| /* |
| * Copyright 2012 Michael Ellerman, IBM Corporation. |
| * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/err.h> |
| #include <linux/gfp.h> |
| #include <linux/anon_inodes.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/hvcall.h> |
| #include <asm/xics.h> |
| #include <asm/debug.h> |
| #include <asm/time.h> |
| |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| |
| #include "book3s_xics.h" |
| |
| #if 1 |
| #define XICS_DBG(fmt...) do { } while (0) |
| #else |
| #define XICS_DBG(fmt...) trace_printk(fmt) |
| #endif |
| |
| #define ENABLE_REALMODE true |
| #define DEBUG_REALMODE false |
| |
| /* |
| * LOCKING |
| * ======= |
| * |
| * Each ICS has a mutex protecting the information about the IRQ |
| * sources and avoiding simultaneous deliveries if the same interrupt. |
| * |
| * ICP operations are done via a single compare & swap transaction |
| * (most ICP state fits in the union kvmppc_icp_state) |
| */ |
| |
| /* |
| * TODO |
| * ==== |
| * |
| * - To speed up resends, keep a bitmap of "resend" set bits in the |
| * ICS |
| * |
| * - Speed up server# -> ICP lookup (array ? hash table ?) |
| * |
| * - Make ICS lockless as well, or at least a per-interrupt lock or hashed |
| * locks array to improve scalability |
| */ |
| |
| /* -- ICS routines -- */ |
| |
| static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp, |
| u32 new_irq); |
| |
| /* |
| * Return value ideally indicates how the interrupt was handled, but no |
| * callers look at it (given that we don't implement KVM_IRQ_LINE_STATUS), |
| * so just return 0. |
| */ |
| static int ics_deliver_irq(struct kvmppc_xics *xics, u32 irq, u32 level) |
| { |
| struct ics_irq_state *state; |
| struct kvmppc_ics *ics; |
| u16 src; |
| |
| XICS_DBG("ics deliver %#x (level: %d)\n", irq, level); |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) { |
| XICS_DBG("ics_deliver_irq: IRQ 0x%06x not found !\n", irq); |
| return -EINVAL; |
| } |
| state = &ics->irq_state[src]; |
| if (!state->exists) |
| return -EINVAL; |
| |
| /* |
| * We set state->asserted locklessly. This should be fine as |
| * we are the only setter, thus concurrent access is undefined |
| * to begin with. |
| */ |
| if (level == 1 || level == KVM_INTERRUPT_SET_LEVEL) |
| state->asserted = 1; |
| else if (level == 0 || level == KVM_INTERRUPT_UNSET) { |
| state->asserted = 0; |
| return 0; |
| } |
| |
| /* Attempt delivery */ |
| icp_deliver_irq(xics, NULL, irq); |
| |
| return 0; |
| } |
| |
| static void ics_check_resend(struct kvmppc_xics *xics, struct kvmppc_ics *ics, |
| struct kvmppc_icp *icp) |
| { |
| int i; |
| |
| mutex_lock(&ics->lock); |
| |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| struct ics_irq_state *state = &ics->irq_state[i]; |
| |
| if (!state->resend) |
| continue; |
| |
| XICS_DBG("resend %#x prio %#x\n", state->number, |
| state->priority); |
| |
| mutex_unlock(&ics->lock); |
| icp_deliver_irq(xics, icp, state->number); |
| mutex_lock(&ics->lock); |
| } |
| |
| mutex_unlock(&ics->lock); |
| } |
| |
| static bool write_xive(struct kvmppc_xics *xics, struct kvmppc_ics *ics, |
| struct ics_irq_state *state, |
| u32 server, u32 priority, u32 saved_priority) |
| { |
| bool deliver; |
| |
| mutex_lock(&ics->lock); |
| |
| state->server = server; |
| state->priority = priority; |
| state->saved_priority = saved_priority; |
| deliver = false; |
| if ((state->masked_pending || state->resend) && priority != MASKED) { |
| state->masked_pending = 0; |
| deliver = true; |
| } |
| |
| mutex_unlock(&ics->lock); |
| |
| return deliver; |
| } |
| |
| int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority) |
| { |
| struct kvmppc_xics *xics = kvm->arch.xics; |
| struct kvmppc_icp *icp; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *state; |
| u16 src; |
| |
| if (!xics) |
| return -ENODEV; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) |
| return -EINVAL; |
| state = &ics->irq_state[src]; |
