| /* |
| * SH RSPI driver |
| * |
| * Copyright (C) 2012 Renesas Solutions Corp. |
| * |
| * Based on spi-sh.c: |
| * Copyright (C) 2011 Renesas Solutions Corp. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/list.h> |
| #include <linux/workqueue.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/sh_dma.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/rspi.h> |
| |
| #define RSPI_SPCR 0x00 /* Control Register */ |
| #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ |
| #define RSPI_SPPCR 0x02 /* Pin Control Register */ |
| #define RSPI_SPSR 0x03 /* Status Register */ |
| #define RSPI_SPDR 0x04 /* Data Register */ |
| #define RSPI_SPSCR 0x08 /* Sequence Control Register */ |
| #define RSPI_SPSSR 0x09 /* Sequence Status Register */ |
| #define RSPI_SPBR 0x0a /* Bit Rate Register */ |
| #define RSPI_SPDCR 0x0b /* Data Control Register */ |
| #define RSPI_SPCKD 0x0c /* Clock Delay Register */ |
| #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ |
| #define RSPI_SPND 0x0e /* Next-Access Delay Register */ |
| #define RSPI_SPCR2 0x0f /* Control Register 2 */ |
| #define RSPI_SPCMD0 0x10 /* Command Register 0 */ |
| #define RSPI_SPCMD1 0x12 /* Command Register 1 */ |
| #define RSPI_SPCMD2 0x14 /* Command Register 2 */ |
| #define RSPI_SPCMD3 0x16 /* Command Register 3 */ |
| #define RSPI_SPCMD4 0x18 /* Command Register 4 */ |
| #define RSPI_SPCMD5 0x1a /* Command Register 5 */ |
| #define RSPI_SPCMD6 0x1c /* Command Register 6 */ |
| #define RSPI_SPCMD7 0x1e /* Command Register 7 */ |
| #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ |
| #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ |
| |
| /*qspi only */ |
| #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ |
| #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ |
| #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ |
| #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ |
| #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ |
| #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ |
| |
| /* SPCR - Control Register */ |
| #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ |
| #define SPCR_SPE 0x40 /* Function Enable */ |
| #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ |
| #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ |
| #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ |
| #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ |
| /* RSPI on SH only */ |
| #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ |
| #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ |
| /* QSPI on R-Car M2 only */ |
| #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ |
| #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ |
| |
| /* SSLP - Slave Select Polarity Register */ |
| #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ |
| #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ |
| |
| /* SPPCR - Pin Control Register */ |
| #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ |
| #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ |
| #define SPPCR_SPOM 0x04 |
| #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ |
| #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ |
| |
| #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ |
| #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ |
| |
| /* SPSR - Status Register */ |
| #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ |
| #define SPSR_TEND 0x40 /* Transmit End */ |
| #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ |
| #define SPSR_PERF 0x08 /* Parity Error Flag */ |
| #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ |
| #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ |
| #define SPSR_OVRF 0x01 /* Overrun Error Flag */ |
| |
| /* SPSCR - Sequence Control Register */ |
| #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ |
| |
| /* SPSSR - Sequence Status Register */ |
| #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ |
| #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ |
| |
| /* SPDCR - Data Control Register */ |
| #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ |
| #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ |
