| /* |
| * Copyright(c) 2007 Atheros Corporation. All rights reserved. |
| * |
| * Derived from Intel e1000 driver |
| * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/mii.h> |
| #include <linux/crc32.h> |
| |
| #include "atl1c.h" |
| |
| /* |
| * check_eeprom_exist |
| * return 1 if eeprom exist |
| */ |
| int atl1c_check_eeprom_exist(struct atl1c_hw *hw) |
| { |
| u32 data; |
| |
| AT_READ_REG(hw, REG_TWSI_DEBUG, &data); |
| if (data & TWSI_DEBUG_DEV_EXIST) |
| return 1; |
| |
| return 0; |
| } |
| |
| void atl1c_hw_set_mac_addr(struct atl1c_hw *hw) |
| { |
| u32 value; |
| /* |
| * 00-0B-6A-F6-00-DC |
| * 0: 6AF600DC 1: 000B |
| * low dword |
| */ |
| value = (((u32)hw->mac_addr[2]) << 24) | |
| (((u32)hw->mac_addr[3]) << 16) | |
| (((u32)hw->mac_addr[4]) << 8) | |
| (((u32)hw->mac_addr[5])) ; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); |
| /* hight dword */ |
| value = (((u32)hw->mac_addr[0]) << 8) | |
| (((u32)hw->mac_addr[1])) ; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); |
| } |
| |
| /* |
| * atl1c_get_permanent_address |
| * return 0 if get valid mac address, |
| */ |
| static int atl1c_get_permanent_address(struct atl1c_hw *hw) |
| { |
| u32 addr[2]; |
| u32 i; |
| u32 otp_ctrl_data; |
| u32 twsi_ctrl_data; |
| u8 eth_addr[ETH_ALEN]; |
| u16 phy_data; |
| bool raise_vol = false; |
| |
| /* init */ |
| addr[0] = addr[1] = 0; |
| AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); |
| if (atl1c_check_eeprom_exist(hw)) { |
| if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c_b) { |
| /* Enable OTP CLK */ |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) { |
| otp_ctrl_data |= OTP_CTRL_CLK_EN; |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| msleep(1); |
| } |
| } |
| |
| if (hw->nic_type == athr_l2c_b || |
| hw->nic_type == athr_l2c_b2 || |
| hw->nic_type == athr_l1d) { |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data)) |
| goto out; |
| phy_data &= 0xFF7F; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data)) |
| goto out; |
| phy_data |= 0x8; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); |
| udelay(20); |
| raise_vol = true; |
| } |
| |
| AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); |
| twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; |
| AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); |
| for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { |
| msleep(10); |
| AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); |
| if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) |
| break; |
| } |
| if (i >= AT_TWSI_EEPROM_TIMEOUT) |
| return -1; |
| } |
| /* Disable OTP_CLK */ |
| if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) { |
| if (otp_ctrl_data & OTP_CTRL_CLK_EN) { |
| otp_ctrl_data &= ~OTP_CTRL_CLK_EN; |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| msleep(1); |
| } |
| } |
| if (raise_vol) { |
| if (hw->nic_type == athr_l2c_b || |
| hw->nic_type == athr_l2c_b2 || |
| hw->nic_type == athr_l1d) { |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data)) |
| goto out; |
| phy_data |= 0x80; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data)) |
| goto out; |
| phy_data &= 0xFFF7; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); |
| udelay(20); |
| } |
| } |
| |
| /* maybe MAC-address is from BIOS */ |
| AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]); |
| AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]); |
| *(u32 *) ð_addr[2] = swab32(addr[0]); |
| *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); |
| |
| if (is_valid_ether_addr(eth_addr)) { |
| memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); |
| return 0; |
| } |
| |
| out: |
| return -1; |
| } |
| |
| bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value) |
| { |
| int i; |
| int ret = false; |
| u32 otp_ctrl_data; |
| u32 control; |
| u32 data; |
| |
| if (offset & 3) |
| return ret; /* address do not align */ |
| |
| AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) |
| AT_WRITE_REG(hw, REG_OTP_CTRL, |
| (otp_ctrl_data | OTP_CTRL_CLK_EN)); |
| |
| AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0); |
| control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT; |
| AT_WRITE_REG(hw, REG_EEPROM_CTRL, control); |
| |
| for (i = 0; i < 10; i++) { |
| udelay(100); |
| AT_READ_REG(hw, REG_EEPROM_CTRL, &control); |
| if (control & EEPROM_CTRL_RW) |
| break; |
| } |
| if (control & EEPROM_CTRL_RW) { |
| AT_READ_REG(hw, REG_EEPROM_CTRL, &data); |
| AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value); |
| data = data & 0xFFFF; |
| *p_value = swab32((data << 16) | (*p_value >> 16)); |
| ret = true; |
| } |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| |
| return ret; |
| } |
| /* |
| * Reads the adapter's MAC address from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| int atl1c_read_mac_addr(struct atl1c_hw *hw) |
