blob: 30cb6f0f053dd3d30fd8d5ae7dd99b4e894fa53b [file] [log] [blame]
/* Copyright (c) 2017, The Linux Foundation. All rights reserved.
* Copyright(C) 2016 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/coresight.h>
#include <linux/dma-mapping.h>
#include "coresight-priv.h"
#include "coresight-tmc.h"
static void tmc_etr_sg_tbl_free(uint32_t *vaddr, uint32_t size, uint32_t ents)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
/* Do not go beyond number of entries allocated */
if (i == ents) {
free_page((unsigned long)virt_st_tbl);
return;
}
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
free_page((unsigned long)virt_blk);
pte_n++;
} else if (last_pte == total_ents) {
free_page((unsigned long)virt_blk);
free_page((unsigned long)virt_st_tbl);
} else {
free_page((unsigned long)virt_st_tbl);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
static void tmc_etr_sg_tbl_flush(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
dmac_flush_range((void *)virt_st_tbl, (void *)virt_st_tbl + PAGE_SIZE);
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
dmac_flush_range(virt_blk, virt_blk + PAGE_SIZE);
if ((last_pte - i) > 1) {
pte_n++;
} else if (last_pte != total_ents) {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
}
/*
* Scatter gather table layout in memory:
* 1. Table contains 32-bit entries
* 2. Each entry in the table points to 4K block of memory
* 3. Last entry in the table points to next table
* 4. (*) Based on mem_size requested, if there is no need for next level of
* table, last entry in the table points directly to 4K block of memory.
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* |---------------|
* | blk_num=1 |
* |---------------|
* | blk_num=2 |
* |---------------| sg_tbl_num=1
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=3 |
* |---------------|
* | blk_num=4 |
* |---------------|
* | blk_num=5 |
* |---------------| sg_tbl_num=2
* |(*)Nxt Tbl Addr|------>|---------------|
* |---------------| | blk_num=6 |
* |---------------|
* | blk_num=7 |
* |---------------|
* | blk_num=8 |
* |---------------|
* | |End of
* |---------------|-----
* Table
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
*/
static int tmc_etr_sg_tbl_alloc(struct tmc_drvdata *drvdata)
{
int ret;
uint32_t i = 0, last_pte;
uint32_t *virt_pgdir, *virt_st_tbl;
void *virt_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_pgdir = (uint32_t *)get_zeroed_page(GFP_KERNEL);
if (!virt_pgdir)
return -ENOMEM;
virt_st_tbl = virt_pgdir;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = (void *)get_zeroed_page(GFP_KERNEL);
if (!virt_pte) {
ret = -ENOMEM;
goto err;
}
if ((last_pte - i) > 1) {
*virt_st_tbl =
TMC_ETR_SG_ENT(virt_to_phys(virt_pte));
virt_st_tbl++;
} else if (last_pte == total_ents) {
*virt_st_tbl =
TMC_ETR_SG_LST_ENT(virt_to_phys(virt_pte));
} else {
*virt_st_tbl =
TMC_ETR_SG_NXT_TBL(virt_to_phys(virt_pte));
virt_st_tbl = (uint32_t *)virt_pte;
break;
}
i++;
}
}
drvdata->vaddr = virt_pgdir;
drvdata->paddr = virt_to_phys(virt_pgdir);
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush((uint32_t *)drvdata->vaddr, drvdata->size);
dev_dbg(drvdata->dev, "%s: table starts at %#lx, total entries %d\n",
__func__, (unsigned long)drvdata->paddr, total_ents);
return 0;
err:
tmc_etr_sg_tbl_free(virt_pgdir, drvdata->size, i);
return ret;
}
/*
* TMC read logic when scatter gather feature is enabled:
*
* sg_tbl_num=0
* |---------------|<-- drvdata->vaddr
* | blk_num=0 |
* | blk_num_rel=5 |
* |---------------|
* | blk_num=1 |
* | blk_num_rel=6 |
* |---------------|
* | blk_num=2 |
* | blk_num_rel=7 |
* |---------------| sg_tbl_num=1
* | Next Table |------>|---------------|
* | Addr | | blk_num=3 |
* |---------------| | blk_num_rel=8 |
* |---------------|
