ref counted at the time of mapping. If pte is shared |
| * indicated by page_count > 1, unmap is achieved by clearing pud and |
| * decrementing the ref count. If count == 1, the pte page is not shared. |
| * |
| * called with vma->vm_mm->page_table_lock held. |
| * |
| * returns: 1 successfully unmapped a shared pte page |
| * 0 the underlying pte page is not shared, or it is the last user |
| */ |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) |
| { |
| pgd_t *pgd = pgd_offset(mm, *addr); |
| pud_t *pud = pud_offset(pgd, *addr); |
| |
| BUG_ON(page_count(virt_to_page(ptep)) == 0); |
| if (page_count(virt_to_page(ptep)) == 1) |
| return 0; |
| |
| pud_clear(pud); |
| put_page(virt_to_page(ptep)); |
| *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; |
| return 1; |
| } |
| |
| pte_t *huge_pte_alloc(struct mm_struct *mm, |
| unsigned long addr, unsigned long sz) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pte_t *pte = NULL; |
| |
| pgd = pgd_offset(mm, addr); |
| pud = pud_alloc(mm, pgd, addr); |
| if (pud) { |
| if (sz == PUD_SIZE) { |
| pte = (pte_t *)pud; |
| } else { |
| BUG_ON(sz != PMD_SIZE); |
| if (pud_none(*pud)) |
| huge_pmd_share(mm, addr, pud); |
| pte = (pte_t *) pmd_alloc(mm, pud, addr); |
| } |
| } |
| BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); |
| |
| return pte; |
| } |
| |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd = NULL; |
| |
| pgd = pgd_offset(mm, addr); |
| if (pgd_present(*pgd)) { |
| pud = pud_offset(pgd, addr); |
| if (pud_present(*pud)) { |
| if (pud_large(*pud)) |
| return (pte_t *)pud; |
| pmd = pmd_offset(pud, addr); |
| } |
| } |
| return (pte_t *) pmd; |
| } |
| |
| #if 0 /* This is just for testing */ |
| struct page * |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) |
| { |
| unsigned long start = address; |
| int length = 1; |
| int nr; |
| struct page *page; |
| struct vm_area_struct *vma; |
| |
| vma = find_vma(mm, addr); |
| if (!vma || !is_vm_hugetlb_page(vma)) |
| return ERR_PTR(-EINVAL); |
| |
| pte = huge_pte_offset(mm, address); |
| |
| /* hugetlb should be locked, and hence, prefaulted */ |
| WARN_ON(!pte || pte_none(*pte)); |
| |
| page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; |
| |
| WARN_ON(!PageHead(page)); |
| |
| return page; |
| } |
| |
| int pmd_huge(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| int pud_huge(pud_t pud) |
| { |
| return 0; |
| } |
| |
| struct page * |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
| pmd_t *pmd, int write) |
| { |
| return NULL; |
| } |
| |
| #else |
| |
| struct page * |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) |
| { |
| return ERR_PTR(-EINVAL); |
| } |
| |
| int pmd_huge(pmd_t pmd) |
| { |
| return !!(pmd_val(pmd) & _PAGE_PSE); |
| } |
| |
| int pud_huge(pud_t pud) |
| { |
| return !!(pud_val(pud) & _PAGE_PSE); |
| } |
| |
| struct page * |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
| pmd_t *pmd, int write) |
| { |
| struct page *page; |
| |
| page = pte_page(*(pte_t *)pmd); |
| if (page) |
| page += ((address & ~PMD_MASK) >> PAGE_SHIFT); |
| return page; |
| } |
| |
| struct page * |
| follow_huge_pud(struct mm_struct *mm, unsigned long address, |
| pud_t *pud, int write) |
| { |
| struct page *page; |
| |
| page = pte_page(*(pte_t *)pud); |
| if (page) |
| page += ((address & ~PUD_MASK) >> PAGE_SHIFT); |
| return page; |
| } |
| |
| #endif |
| |
| /* x86_64 also uses this file */ |
| |
| #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA |
| static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, |
| unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| unsigned long start_addr; |
| |
| if (len > mm->cached_hole_size) { |
| start_addr = mm->free_area_cache; |
| } else { |
| start_addr = TASK_UNMAPPED_BASE; |
| mm->cached_hole_size = 0; |
| } |
| |
| full_search: |
| addr = ALIGN(start_addr, huge_page_size(h)); |
| |
| for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { |
| /* At this point: (!vma || addr < vma->vm_end). */ |
| if (TASK_SIZE - len < addr) { |
| /* |
| * Start a new search - just in case we missed |
| * some holes. |
| */ |
| if (start_addr != TASK_UNMAPPED_BASE) { |
| start_addr = TASK_UNMAPPED_BASE; |