| { |
| int err = 0; |
| |
| err = atl1c_get_permanent_address(hw); |
| if (err) |
| random_ether_addr(hw->perm_mac_addr); |
| |
| memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); |
| return 0; |
| } |
| |
| /* |
| * atl1c_hash_mc_addr |
| * purpose |
| * set hash value for a multicast address |
| * hash calcu processing : |
| * 1. calcu 32bit CRC for multicast address |
| * 2. reverse crc with MSB to LSB |
| */ |
| u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr) |
| { |
| u32 crc32; |
| u32 value = 0; |
| int i; |
| |
| crc32 = ether_crc_le(6, mc_addr); |
| for (i = 0; i < 32; i++) |
| value |= (((crc32 >> i) & 1) << (31 - i)); |
| |
| return value; |
| } |
| |
| /* |
| * Sets the bit in the multicast table corresponding to the hash value. |
| * hw - Struct containing variables accessed by shared code |
| * hash_value - Multicast address hash value |
| */ |
| void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value) |
| { |
| u32 hash_bit, hash_reg; |
| u32 mta; |
| |
| /* |
| * The HASH Table is a register array of 2 32-bit registers. |
| * It is treated like an array of 64 bits. We want to set |
| * bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The register is determined by the |
| * upper bit of the hash value and the bit within that |
| * register are determined by the lower 5 bits of the value. |
| */ |
| hash_reg = (hash_value >> 31) & 0x1; |
| hash_bit = (hash_value >> 26) & 0x1F; |
| |
| mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); |
| } |
| |
| /* |
| * Reads the value from a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| */ |
| int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) |
| { |
| u32 val; |
| int i; |
| |
| val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | |
| MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | |
| MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; |
| |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| |
| for (i = 0; i < MDIO_WAIT_TIMES; i++) { |
| udelay(2); |
| AT_READ_REG(hw, REG_MDIO_CTRL, &val); |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| break; |
| } |
| if (!(val & (MDIO_START | MDIO_BUSY))) { |
| *phy_data = (u16)val; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Writes a value to a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| */ |
| int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data) |
| { |
| int i; |
| u32 val; |
| |
| val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | |
| (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | |
| MDIO_SUP_PREAMBLE | MDIO_START | |
| MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; |
| |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| |
| for (i = 0; i < MDIO_WAIT_TIMES; i++) { |
| udelay(2); |
| AT_READ_REG(hw, REG_MDIO_CTRL, &val); |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| break; |
| } |
| |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| return 0; |
| |
| return -1; |
| } |
| |
| /* |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| static int atl1c_phy_setup_adv(struct atl1c_hw *hw) |
| { |
| u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK; |
| u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP & |
| ~GIGA_CR_1000T_SPEED_MASK; |
| |
| if (hw->autoneg_advertised & ADVERTISED_10baseT_Half) |
| mii_adv_data |= ADVERTISE_10HALF; |
| if (hw->autoneg_advertised & ADVERTISED_10baseT_Full) |
| mii_adv_data |= ADVERTISE_10FULL; |
| if (hw->autoneg_advertised & ADVERTISED_100baseT_Half) |
| mii_adv_data |= ADVERTISE_100HALF; |
| if (hw->autoneg_advertised & ADVERTISED_100baseT_Full) |
| mii_adv_data |= ADVERTISE_100FULL; |
| |
| if (hw->autoneg_advertised & ADVERTISED_Autoneg) |
| mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL; |
| |
| if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) { |
| if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half) |
| mii_giga_ctrl_data |= ADVERTISE_1000HALF; |
| if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full) |
| mii_giga_ctrl_data |= ADVERTISE_1000FULL; |
| if (hw->autoneg_advertised & ADVERTISED_Autoneg) |
| mii_giga_ctrl_data |= ADVERTISE_1000HALF | |
| ADVERTISE_1000FULL; |
| } |
| |
| if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 || |
| atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0) |
| return -1; |
| return 0; |
| } |
| |
| void atl1c_phy_disable(struct atl1c_hw *hw) |
| { |
| AT_WRITE_REGW(hw, REG_GPHY_CTRL, |
| GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); |
| } |
| |
| static void atl1c_phy_magic_data(struct atl1c_hw *hw) |
| { |
| u16 data; |
| |
| data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | |
| ((1 & ANA_INTERVAL_SEL_TIMER_MASK) << |
| ANA_INTERVAL_SEL_TIMER_SHIFT); |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG | |
| ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | |
