blob: c0a29b96b92b032fdcdddb47702e3383724781e8 [file] [log] [blame]
/*
* include/asm-cris/processor.h
*
* Copyright (C) 2000, 2001 Axis Communications AB
*
* Authors: Bjorn Wesen Initial version
*
*/
#ifndef __ASM_CRIS_PROCESSOR_H
#define __ASM_CRIS_PROCESSOR_H
#include <asm/page.h>
#include <asm/ptrace.h>
#include <arch/processor.h>
#include <arch/system.h>
struct task_struct;
#define STACK_TOP TASK_SIZE
#define STACK_TOP_MAX STACK_TOP
/* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
/* THREAD_SIZE is the size of the thread_info/kernel_stack combo.
* normally, the stack is found by doing something like p + THREAD_SIZE
* in CRIS, a page is 8192 bytes, which seems like a sane size
*/
#define THREAD_SIZE PAGE_SIZE
#define THREAD_SIZE_ORDER (0)
/*
* At user->kernel entry, the pt_regs struct is stacked on the top of the kernel-stack.
* This macro allows us to find those regs for a task.
* Notice that subsequent pt_regs stackings, like recursive interrupts occurring while
* we're in the kernel, won't affect this - only the first user->kernel transition
* registers are reached by this.
*/
#define user_regs(thread_info) (((struct pt_regs *)((unsigned long)(thread_info) + THREAD_SIZE)) - 1)
/*
* Dito but for the currently running task
*/
#define task_pt_regs(task) user_regs(task_thread_info(task))
#define current_regs() task_pt_regs(current)
unsigned long get_wchan(struct task_struct *p);
#define KSTK_ESP(tsk) ((tsk) == current ? rdusp() : (tsk)->thread.usp)
extern unsigned long thread_saved_pc(struct task_struct *tsk);
/* Free all resources held by a thread. */
static inline void release_thread(struct task_struct *dead_task)
{
/* Nothing needs to be done. */
}
#define init_stack (init_thread_union.stack)
#define cpu_relax() barrier()
void default_idle(void);
#endif /* __ASM_CRIS_PROCESSOR_H */