* 4k Block Addr | blk_num=4 |
* |--------------| blk_num_rel=0 |
* | |---------------|
* | | blk_num=5 |
* | | blk_num_rel=1 |
* | |---------------| sg_tbl_num=2
* |---------------| | Next Table |------>|---------------|
* | | | Addr | | blk_num=6 |
* | | |---------------| | blk_num_rel=2 |
* | read_off | |---------------|
* | | | blk_num=7 |
* | | ppos | blk_num_rel=3 |
* |---------------|----- |---------------|
* | | | blk_num=8 |
* | delta_up | | blk_num_rel=4 |
* | | RWP/drvdata->buf |---------------|
* |---------------|----------------- | |
* | | | | |End of
* | | | |---------------|-----
* | | drvdata->delta_bottom Table
* | | |
* |_______________| _|_
* 4K Block
*
* For simplicity above diagram assumes following:
* a. mem_size = 36KB --> total_ents = 9
* b. ents_per_blk = 4
* c. RWP is on 5th block (blk_num = 5); so we have to start reading from RWP
* position
*/
void tmc_etr_sg_compute_read(struct tmc_drvdata *drvdata, loff_t *ppos,
char **bufpp, size_t *len)
{
uint32_t i = 0, blk_num_rel = 0, read_len = 0;
uint32_t blk_num, sg_tbl_num, blk_num_loc, read_off;
uint32_t *virt_pte, *virt_st_tbl;
void *virt_blk;
phys_addr_t phys_pte = 0;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
/*
* Find relative block number from ppos and reading offset
* within block and find actual block number based on relative
* block number
*/
if (drvdata->buf == drvdata->vaddr) {
blk_num = *ppos / PAGE_SIZE;
read_off = *ppos % PAGE_SIZE;
} else {
if (*ppos < drvdata->delta_bottom) {
read_off = PAGE_SIZE - drvdata->delta_bottom;
} else {
blk_num_rel = (*ppos / PAGE_SIZE) + 1;
read_off = (*ppos - drvdata->delta_bottom) % PAGE_SIZE;
}
blk_num = (drvdata->sg_blk_num + blk_num_rel) % total_ents;
}
virt_st_tbl = (uint32_t *)drvdata->vaddr;
/* Compute table index and block entry index within that table */
if (blk_num && (blk_num == (total_ents - 1)) &&
!(blk_num % (ents_per_blk - 1))) {
sg_tbl_num = blk_num / ents_per_blk;
blk_num_loc = ents_per_blk - 1;
} else {
sg_tbl_num = blk_num / (ents_per_blk - 1);
blk_num_loc = blk_num % (ents_per_blk - 1);
}
for (i = 0; i < sg_tbl_num; i++) {
virt_pte = virt_st_tbl + (ents_per_blk - 1);
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_st_tbl = (uint32_t *)phys_to_virt(phys_pte);
}
virt_pte = virt_st_tbl + blk_num_loc;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
*bufpp = virt_blk + read_off;
if (*len > (PAGE_SIZE - read_off))
*len = PAGE_SIZE - read_off;
/*
* When buffer is wrapped around and trying to read last relative
* block (i.e. delta_up), compute len differently
*/
if (blk_num_rel && (blk_num == drvdata->sg_blk_num)) {
read_len = PAGE_SIZE - drvdata->delta_bottom - read_off;
if (*len > read_len)
*len = read_len;
}
dev_dbg_ratelimited(drvdata->dev,
"%s: read at %p, phys %pa len %zu blk %d, rel blk %d RWP blk %d\n",
__func__, *bufpp, &phys_pte, *len, blk_num, blk_num_rel,
drvdata->sg_blk_num);
}
static void tmc_etr_sg_mem_reset(uint32_t *vaddr, uint32_t size)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
virt_blk = phys_to_virt(phys_pte);
if ((last_pte - i) > 1) {
memset(virt_blk, 0, PAGE_SIZE);
pte_n++;
} else if (last_pte == total_ents) {
memset(virt_blk, 0, PAGE_SIZE);
} else {
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
}
/* Flush the dcache before proceeding */
tmc_etr_sg_tbl_flush(vaddr, size);
}
static void tmc_etr_sg_rwp_pos(struct tmc_drvdata *drvdata, uint32_t rwp)
{
uint32_t i = 0, pte_n = 0, last_pte;
uint32_t *virt_st_tbl, *virt_pte;
void *virt_blk;
bool found = false;
phys_addr_t phys_pte;
int total_ents = DIV_ROUND_UP(drvdata->size, PAGE_SIZE);
int ents_per_blk = PAGE_SIZE/sizeof(uint32_t);
virt_st_tbl = drvdata->vaddr;
while (i < total_ents) {
last_pte = ((i + ents_per_blk) > total_ents) ?