| #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ |
| #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) |
| #define SPDCR_SPLWORD SPDCR_SPLW1 |
| #define SPDCR_SPLBYTE SPDCR_SPLW0 |
| #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ |
| #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select */ |
| #define SPDCR_SLSEL1 0x08 |
| #define SPDCR_SLSEL0 0x04 |
| #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select */ |
| #define SPDCR_SPFC1 0x02 |
| #define SPDCR_SPFC0 0x01 |
| #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) */ |
| |
| /* SPCKD - Clock Delay Register */ |
| #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ |
| |
| /* SSLND - Slave Select Negation Delay Register */ |
| #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ |
| |
| /* SPND - Next-Access Delay Register */ |
| #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ |
| |
| /* SPCR2 - Control Register 2 */ |
| #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ |
| #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ |
| #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ |
| #define SPCR2_SPPE 0x01 /* Parity Enable */ |
| |
| /* SPCMDn - Command Registers */ |
| #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ |
| #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ |
| #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ |
| #define SPCMD_LSBF 0x1000 /* LSB First */ |
| #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ |
| #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) |
| #define SPCMD_SPB_8BIT 0x0000 /* qspi only */ |
| #define SPCMD_SPB_16BIT 0x0100 |
| #define SPCMD_SPB_20BIT 0x0000 |
| #define SPCMD_SPB_24BIT 0x0100 |
| #define SPCMD_SPB_32BIT 0x0200 |
| #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ |
| #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ |
| #define SPCMD_SPIMOD1 0x0040 |
| #define SPCMD_SPIMOD0 0x0020 |
| #define SPCMD_SPIMOD_SINGLE 0 |
| #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 |
| #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 |
| #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ |
| #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ |
| #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ |
| #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ |
| #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ |
| |
| /* SPBFCR - Buffer Control Register */ |
| #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset (qspi only) */ |
| #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset (qspi only) */ |
| #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ |
| #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ |
| |
| #define DUMMY_DATA 0x00 |
| |
| struct rspi_data { |
| void __iomem *addr; |
| u32 max_speed_hz; |
| struct spi_master *master; |
| struct list_head queue; |
| struct work_struct ws; |
| wait_queue_head_t wait; |
| spinlock_t lock; |
| struct clk *clk; |
| u8 spsr; |
| u16 spcmd; |
| const struct spi_ops *ops; |
| |
| /* for dmaengine */ |
| struct dma_chan *chan_tx; |
| struct dma_chan *chan_rx; |
| int irq; |
| |
| unsigned dma_width_16bit:1; |
| unsigned dma_callbacked:1; |
| }; |
| |
| static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) |
| { |
| iowrite8(data, rspi->addr + offset); |
| } |
| |
| static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) |
| { |
| iowrite16(data, rspi->addr + offset); |
| } |
| |
| static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) |
| { |
| iowrite32(data, rspi->addr + offset); |
| } |
| |
| static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) |
| { |
| return ioread8(rspi->addr + offset); |
| } |
| |
| static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) |
| { |
| return ioread16(rspi->addr + offset); |
| } |
| |
| /* optional functions */ |
| struct spi_ops { |
| int (*set_config_register)(const struct rspi_data *rspi, |
| int access_size); |
| int (*send_pio)(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t); |
| int (*receive_pio)(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t); |
| |
| }; |
| |
| /* |
| * functions for RSPI |
| */ |