| |
| icp = kvmppc_xics_find_server(kvm, server); |
| if (!icp) |
| return -EINVAL; |
| |
| XICS_DBG("set_xive %#x server %#x prio %#x MP:%d RS:%d\n", |
| irq, server, priority, |
| state->masked_pending, state->resend); |
| |
| if (write_xive(xics, ics, state, server, priority, priority)) |
| icp_deliver_irq(xics, icp, irq); |
| |
| return 0; |
| } |
| |
| int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority) |
| { |
| struct kvmppc_xics *xics = kvm->arch.xics; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *state; |
| u16 src; |
| |
| if (!xics) |
| return -ENODEV; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) |
| return -EINVAL; |
| state = &ics->irq_state[src]; |
| |
| mutex_lock(&ics->lock); |
| *server = state->server; |
| *priority = state->priority; |
| mutex_unlock(&ics->lock); |
| |
| return 0; |
| } |
| |
| int kvmppc_xics_int_on(struct kvm *kvm, u32 irq) |
| { |
| struct kvmppc_xics *xics = kvm->arch.xics; |
| struct kvmppc_icp *icp; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *state; |
| u16 src; |
| |
| if (!xics) |
| return -ENODEV; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) |
| return -EINVAL; |
| state = &ics->irq_state[src]; |
| |
| icp = kvmppc_xics_find_server(kvm, state->server); |
| if (!icp) |
| return -EINVAL; |
| |
| if (write_xive(xics, ics, state, state->server, state->saved_priority, |
| state->saved_priority)) |
| icp_deliver_irq(xics, icp, irq); |
| |
| return 0; |
| } |
| |
| int kvmppc_xics_int_off(struct kvm *kvm, u32 irq) |
| { |
| struct kvmppc_xics *xics = kvm->arch.xics; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *state; |
| u16 src; |
| |
| if (!xics) |
| return -ENODEV; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) |
| return -EINVAL; |
| state = &ics->irq_state[src]; |
| |
| write_xive(xics, ics, state, state->server, MASKED, state->priority); |
| |
| return 0; |
| } |
| |
| /* -- ICP routines, including hcalls -- */ |
| |
| static inline bool icp_try_update(struct kvmppc_icp *icp, |
| union kvmppc_icp_state old, |
| union kvmppc_icp_state new, |
| bool change_self) |
| { |
| bool success; |
| |
| /* Calculate new output value */ |
| new.out_ee = (new.xisr && (new.pending_pri < new.cppr)); |
| |
| /* Attempt atomic update */ |
| success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw; |
| if (!success) |
| goto bail; |
| |
| XICS_DBG("UPD [%04x] - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n", |
| icp->server_num, |
| old.cppr, old.mfrr, old.pending_pri, old.xisr, |
| old.need_resend, old.out_ee); |
| XICS_DBG("UPD - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n", |
| new.cppr, new.mfrr, new.pending_pri, new.xisr, |
| new.need_resend, new.out_ee); |
| /* |
| * Check for output state update |
| * |
| * Note that this is racy since another processor could be updating |
| * the state already. This is why we never clear the interrupt output |
| * here, we only ever set it. The clear only happens prior to doing |
| * an update and only by the processor itself. Currently we do it |
| * in Accept (H_XIRR) and Up_Cppr (H_XPPR). |
| * |
| * We also do not try to figure out whether the EE state has changed, |
| * we unconditionally set it if the new state calls for it. The reason |
| * for that is that we opportunistically remove the pending interrupt |
| * flag when raising CPPR, so we need to set it back here if an |
| * interrupt is still pending. |
| */ |
| if (new.out_ee) { |
| kvmppc_book3s_queue_irqprio(icp->vcpu, |
| BOOK3S_INTERRUPT_EXTERNAL_LEVEL); |
| if (!change_self) |
| kvmppc_fast_vcpu_kick(icp->vcpu); |
| } |
| bail: |
| return success; |
| } |
| |
| static void icp_check_resend(struct kvmppc_xics *xics, |
| struct kvmppc_icp *icp) |
| { |
| u32 icsid; |
| |
| /* Order this load with the test for need_resend in the caller */ |
| smp_rmb(); |
| for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) { |
| struct kvmppc_ics *ics = xics->ics[icsid]; |