total_ents : (i + ents_per_blk);
while (i < last_pte) {
virt_pte = virt_st_tbl + pte_n;
phys_pte = TMC_ETR_SG_ENT_TO_BLK(*virt_pte);
/*
* When the trace buffer is full; RWP could be on any
* 4K block from scatter gather table. Compute below -
* 1. Block number where RWP is currently residing
* 2. RWP position in that 4K block
* 3. Delta offset from current RWP position to end of
* block.
*/
if (phys_pte <= rwp && rwp < (phys_pte + PAGE_SIZE)) {
virt_blk = phys_to_virt(phys_pte);
drvdata->sg_blk_num = i;
drvdata->buf = virt_blk + rwp - phys_pte;
drvdata->delta_bottom =
phys_pte + PAGE_SIZE - rwp;
found = true;
break;
}
if ((last_pte - i) > 1) {
pte_n++;
} else if (i < (total_ents - 1)) {
virt_blk = phys_to_virt(phys_pte);
virt_st_tbl = (uint32_t *)virt_blk;
pte_n = 0;
break;
}
i++;
}
if (found)
break;
}
}
static void tmc_etr_mem_reset(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
memset(drvdata->vaddr, 0, drvdata->size);
else
tmc_etr_sg_mem_reset((uint32_t *)drvdata->vaddr,
drvdata->size);
}
}
void tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
{
u32 axictl;
/* Zero out the memory to help with debug */
tmc_etr_mem_reset(drvdata);
CS_UNLOCK(drvdata->base);
/* Wait for TMCSReady bit to be set */
tmc_wait_for_tmcready(drvdata);
writel_relaxed(drvdata->size / 4, drvdata->base + TMC_RSZ);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl |= TMC_AXICTL_WR_BURST_16;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
axictl &= ~TMC_AXICTL_SCT_GAT_MODE;
else
axictl |= TMC_AXICTL_SCT_GAT_MODE;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
axictl = (axictl &
~(TMC_AXICTL_PROT_CTL_B0 | TMC_AXICTL_PROT_CTL_B1)) |
TMC_AXICTL_PROT_CTL_B1;
axictl = (axictl &
~(TMC_AXICTL_CACHE_CTL_B0 | TMC_AXICTL_CACHE_CTL_B1)) |
TMC_AXICTL_CACHE_CTL_B0 | TMC_AXICTL_CACHE_CTL_B1;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
writel_relaxed(drvdata->paddr, drvdata->base + TMC_DBALO);
writel_relaxed(0x0, drvdata->base + TMC_DBAHI);
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
TMC_FFCR_TRIGON_TRIGIN,
drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static void tmc_etr_dump_hw(struct tmc_drvdata *drvdata)
{
u32 rwp, val;
rwp = readl_relaxed(drvdata->base + TMC_RWP);
val = readl_relaxed(drvdata->base + TMC_STS);
/*
* Adjust the buffer to point to the beginning of the trace data
* and update the available trace data.