| static int rspi_set_config_register(const struct rspi_data *rspi, |
| int access_size) |
| { |
| int spbr; |
| |
| /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */ |
| rspi_write8(rspi, 0x00, RSPI_SPPCR); |
| |
| /* Sets transfer bit rate */ |
| spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1; |
| rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); |
| |
| /* Sets number of frames to be used: 1 frame */ |
| rspi_write8(rspi, 0x00, RSPI_SPDCR); |
| |
| /* Sets RSPCK, SSL, next-access delay value */ |
| rspi_write8(rspi, 0x00, RSPI_SPCKD); |
| rspi_write8(rspi, 0x00, RSPI_SSLND); |
| rspi_write8(rspi, 0x00, RSPI_SPND); |
| |
| /* Sets parity, interrupt mask */ |
| rspi_write8(rspi, 0x00, RSPI_SPCR2); |
| |
| /* Sets SPCMD */ |
| rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd, |
| RSPI_SPCMD0); |
| |
| /* Sets RSPI mode */ |
| rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); |
| |
| return 0; |
| } |
| |
| /* |
| * functions for QSPI |
| */ |
| static int qspi_set_config_register(const struct rspi_data *rspi, |
| int access_size) |
| { |
| u16 spcmd; |
| int spbr; |
| |
| /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */ |
| rspi_write8(rspi, 0x00, RSPI_SPPCR); |
| |
| /* Sets transfer bit rate */ |
| spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz); |
| rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); |
| |
| /* Sets number of frames to be used: 1 frame */ |
| rspi_write8(rspi, 0x00, RSPI_SPDCR); |
| |
| /* Sets RSPCK, SSL, next-access delay value */ |
| rspi_write8(rspi, 0x00, RSPI_SPCKD); |
| rspi_write8(rspi, 0x00, RSPI_SSLND); |
| rspi_write8(rspi, 0x00, RSPI_SPND); |
| |
| /* Data Length Setting */ |
| if (access_size == 8) |
| spcmd = SPCMD_SPB_8BIT; |
| else if (access_size == 16) |
| spcmd = SPCMD_SPB_16BIT; |
| else |
| spcmd = SPCMD_SPB_32BIT; |
| |
| spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN; |
| |
| /* Resets transfer data length */ |
| rspi_write32(rspi, 0, QSPI_SPBMUL0); |
| |
| /* Resets transmit and receive buffer */ |
| rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); |
| /* Sets buffer to allow normal operation */ |
| rspi_write8(rspi, 0x00, QSPI_SPBFCR); |
| |
| /* Sets SPCMD */ |
| rspi_write16(rspi, spcmd, RSPI_SPCMD0); |
| |
| /* Enables SPI function in a master mode */ |
| rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); |
| |
| return 0; |
| } |
| |
| #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) |
| |
| static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) |
| { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); |
| } |
| |
| static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) |
| { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); |
| } |
| |
| static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, |
| u8 enable_bit) |
| { |
| int ret; |
| |
| rspi->spsr = rspi_read8(rspi, RSPI_SPSR); |
| rspi_enable_irq(rspi, enable_bit); |
| ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); |
| if (ret == 0 && !(rspi->spsr & wait_mask)) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static void rspi_assert_ssl(const struct rspi_data *rspi) |
| { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); |
| } |
| |
| static void rspi_negate_ssl(const struct rspi_data *rspi) |
| { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); |
| } |
| |
| static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t) |
| { |
| int remain = t->len; |
| const u8 *data = t->tx_buf; |
| while (remain > 0) { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, |
| RSPI_SPCR); |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: tx empty timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| rspi_write16(rspi, *data, RSPI_SPDR); |
| data++; |
| remain--; |
| } |
| |
| /* Waiting for the last transmission */ |
| rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); |
| |
| return 0; |
| } |
| |
| static int qspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t) |
| { |
| int remain = t->len; |
| const u8 *data = t->tx_buf; |
| |
| rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR); |
| rspi_write8(rspi, 0x00, QSPI_SPBFCR); |
| |