| ANA_SERDES_EN_LCKDT; |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| data = (44 & ANA_LONG_CABLE_TH_100_MASK) | |
| ((33 & ANA_SHORT_CABLE_TH_100_MASK) << |
| ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM | |
| ANA_BP_SMALL_BW; |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) << |
| ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << |
| ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << |
| ANA_IECHO_ADJ_0_SHIFT); |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) << |
| ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE | |
| ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M; |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| if (hw->ctrl_flags & ATL1C_HIB_DISABLE) { |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) |
| return; |
| data &= ~ANA_TOP_PS_EN; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11); |
| if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) |
| return; |
| data &= ~ANA_PS_HIB_EN; |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, data); |
| } |
| } |
| |
| int atl1c_phy_reset(struct atl1c_hw *hw) |
| { |
| struct atl1c_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| u16 phy_data; |
| u32 phy_ctrl_data = GPHY_CTRL_DEFAULT; |
| u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN; |
| int err; |
| |
| if (hw->ctrl_flags & ATL1C_HIB_DISABLE) |
| phy_ctrl_data &= ~GPHY_CTRL_HIB_EN; |
| |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| msleep(40); |
| phy_ctrl_data |= GPHY_CTRL_EXT_RESET; |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| msleep(10); |
| |
| if (hw->nic_type == athr_l2c_b) { |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x0A); |
| atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xDFFF); |
| } |
| |
| if (hw->nic_type == athr_l2c_b || |
| hw->nic_type == athr_l2c_b2 || |
| hw->nic_type == athr_l1d) { |
| atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B); |
| atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data); |
| atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xFFF7); |
| msleep(20); |
| } |
| |
| /*Enable PHY LinkChange Interrupt */ |
| err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data); |
| if (err) { |
| if (netif_msg_hw(adapter)) |
| dev_err(&pdev->dev, |
| "Error enable PHY linkChange Interrupt\n"); |
| return err; |
| } |
| if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) |
| atl1c_phy_magic_data(hw); |
| return 0; |
| } |
| |
| int atl1c_phy_init(struct atl1c_hw *hw) |
| { |
| struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| int ret_val; |
| u16 mii_bmcr_data = BMCR_RESET; |
| u16 phy_id1, phy_id2; |
| |
| if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) || |
| (atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) { |
| if (netif_msg_link(adapter)) |
| dev_err(&pdev->dev, "Error get phy ID\n"); |
| return -1; |
| } |
| switch (hw->media_type) { |
| case MEDIA_TYPE_AUTO_SENSOR: |
| ret_val = atl1c_phy_setup_adv(hw); |
| if (ret_val) { |
| if (netif_msg_link(adapter)) |
| dev_err(&pdev->dev, |
| "Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; |
| break; |
| case MEDIA_TYPE_100M_FULL: |
| mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX; |
| break; |
| case MEDIA_TYPE_100M_HALF: |
| mii_bmcr_data |= BMCR_SPEED_100; |
| break; |
| case MEDIA_TYPE_10M_FULL: |
| mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX; |
| break; |
| case MEDIA_TYPE_10M_HALF: |
| mii_bmcr_data |= BMCR_SPEED_10; |
| break; |
| default: |
| if (netif_msg_link(adapter)) |
| dev_err(&pdev->dev, "Wrong Media type %d\n", |
| hw->media_type); |
| return -1; |
| break; |
| } |
| |
| ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); |
| if (ret_val) |
| return ret_val; |
| hw->phy_configured = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| */ |
| int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex) |
| { |
| int err; |
| u16 phy_data; |
| |
| /* Read PHY Specific Status Register (17) */ |
| err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data); |
| if (err) |
| return err; |
| |
| if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED)) |
| return -1; |
| |
| switch (phy_data & GIGA_PSSR_SPEED) { |
| case GIGA_PSSR_1000MBS: |
| *speed = SPEED_1000; |
| break; |
| case GIGA_PSSR_100MBS: |
| *speed = SPEED_100; |
| break; |
| case GIGA_PSSR_10MBS: |
| *speed = SPEED_10; |
| break; |
| default: |
| return -1; |
| break; |
| } |
| |
| if (phy_data & GIGA_PSSR_DPLX) |
| *duplex = FULL_DUPLEX; |
| else |
| *duplex = HALF_DUPLEX; |
| |
| return 0; |
| } |
| |
| int atl1c_restart_autoneg(struct atl1c_hw *hw) |
| { |
| int err = 0; |
| u16 mii_bmcr_data = BMCR_RESET; |
| |
| err = atl1c_phy_setup_adv(hw); |
| if (err) |
| return err; |
| mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; |
| |
| return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); |
| } |