| |
| if (!test_and_clear_bit(icsid, icp->resend_map)) |
| continue; |
| if (!ics) |
| continue; |
| ics_check_resend(xics, ics, icp); |
| } |
| } |
| |
| static bool icp_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority, |
| u32 *reject) |
| { |
| union kvmppc_icp_state old_state, new_state; |
| bool success; |
| |
| XICS_DBG("try deliver %#x(P:%#x) to server %#x\n", irq, priority, |
| icp->server_num); |
| |
| do { |
| old_state = new_state = ACCESS_ONCE(icp->state); |
| |
| *reject = 0; |
| |
| /* See if we can deliver */ |
| success = new_state.cppr > priority && |
| new_state.mfrr > priority && |
| new_state.pending_pri > priority; |
| |
| /* |
| * If we can, check for a rejection and perform the |
| * delivery |
| */ |
| if (success) { |
| *reject = new_state.xisr; |
| new_state.xisr = irq; |
| new_state.pending_pri = priority; |
| } else { |
| /* |
| * If we failed to deliver we set need_resend |
| * so a subsequent CPPR state change causes us |
| * to try a new delivery. |
| */ |
| new_state.need_resend = true; |
| } |
| |
| } while (!icp_try_update(icp, old_state, new_state, false)); |
| |
| return success; |
| } |
| |
| static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp, |
| u32 new_irq) |
| { |
| struct ics_irq_state *state; |
| struct kvmppc_ics *ics; |
| u32 reject; |
| u16 src; |
| |
| /* |
| * This is used both for initial delivery of an interrupt and |
| * for subsequent rejection. |
| * |
| * Rejection can be racy vs. resends. We have evaluated the |
| * rejection in an atomic ICP transaction which is now complete, |
| * so potentially the ICP can already accept the interrupt again. |
| * |
| * So we need to retry the delivery. Essentially the reject path |
| * boils down to a failed delivery. Always. |
| * |
| * Now the interrupt could also have moved to a different target, |
| * thus we may need to re-do the ICP lookup as well |
| */ |
| |
| again: |
| /* Get the ICS state and lock it */ |
| ics = kvmppc_xics_find_ics(xics, new_irq, &src); |
| if (!ics) { |
| XICS_DBG("icp_deliver_irq: IRQ 0x%06x not found !\n", new_irq); |
| return; |
| } |
| state = &ics->irq_state[src]; |
| |
| /* Get a lock on the ICS */ |
| mutex_lock(&ics->lock); |
| |
| /* Get our server */ |
| if (!icp || state->server != icp->server_num) { |
| icp = kvmppc_xics_find_server(xics->kvm, state->server); |
| if (!icp) { |
| pr_warn("icp_deliver_irq: IRQ 0x%06x server 0x%x not found !\n", |
| new_irq, state->server); |
| goto out; |
| } |
| } |
| |
| /* Clear the resend bit of that interrupt */ |
| state->resend = 0; |
| |
| /* |
| * If masked, bail out |
| * |
| * Note: PAPR doesn't mention anything about masked pending |
| * when doing a resend, only when doing a delivery. |
| * |
| * However that would have the effect of losing a masked |
| * interrupt that was rejected and isn't consistent with |
| * the whole masked_pending business which is about not |
| * losing interrupts that occur while masked. |
| * |
| * I don't differenciate normal deliveries and resends, this |
| * implementation will differ from PAPR and not lose such |
| * interrupts. |
| */ |
| if (state->priority == MASKED) { |
| XICS_DBG("irq %#x masked pending\n", new_irq); |
| state->masked_pending = 1; |
| goto out; |
| } |
| |
| /* |
| * Try the delivery, this will set the need_resend flag |
| * in the ICP as part of the atomic transaction if the |
| * delivery is not possible. |
| * |
| * Note that if successful, the new delivery might have itself |
| * rejected an interrupt that was "delivered" before we took the |
| * icp mutex. |
| * |
| * In this case we do the whole sequence all over again for the |
| * new guy. We cannot assume that the rejected interrupt is less |
| * favored than the new one, and thus doesn't need to be delivered, |
| * because by the time we exit icp_try_to_deliver() the target |
| * processor may well have alrady consumed & completed it, and thus |