| while (remain > 0) { |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: tx empty timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| rspi_write8(rspi, *data++, RSPI_SPDR); |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: receive timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| rspi_read8(rspi, RSPI_SPDR); |
| |
| remain--; |
| } |
| |
| /* Waiting for the last transmission */ |
| rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); |
| |
| return 0; |
| } |
| |
| #define send_pio(spi, mesg, t) spi->ops->send_pio(spi, mesg, t) |
| |
| static void rspi_dma_complete(void *arg) |
| { |
| struct rspi_data *rspi = arg; |
| |
| rspi->dma_callbacked = 1; |
| wake_up_interruptible(&rspi->wait); |
| } |
| |
| static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf, |
| unsigned len, struct dma_chan *chan, |
| enum dma_transfer_direction dir) |
| { |
| sg_init_table(sg, 1); |
| sg_set_buf(sg, buf, len); |
| sg_dma_len(sg) = len; |
| return dma_map_sg(chan->device->dev, sg, 1, dir); |
| } |
| |
| static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan, |
| enum dma_transfer_direction dir) |
| { |
| dma_unmap_sg(chan->device->dev, sg, 1, dir); |
| } |
| |
| static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len) |
| { |
| u16 *dst = buf; |
| const u8 *src = data; |
| |
| while (len) { |
| *dst++ = (u16)(*src++); |
| len--; |
| } |
| } |
| |
| static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len) |
| { |
| u8 *dst = buf; |
| const u16 *src = data; |
| |
| while (len) { |
| *dst++ = (u8)*src++; |
| len--; |
| } |
| } |
| |
| static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t) |
| { |
| struct scatterlist sg; |
| const void *buf = NULL; |
| struct dma_async_tx_descriptor *desc; |
| unsigned len; |
| int ret = 0; |
| |
| if (rspi->dma_width_16bit) { |
| void *tmp; |
| /* |
| * If DMAC bus width is 16-bit, the driver allocates a dummy |
| * buffer. And, the driver converts original data into the |
| * DMAC data as the following format: |
| * original data: 1st byte, 2nd byte ... |
| * DMAC data: 1st byte, dummy, 2nd byte, dummy ... |
| */ |
| len = t->len * 2; |
| tmp = kmalloc(len, GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| rspi_memory_to_8bit(tmp, t->tx_buf, t->len); |
| buf = tmp; |
| } else { |
| len = t->len; |
| buf = t->tx_buf; |
| } |
| |
| if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) { |
| ret = -EFAULT; |
| goto end_nomap; |
| } |
| desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) { |
| ret = -EIO; |
| goto end; |
| } |
| |
| /* |
| * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be |
| * called. So, this driver disables the IRQ while DMA transfer. |
| */ |
| disable_irq(rspi->irq); |
| |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR); |
| rspi_enable_irq(rspi, SPCR_SPTIE); |
| rspi->dma_callbacked = 0; |
| |
| desc->callback = rspi_dma_complete; |
| desc->callback_param = rspi; |
| dmaengine_submit(desc); |
| dma_async_issue_pending(rspi->chan_tx); |
| |
| ret = wait_event_interruptible_timeout(rspi->wait, |
| rspi->dma_callbacked, HZ); |
| if (ret > 0 && rspi->dma_callbacked) |
| ret = 0; |
| else if (!ret) |
| ret = -ETIMEDOUT; |
| rspi_disable_irq(rspi, SPCR_SPTIE); |
| |
| enable_irq(rspi->irq); |
| |
| end: |
| rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE); |
| end_nomap: |
| if (rspi->dma_width_16bit) |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| static void rspi_receive_init(const struct rspi_data *rspi) |
| { |
| u8 spsr; |
| |
| spsr = rspi_read8(rspi, RSPI_SPSR); |
| if (spsr & SPSR_SPRF) |
| rspi_read16(rspi, RSPI_SPDR); /* dummy read */ |
| if (spsr & SPSR_OVRF) |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, |
| RSPI_SPSR); |
| } |
| |
| static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t) |
| { |
| int remain = t->len; |
| u8 *data; |
| |
| rspi_receive_init(rspi); |
| |
| data = t->rx_buf; |
| while (remain > 0) { |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, |
| RSPI_SPCR); |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: tx empty timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| /* dummy write for generate clock */ |