| mm->cached_hole_size = 0; |
| goto full_search; |
| } |
| return -ENOMEM; |
| } |
| if (!vma || addr + len <= vma->vm_start) { |
| mm->free_area_cache = addr + len; |
| return addr; |
| } |
| if (addr + mm->cached_hole_size < vma->vm_start) |
| mm->cached_hole_size = vma->vm_start - addr; |
| addr = ALIGN(vma->vm_end, huge_page_size(h)); |
| } |
| } |
| |
| static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, |
| unsigned long addr0, unsigned long len, |
| unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma, *prev_vma; |
| unsigned long base = mm->mmap_base, addr = addr0; |
| unsigned long largest_hole = mm->cached_hole_size; |
| int first_time = 1; |
| |
| /* don't allow allocations above current base */ |
| if (mm->free_area_cache > base) |
| mm->free_area_cache = base; |
| |
| if (len <= largest_hole) { |
| largest_hole = 0; |
| mm->free_area_cache = base; |
| } |
| try_again: |
| /* make sure it can fit in the remaining address space */ |
| if (mm->free_area_cache < len) |
| goto fail; |
| |
| /* either no address requested or cant fit in requested address hole */ |
| addr = (mm->free_area_cache - len) & huge_page_mask(h); |
| do { |
| /* |
| * Lookup failure means no vma is above this address, |
| * i.e. return with success: |
| */ |
| if (!(vma = find_vma_prev(mm, addr, &prev_vma))) |
| return addr; |
| |
| /* |
| * new region fits between prev_vma->vm_end and |
| * vma->vm_start, use it: |
| */ |
| if (addr + len <= vma->vm_start && |
| (!prev_vma || (addr >= prev_vma->vm_end))) { |
| /* remember the address as a hint for next time */ |
| mm->cached_hole_size = largest_hole; |
| return (mm->free_area_cache = addr); |
| } else { |
| /* pull free_area_cache down to the first hole */ |
| if (mm->free_area_cache == vma->vm_end) { |
| mm->free_area_cache = vma->vm_start; |
| mm->cached_hole_size = largest_hole; |
| } |
| } |
| |
| /* remember the largest hole we saw so far */ |
| if (addr + largest_hole < vma->vm_start) |
| largest_hole = vma->vm_start - addr; |
| |
| /* try just below the current vma->vm_start */ |
| addr = (vma->vm_start - len) & huge_page_mask(h); |
| } while (len <= vma->vm_start); |
| |
| fail: |
| /* |
| * if hint left us with no space for the requested |
| * mapping then try again: |
| */ |
| if (first_time) { |
| mm->free_area_cache = base; |
| largest_hole = 0; |
| first_time = 0; |
| goto try_again; |
| } |
| /* |
| * A failed mmap() very likely causes application failure, |
| * so fall back to the bottom-up function here. This scenario |
| * can happen with large stack limits and large mmap() |
| * allocations. |
| */ |
| mm->free_area_cache = TASK_UNMAPPED_BASE; |
| mm->cached_hole_size = ~0UL; |
| addr = hugetlb_get_unmapped_area_bottomup(file, addr0, |
| len, pgoff, flags); |
| |
| /* |
| * Restore the topdown base: |
| */ |
| mm->free_area_cache = base; |
| mm->cached_hole_size = ~0UL; |
| |
| return addr; |
| } |
| |
| unsigned long |
| hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| |
| if (len & ~huge_page_mask(h)) |
| return -EINVAL; |
| if (len > TASK_SIZE) |
| return -ENOMEM; |
| |
| if (flags & MAP_FIXED) { |
| if (prepare_hugepage_range(file, addr, len)) |
| return -EINVAL; |
| return addr; |
| } |
| |
| if (addr) { |
| addr = ALIGN(addr, huge_page_size(h)); |
| vma = find_vma(mm, addr); |
| if (TASK_SIZE - len >= addr && |
| (!vma || addr + len <= vma->vm_start)) |
| return addr; |
| } |
| if (mm->get_unmapped_area == arch_get_unmapped_area) |
| return hugetlb_get_unmapped_area_bottomup(file, addr, len, |
| pgoff, flags); |
| else |
| return hugetlb_get_unmapped_area_topdown(file, addr, len, |
| pgoff, flags); |
| } |
| |
| #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/ |
| |
| #ifdef CONFIG_X86_64 |
| static __init int setup_hugepagesz(char *opt) |
| { |
| unsigned long ps = memparse(opt, &opt); |
| if (ps == PMD_SIZE) { |
| hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); |
| } else if (ps == PUD_SIZE && cpu_has_gbpages) { |
| hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); |
| } else { |
| printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n", |
| ps >> 20); |
| return 0; |
| } |
| return 1; |
| } |
| __setup("hugepagesz=", setup_hugepagesz); |
| #endif |