*/
if (val & TMC_STS_FULL) {
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
drvdata->len = drvdata->size;
} else {
drvdata->buf = drvdata->vaddr;
drvdata->len = rwp - drvdata->paddr;
}
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
/* How much memory do we still have */
if (val & BIT(0))
drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
else
drvdata->buf = drvdata->vaddr;
} else {
/*
* Reset these variables before computing since we
* rely on their values during tmc read
*/
drvdata->sg_blk_num = 0;
drvdata->delta_bottom = 0;
if (val & BIT(0))
tmc_etr_sg_rwp_pos(drvdata, rwp);
else
drvdata->buf = drvdata->vaddr;
}
}
static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
/*
* When operating in sysFS mode the content of the buffer needs to be
* read before the TMC is disabled.
*/
if (local_read(&drvdata->mode) == CS_MODE_SYSFS)
tmc_etr_dump_hw(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static int tmc_etr_alloc_mem(struct tmc_drvdata *drvdata)
{
int ret;
if (!drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG) {
drvdata->vaddr = dma_zalloc_coherent(drvdata->dev,
drvdata->size,
&drvdata->paddr,
GFP_KERNEL);
if (!drvdata->vaddr) {
ret = -ENOMEM;
goto err;
}
} else {
ret = tmc_etr_sg_tbl_alloc(drvdata);
if (ret)
goto err;
}
}
/*
* Need to reinitialize buf for each tmc enable session since it is
* getting modified during tmc etr dump.
*/
drvdata->buf = drvdata->vaddr;
return 0;
err:
dev_err(drvdata->dev, "etr ddr memory allocation failed\n");
return ret;
}
static void tmc_etr_free_mem(struct tmc_drvdata *drvdata)
{
if (drvdata->vaddr) {
if (drvdata->memtype == TMC_ETR_MEM_TYPE_CONTIG)
dma_free_coherent(drvdata->dev, drvdata->size,
drvdata->vaddr, drvdata->paddr);
else
tmc_etr_sg_tbl_free((uint32_t *)drvdata->vaddr,
drvdata->size,
DIV_ROUND_UP(drvdata->size, PAGE_SIZE));
drvdata->vaddr = 0;
drvdata->paddr = 0;
}
}
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev, u32 mode)
{
int ret = 0;
bool used = false;
long val;
unsigned long flags;
void __iomem *vaddr = NULL;
dma_addr_t paddr;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/* This shouldn't be happening */
if (WARN_ON(mode != CS_MODE_SYSFS))
return -EINVAL;
/*
* If we don't have a buffer release the lock and allocate memory.
* Otherwise keep the lock and move along.
*/
spin_lock_irqsave(&drvdata->spinlock, flags);
if (!drvdata->vaddr) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/*
* Contiguous memory can't be allocated while a spinlock is
* held. As such allocate memory here and free it if a buffer
* has already been allocated (from a previous session).
*/
mutex_lock(&drvdata->mem_lock);
/*
* ETR DDR memory is not allocated until user enables
* tmc at least once. If user specifies different ETR
* DDR size than the default size or switches between
* contiguous or scatter-gather memory type after
* enabling tmc; the new selection will be honored from
* next tmc enable session.
*/
if (drvdata->size != drvdata->mem_size ||
drvdata->memtype != drvdata->mem_type) {
tmc_etr_free_mem(drvdata);
drvdata->size = drvdata->mem_size;
drvdata->memtype = drvdata->mem_type;
}
ret = tmc_etr_alloc_mem(drvdata);
if (ret) {
pm_runtime_put(drvdata->dev);
mutex_unlock(&drvdata->mem_lock);
return ret;
}
mutex_unlock(&drvdata->mem_lock);
/* Let's try again */
spin_lock_irqsave(&drvdata->spinlock, flags);
}
if (drvdata->reading) {
ret = -EBUSY;
goto out;
}
val = local_xchg(&drvdata->mode, mode);
/*
* In sysFS mode we can have multiple writers per sink. Since this
* sink is already enabled no memory is needed and the HW need not be
* touched.