| * the rejected interrupt might actually be already acceptable. |
| */ |
| if (icp_try_to_deliver(icp, new_irq, state->priority, &reject)) { |
| /* |
| * Delivery was successful, did we reject somebody else ? |
| */ |
| if (reject && reject != XICS_IPI) { |
| mutex_unlock(&ics->lock); |
| new_irq = reject; |
| goto again; |
| } |
| } else { |
| /* |
| * We failed to deliver the interrupt we need to set the |
| * resend map bit and mark the ICS state as needing a resend |
| */ |
| set_bit(ics->icsid, icp->resend_map); |
| state->resend = 1; |
| |
| /* |
| * If the need_resend flag got cleared in the ICP some time |
| * between icp_try_to_deliver() atomic update and now, then |
| * we know it might have missed the resend_map bit. So we |
| * retry |
| */ |
| smp_mb(); |
| if (!icp->state.need_resend) { |
| mutex_unlock(&ics->lock); |
| goto again; |
| } |
| } |
| out: |
| mutex_unlock(&ics->lock); |
| } |
| |
| static void icp_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp, |
| u8 new_cppr) |
| { |
| union kvmppc_icp_state old_state, new_state; |
| bool resend; |
| |
| /* |
| * This handles several related states in one operation: |
| * |
| * ICP State: Down_CPPR |
| * |
| * Load CPPR with new value and if the XISR is 0 |
| * then check for resends: |
| * |
| * ICP State: Resend |
| * |
| * If MFRR is more favored than CPPR, check for IPIs |
| * and notify ICS of a potential resend. This is done |
| * asynchronously (when used in real mode, we will have |
| * to exit here). |
| * |
| * We do not handle the complete Check_IPI as documented |
| * here. In the PAPR, this state will be used for both |
| * Set_MFRR and Down_CPPR. However, we know that we aren't |
| * changing the MFRR state here so we don't need to handle |
| * the case of an MFRR causing a reject of a pending irq, |
| * this will have been handled when the MFRR was set in the |
| * first place. |
| * |
| * Thus we don't have to handle rejects, only resends. |
| * |
| * When implementing real mode for HV KVM, resend will lead to |
| * a H_TOO_HARD return and the whole transaction will be handled |
| * in virtual mode. |
| */ |
| do { |
| old_state = new_state = ACCESS_ONCE(icp->state); |
| |
| /* Down_CPPR */ |
| new_state.cppr = new_cppr; |
| |
| /* |
| * Cut down Resend / Check_IPI / IPI |
| * |
| * The logic is that we cannot have a pending interrupt |
| * trumped by an IPI at this point (see above), so we |
| * know that either the pending interrupt is already an |
| * IPI (in which case we don't care to override it) or |
| * it's either more favored than us or non existent |
| */ |
| if (new_state.mfrr < new_cppr && |
| new_state.mfrr <= new_state.pending_pri) { |
| WARN_ON(new_state.xisr != XICS_IPI && |
| new_state.xisr != 0); |
| new_state.pending_pri = new_state.mfrr; |
| new_state.xisr = XICS_IPI; |
| } |
| |
| /* Latch/clear resend bit */ |
| resend = new_state.need_resend; |
| new_state.need_resend = 0; |
| |
| } while (!icp_try_update(icp, old_state, new_state, true)); |
| |
| /* |
| * Now handle resend checks. Those are asynchronous to the ICP |
| * state update in HW (ie bus transactions) so we can handle them |
| * separately here too |
| */ |
| if (resend) |
| icp_check_resend(xics, icp); |
| } |
| |
| static noinline unsigned long kvmppc_h_xirr(struct kvm_vcpu *vcpu) |
| { |
| union kvmppc_icp_state old_state, new_state; |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| u32 xirr; |
| |
| /* First, remove EE from the processor */ |
| kvmppc_book3s_dequeue_irqprio(icp->vcpu, |
| BOOK3S_INTERRUPT_EXTERNAL_LEVEL); |
| |
| /* |
| * ICP State: Accept_Interrupt |
| * |
| * Return the pending interrupt (if any) along with the |
| * current CPPR, then clear the XISR & set CPPR to the |
| * pending priority |
| */ |
| do { |
| old_state = new_state = ACCESS_ONCE(icp->state); |
| |
| xirr = old_state.xisr | (((u32)old_state.cppr) << 24); |
| if (!old_state.xisr) |
| break; |