| rspi_write16(rspi, DUMMY_DATA, RSPI_SPDR); |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: receive timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| /* SPDR allows 16 or 32-bit access only */ |
| *data = (u8)rspi_read16(rspi, RSPI_SPDR); |
| |
| data++; |
| remain--; |
| } |
| |
| return 0; |
| } |
| |
| static void qspi_receive_init(const struct rspi_data *rspi) |
| { |
| u8 spsr; |
| |
| spsr = rspi_read8(rspi, RSPI_SPSR); |
| if (spsr & SPSR_SPRF) |
| rspi_read8(rspi, RSPI_SPDR); /* dummy read */ |
| rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); |
| rspi_write8(rspi, 0x00, QSPI_SPBFCR); |
| } |
| |
| static int qspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg, |
| struct spi_transfer *t) |
| { |
| int remain = t->len; |
| u8 *data; |
| |
| qspi_receive_init(rspi); |
| |
| data = t->rx_buf; |
| while (remain > 0) { |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: tx empty timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| /* dummy write for generate clock */ |
| rspi_write8(rspi, DUMMY_DATA, RSPI_SPDR); |
| |
| if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { |
| dev_err(&rspi->master->dev, |
| "%s: receive timeout\n", __func__); |
| return -ETIMEDOUT; |
| } |
| /* SPDR allows 8, 16 or 32-bit access */ |
| *data++ = rspi_read8(rspi, RSPI_SPDR); |
| remain--; |
| } |
| |
| return 0; |
| } |
| |
| #define receive_pio(spi, mesg, t) spi->ops->receive_pio(spi, mesg, t) |
| |
| static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t) |
| { |
| struct scatterlist sg, sg_dummy; |
| void *dummy = NULL, *rx_buf = NULL; |
| struct dma_async_tx_descriptor *desc, *desc_dummy; |
| unsigned len; |
| int ret = 0; |
| |
| if (rspi->dma_width_16bit) { |
| /* |
| * If DMAC bus width is 16-bit, the driver allocates a dummy |
| * buffer. And, finally the driver converts the DMAC data into |
| * actual data as the following format: |
| * DMAC data: 1st byte, dummy, 2nd byte, dummy ... |
| * actual data: 1st byte, 2nd byte ... |
| */ |
| len = t->len * 2; |
| rx_buf = kmalloc(len, GFP_KERNEL); |
| if (!rx_buf) |
| return -ENOMEM; |
| } else { |
| len = t->len; |
| rx_buf = t->rx_buf; |
| } |
| |
| /* prepare dummy transfer to generate SPI clocks */ |
| dummy = kzalloc(len, GFP_KERNEL); |
| if (!dummy) { |
| ret = -ENOMEM; |
| goto end_nomap; |
| } |
| if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx, |
| DMA_TO_DEVICE)) { |
| ret = -EFAULT; |
| goto end_nomap; |
| } |
| desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1, |
| DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc_dummy) { |
| ret = -EIO; |
| goto end_dummy_mapped; |
| } |
| |
| /* prepare receive transfer */ |
| if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx, |
| DMA_FROM_DEVICE)) { |
| ret = -EFAULT; |
| goto end_dummy_mapped; |
| |
| } |
| desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) { |
| ret = -EIO; |
| goto end; |
| } |
| |
| rspi_receive_init(rspi); |
| |
| /* |
| * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be |
| * called. So, this driver disables the IRQ while DMA transfer. |
| */ |
| disable_irq(rspi->irq); |
| |
| rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR); |
| rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); |
| rspi->dma_callbacked = 0; |
| |
| desc->callback = rspi_dma_complete; |
| desc->callback_param = rspi; |
| dmaengine_submit(desc); |
| dma_async_issue_pending(rspi->chan_rx); |
| |
| desc_dummy->callback = NULL; /* No callback */ |
| dmaengine_submit(desc_dummy); |
| dma_async_issue_pending(rspi->chan_tx); |
| |
| ret = wait_event_interruptible_timeout(rspi->wait, |
| rspi->dma_callbacked, HZ); |
| if (ret > 0 && rspi->dma_callbacked) |
| ret = 0; |
| else if (!ret) |
| ret = -ETIMEDOUT; |
| rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); |
| |
| enable_irq(rspi->irq); |
| |
| end: |
| rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE); |
| end_dummy_mapped: |
| rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE); |
| end_nomap: |
| if (rspi->dma_width_16bit) { |
| if (!ret) |
| rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len); |
| kfree(rx_buf); |
| } |