*/
if (val == CS_MODE_SYSFS)
goto out;
/*
* If drvdata::buf == NULL, use the memory allocated above.
* Otherwise a buffer still exists from a previous session, so
* simply use that.
*/
if (drvdata->buf == NULL) {
used = true;
drvdata->vaddr = vaddr;
drvdata->paddr = paddr;
drvdata->buf = drvdata->vaddr;
}
tmc_etr_enable_hw(drvdata);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free memory outside the spinlock if need be */
if (!used && vaddr)
dma_free_coherent(drvdata->dev, drvdata->size, vaddr, paddr);
if (!ret)
dev_info(drvdata->dev, "TMC-ETR enabled\n");
return ret;
}
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, u32 mode)
{
int ret = 0;
long val;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/* This shouldn't be happening */
if (WARN_ON(mode != CS_MODE_PERF))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
ret = -EINVAL;
goto out;
}
val = local_xchg(&drvdata->mode, mode);
/*
* In Perf mode there can be only one writer per sink. There
* is also no need to continue if the ETR is already operated
* from sysFS.
*/
if (val != CS_MODE_DISABLED) {
ret = -EINVAL;
goto out;
}
tmc_etr_enable_hw(drvdata);
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
static int tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode)
{
switch (mode) {
case CS_MODE_SYSFS:
return tmc_enable_etr_sink_sysfs(csdev, mode);
case CS_MODE_PERF:
return tmc_enable_etr_sink_perf(csdev, mode);
}
/* We shouldn't be here */
return -EINVAL;
}
static void tmc_disable_etr_sink(struct coresight_device *csdev)
{
long val;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return;
}
val = local_xchg(&drvdata->mode, CS_MODE_DISABLED);
/* Disable the TMC only if it needs to */
if (val != CS_MODE_DISABLED)
tmc_etr_disable_hw(drvdata);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_info(drvdata->dev, "TMC-ETR disabled\n");
}
static const struct coresight_ops_sink tmc_etr_sink_ops = {
.enable = tmc_enable_etr_sink,
.disable = tmc_disable_etr_sink,
};
const struct coresight_ops tmc_etr_cs_ops = {
.sink_ops = &tmc_etr_sink_ops,
};
int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
int ret = 0;
long val;
unsigned long flags;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
ret = -EBUSY;
goto out;
}
val = local_read(&drvdata->mode);
/* Don't interfere if operated from Perf */
if (val == CS_MODE_PERF) {
ret = -EINVAL;
goto out;
}
/* If drvdata::buf is NULL the trace data has been read already */
if (drvdata->buf == NULL) {
ret = -EINVAL;
goto out;
}
/* Disable the TMC if need be */
if (val == CS_MODE_SYSFS)
tmc_etr_disable_hw(drvdata);
drvdata->reading = true;
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
unsigned long flags;
dma_addr_t paddr;
void __iomem *vaddr = NULL;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* RE-enable the TMC if need be */
if (local_read(&drvdata->mode) == CS_MODE_SYSFS) {
/*
* The trace run will continue with the same allocated trace
* buffer. The trace buffer is cleared in tmc_etr_enable_hw(),
* so we don't have to explicitly clear it. Also, since the
* tracer is still enabled drvdata::buf can't be NULL.
*/
tmc_etr_enable_hw(drvdata);
} else {
/*
* The ETR is not tracing and the buffer was just read.
* As such prepare to free the trace buffer.
*/
vaddr = drvdata->vaddr;
paddr = drvdata->paddr;
drvdata->buf = drvdata->vaddr = NULL;
}
drvdata->reading = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free allocated memory out side of the spinlock */
if (vaddr)
dma_free_coherent(drvdata->dev, drvdata->size, vaddr, paddr);
return 0;
}