| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _ASM_X86_I387_H |
| #define _ASM_X86_I387_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/sched.h> |
| #include <linux/hardirq.h> |
| |
| struct pt_regs; |
| struct user_i387_struct; |
| |
| extern int init_fpu(struct task_struct *child); |
| extern void fpu_finit(struct fpu *fpu); |
| extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); |
| extern void math_state_restore(void); |
| |
| extern bool irq_fpu_usable(void); |
| |
| /* |
| * Careful: __kernel_fpu_begin/end() must be called with preempt disabled |
| * and they don't touch the preempt state on their own. |
| * If you enable preemption after __kernel_fpu_begin(), preempt notifier |
| * should call the __kernel_fpu_end() to prevent the kernel/user FPU |
| * state from getting corrupted. KVM for example uses this model. |
| * |
| * All other cases use kernel_fpu_begin/end() which disable preemption |
| * during kernel FPU usage. |
| */ |
| extern void __kernel_fpu_begin(void); |
| extern void __kernel_fpu_end(void); |
| |
| static inline void kernel_fpu_begin(void) |
| { |
| preempt_disable(); |
| WARN_ON_ONCE(!irq_fpu_usable()); |
| __kernel_fpu_begin(); |
| } |
| |
| static inline void kernel_fpu_end(void) |
| { |
| __kernel_fpu_end(); |
| preempt_enable(); |
| } |
| |
| /* Must be called with preempt disabled */ |
| extern void kernel_fpu_disable(void); |
| extern void kernel_fpu_enable(void); |
| |
| /* |
| * Some instructions like VIA's padlock instructions generate a spurious |
| * DNA fault but don't modify SSE registers. And these instructions |
| * get used from interrupt context as well. To prevent these kernel instructions |
| * in interrupt context interacting wrongly with other user/kernel fpu usage, we |
| * should use them only in the context of irq_ts_save/restore() |
| */ |
| static inline int irq_ts_save(void) |
| { |
| /* |
| * If in process context and not atomic, we can take a spurious DNA fault. |
| * Otherwise, doing clts() in process context requires disabling preemption |
| * or some heavy lifting like kernel_fpu_begin() |
| */ |
| if (!in_atomic()) |
| return 0; |
| |
| if (read_cr0() & X86_CR0_TS) { |
| clts(); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline void irq_ts_restore(int TS_state) |
| { |
| if (TS_state) |
| stts(); |
| } |
| |
| /* |
| * The question "does this thread have fpu access?" |
| * is slightly racy, since preemption could come in |
| * and revoke it immediately after the test. |
| * |
| * However, even in that very unlikely scenario, |
| * we can just assume we have FPU access - typically |
| * to save the FP state - we'll just take a #NM |
| * fault and get the FPU access back. |
| */ |
| static inline int user_has_fpu(void) |
| { |
| return current->thread.fpu.has_fpu; |
| } |
| |
| extern void unlazy_fpu(struct task_struct *tsk); |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_X86_I387_H */ |