| kfree(dummy); |
| |
| return ret; |
| } |
| |
| static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t) |
| { |
| if (t->tx_buf && rspi->chan_tx) |
| return 1; |
| /* If the module receives data by DMAC, it also needs TX DMAC */ |
| if (t->rx_buf && rspi->chan_tx && rspi->chan_rx) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void rspi_work(struct work_struct *work) |
| { |
| struct rspi_data *rspi = container_of(work, struct rspi_data, ws); |
| struct spi_message *mesg; |
| struct spi_transfer *t; |
| unsigned long flags; |
| int ret; |
| |
| while (1) { |
| spin_lock_irqsave(&rspi->lock, flags); |
| if (list_empty(&rspi->queue)) { |
| spin_unlock_irqrestore(&rspi->lock, flags); |
| break; |
| } |
| mesg = list_entry(rspi->queue.next, struct spi_message, queue); |
| list_del_init(&mesg->queue); |
| spin_unlock_irqrestore(&rspi->lock, flags); |
| |
| rspi_assert_ssl(rspi); |
| |
| list_for_each_entry(t, &mesg->transfers, transfer_list) { |
| if (t->tx_buf) { |
| if (rspi_is_dma(rspi, t)) |
| ret = rspi_send_dma(rspi, t); |
| else |
| ret = send_pio(rspi, mesg, t); |
| if (ret < 0) |
| goto error; |
| } |
| if (t->rx_buf) { |
| if (rspi_is_dma(rspi, t)) |
| ret = rspi_receive_dma(rspi, t); |
| else |
| ret = receive_pio(rspi, mesg, t); |
| if (ret < 0) |
| goto error; |
| } |
| mesg->actual_length += t->len; |
| } |
| rspi_negate_ssl(rspi); |
| |
| mesg->status = 0; |
| mesg->complete(mesg->context); |
| } |
| |
| return; |
| |
| error: |
| mesg->status = ret; |
| mesg->complete(mesg->context); |
| } |
| |
| static int rspi_setup(struct spi_device *spi) |
| { |
| struct rspi_data *rspi = spi_master_get_devdata(spi->master); |
| |
| rspi->max_speed_hz = spi->max_speed_hz; |
| |
| rspi->spcmd = SPCMD_SSLKP; |
| if (spi->mode & SPI_CPOL) |
| rspi->spcmd |= SPCMD_CPOL; |
| if (spi->mode & SPI_CPHA) |
| rspi->spcmd |= SPCMD_CPHA; |
| |
| set_config_register(rspi, 8); |
| |
| return 0; |
| } |
| |
| static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg) |
| { |
| struct rspi_data *rspi = spi_master_get_devdata(spi->master); |
| unsigned long flags; |
| |
| mesg->actual_length = 0; |
| mesg->status = -EINPROGRESS; |
| |
| spin_lock_irqsave(&rspi->lock, flags); |
| list_add_tail(&mesg->queue, &rspi->queue); |
| schedule_work(&rspi->ws); |
| spin_unlock_irqrestore(&rspi->lock, flags); |
| |
| return 0; |
| } |
| |
| static void rspi_cleanup(struct spi_device *spi) |
| { |
| } |
| |
| static irqreturn_t rspi_irq(int irq, void *_sr) |
| { |
| struct rspi_data *rspi = _sr; |
| u8 spsr; |
| irqreturn_t ret = IRQ_NONE; |
| u8 disable_irq = 0; |
| |
| rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); |
| if (spsr & SPSR_SPRF) |
| disable_irq |= SPCR_SPRIE; |
| if (spsr & SPSR_SPTEF) |
| disable_irq |= SPCR_SPTIE; |
| |
| if (disable_irq) { |
| ret = IRQ_HANDLED; |
| rspi_disable_irq(rspi, disable_irq); |
| wake_up(&rspi->wait); |
| } |
| |
| return ret; |
| } |
| |
| static int rspi_request_dma(struct rspi_data *rspi, |
| struct platform_device *pdev) |
| { |
| const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev); |
| struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| dma_cap_mask_t mask; |
| struct dma_slave_config cfg; |
| int ret; |
| |
| if (!res || !rspi_pd) |
| return 0; /* The driver assumes no error. */ |
| |
| rspi->dma_width_16bit = rspi_pd->dma_width_16bit; |
| |
| /* If the module receives data by DMAC, it also needs TX DMAC */ |
| if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) { |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter, |
| (void *)rspi_pd->dma_rx_id); |
| if (rspi->chan_rx) { |
| cfg.slave_id = rspi_pd->dma_rx_id; |
| cfg.direction = DMA_DEV_TO_MEM; |
| cfg.dst_addr = 0; |
| cfg.src_addr = res->start + RSPI_SPDR; |
| ret = dmaengine_slave_config(rspi->chan_rx, &cfg); |
| if (!ret) |
| dev_info(&pdev->dev, "Use DMA when rx.\n"); |
| else |
| return ret; |
| } |
| } |
| if (rspi_pd->dma_tx_id) { |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter, |
| (void *)rspi_pd->dma_tx_id); |
| if (rspi->chan_tx) { |
| cfg.slave_id = rspi_pd->dma_tx_id; |
| cfg.direction = DMA_MEM_TO_DEV; |
| cfg.dst_addr = res->start + RSPI_SPDR; |
| cfg.src_addr = 0; |
| ret = dmaengine_slave_config(rspi->chan_tx, &cfg); |
| if (!ret) |
| dev_info(&pdev->dev, "Use DMA when tx\n"); |
| else |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void rspi_release_dma(struct rspi_data *rspi) |
| { |
| if (rspi->chan_tx) |
| dma_release_channel(rspi->chan_tx); |
| if (rspi->chan_rx) |
| dma_release_channel(rspi->chan_rx); |
| } |
| |
| static int rspi_remove(struct platform_device *pdev) |
| { |
| struct rspi_data *rspi = platform_get_drvdata(pdev); |
| |
| rspi_release_dma(rspi); |
| clk_disable(rspi->clk); |
| |
| return 0; |
| } |
| |
| static int rspi_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct spi_master *master; |
| struct rspi_data *rspi; |
| int ret, irq; |
| char clk_name[16]; |
| const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev); |
| const struct spi_ops *ops; |
| const struct platform_device_id *id_entry = pdev->id_entry; |
| |
| ops = (struct spi_ops *)id_entry->driver_data; |
| /* ops parameter check */ |
| if (!ops->set_config_register) { |
| dev_err(&pdev->dev, "there is no set_config_register\n"); |
| return -ENODEV; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "platform_get_irq error\n"); |
| return -ENODEV; |
| } |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); |
| if (master == NULL) { |
| dev_err(&pdev->dev, "spi_alloc_master error.\n"); |
| return -ENOMEM; |
| } |
| |
| rspi = spi_master_get_devdata(master); |
| platform_set_drvdata(pdev, rspi); |
| rspi->ops = ops; |
| rspi->master = master; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| rspi->addr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(rspi->addr)) { |
| ret = PTR_ERR(rspi->addr); |
| goto error1; |
| } |
| |
| snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id); |
| rspi->clk = devm_clk_get(&pdev->dev, clk_name); |
| if (IS_ERR(rspi->clk)) { |
| dev_err(&pdev->dev, "cannot get clock\n"); |
| ret = PTR_ERR(rspi->clk); |
| goto error1; |
| } |
| clk_enable(rspi->clk); |
| |
| INIT_LIST_HEAD(&rspi->queue); |
| spin_lock_init(&rspi->lock); |
| INIT_WORK(&rspi->ws, rspi_work); |
| init_waitqueue_head(&rspi->wait); |
| |
| if (rspi_pd && rspi_pd->num_chipselect) |
| master->num_chipselect = rspi_pd->num_chipselect; |
| else |
| master->num_chipselect = 2; /* default */ |
| |
| master->bus_num = pdev->id; |
| master->setup = rspi_setup; |
| master->transfer = rspi_transfer; |
| master->cleanup = rspi_cleanup; |
| master->mode_bits = SPI_CPHA | SPI_CPOL; |
| |
| ret = devm_request_irq(&pdev->dev, irq, rspi_irq, 0, |
| dev_name(&pdev->dev), rspi); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "request_irq error\n"); |
| goto error2; |
| } |
| |
| rspi->irq = irq; |
| ret = rspi_request_dma(rspi, pdev); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "rspi_request_dma failed.\n"); |
| goto error3; |
| } |
| |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "spi_register_master error.\n"); |
| goto error3; |
| } |
| |
| dev_info(&pdev->dev, "probed\n"); |
| |
| return 0; |
| |
| error3: |
| rspi_release_dma(rspi); |
| error2: |
| clk_disable(rspi->clk); |
| error1: |
| spi_master_put(master); |
| |
| return ret; |
| } |
| |
| static struct spi_ops rspi_ops = { |
| .set_config_register = rspi_set_config_register, |
| .send_pio = rspi_send_pio, |
| .receive_pio = rspi_receive_pio, |
| }; |
| |
| static struct spi_ops qspi_ops = { |
| .set_config_register = qspi_set_config_register, |
| .send_pio = qspi_send_pio, |
| .receive_pio = qspi_receive_pio, |
| }; |
| |
| static struct platform_device_id spi_driver_ids[] = { |
| { "rspi", (kernel_ulong_t)&rspi_ops }, |
| { "qspi", (kernel_ulong_t)&qspi_ops }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(platform, spi_driver_ids); |
| |
| static struct platform_driver rspi_driver = { |
| .probe = rspi_probe, |
| .remove = rspi_remove, |
| .id_table = spi_driver_ids, |
| .driver = { |
| .name = "renesas_spi", |
| .owner = THIS_MODULE, |
| }, |
| }; |
| module_platform_driver(rspi_driver); |
| |
| MODULE_DESCRIPTION("Renesas RSPI bus driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Yoshihiro Shimoda"); |
| MODULE_ALIAS("platform:rspi"); |