| new_state.cppr = new_state.pending_pri; |
| new_state.pending_pri = 0xff; |
| new_state.xisr = 0; |
| |
| } while (!icp_try_update(icp, old_state, new_state, true)); |
| |
| XICS_DBG("h_xirr vcpu %d xirr %#x\n", vcpu->vcpu_id, xirr); |
| |
| return xirr; |
| } |
| |
| static noinline int kvmppc_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, |
| unsigned long mfrr) |
| { |
| union kvmppc_icp_state old_state, new_state; |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| struct kvmppc_icp *icp; |
| u32 reject; |
| bool resend; |
| bool local; |
| |
| XICS_DBG("h_ipi vcpu %d to server %lu mfrr %#lx\n", |
| vcpu->vcpu_id, server, mfrr); |
| |
| icp = vcpu->arch.icp; |
| local = icp->server_num == server; |
| if (!local) { |
| icp = kvmppc_xics_find_server(vcpu->kvm, server); |
| if (!icp) |
| return H_PARAMETER; |
| } |
| |
| /* |
| * ICP state: Set_MFRR |
| * |
| * If the CPPR is more favored than the new MFRR, then |
| * nothing needs to be rejected as there can be no XISR to |
| * reject. If the MFRR is being made less favored then |
| * there might be a previously-rejected interrupt needing |
| * to be resent. |
| * |
| * ICP state: Check_IPI |
| * |
| * If the CPPR is less favored, then we might be replacing |
| * an interrupt, and thus need to possibly reject it. |
| * |
| * ICP State: IPI |
| * |
| * Besides rejecting any pending interrupts, we also |
| * update XISR and pending_pri to mark IPI as pending. |
| * |
| * PAPR does not describe this state, but if the MFRR is being |
| * made less favored than its earlier value, there might be |
| * a previously-rejected interrupt needing to be resent. |
| * Ideally, we would want to resend only if |
| * prio(pending_interrupt) < mfrr && |
| * prio(pending_interrupt) < cppr |
| * where pending interrupt is the one that was rejected. But |
| * we don't have that state, so we simply trigger a resend |
| * whenever the MFRR is made less favored. |
| */ |
| do { |
| old_state = new_state = ACCESS_ONCE(icp->state); |
| |
| /* Set_MFRR */ |
| new_state.mfrr = mfrr; |
| |
| /* Check_IPI */ |
| reject = 0; |
| resend = false; |
| if (mfrr < new_state.cppr) { |
| /* Reject a pending interrupt if not an IPI */ |
| if (mfrr <= new_state.pending_pri) { |
| reject = new_state.xisr; |
| new_state.pending_pri = mfrr; |
| new_state.xisr = XICS_IPI; |
| } |
| } |
| |
| if (mfrr > old_state.mfrr) { |
| resend = new_state.need_resend; |
| new_state.need_resend = 0; |
| } |
| } while (!icp_try_update(icp, old_state, new_state, local)); |
| |
| /* Handle reject */ |
| if (reject && reject != XICS_IPI) |
| icp_deliver_irq(xics, icp, reject); |
| |
| /* Handle resend */ |
| if (resend) |
| icp_check_resend(xics, icp); |
| |
| return H_SUCCESS; |
| } |
| |
| static int kvmppc_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) |
| { |
| union kvmppc_icp_state state; |
| struct kvmppc_icp *icp; |
| |
| icp = vcpu->arch.icp; |
| if (icp->server_num != server) { |
| icp = kvmppc_xics_find_server(vcpu->kvm, server); |
| if (!icp) |
| return H_PARAMETER; |
| } |
| state = ACCESS_ONCE(icp->state); |
| kvmppc_set_gpr(vcpu, 4, ((u32)state.cppr << 24) | state.xisr); |
| kvmppc_set_gpr(vcpu, 5, state.mfrr); |
| return H_SUCCESS; |
| } |
| |
| static noinline void kvmppc_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) |
| { |
| union kvmppc_icp_state old_state, new_state; |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| u32 reject; |
| |
| XICS_DBG("h_cppr vcpu %d cppr %#lx\n", vcpu->vcpu_id, cppr); |
| |
| /* |
| * ICP State: Set_CPPR |
| * |
| * We can safely compare the new value with the current |
| * value outside of the transaction as the CPPR is only |
| * ever changed by the processor on itself |
| */ |
| if (cppr > icp->state.cppr) |
| icp_down_cppr(xics, icp, cppr); |
| else if (cppr == icp->state.cppr) |
| return; |
| |
| /* |
| * ICP State: Up_CPPR |
| * |
| * The processor is raising its priority, this can result |
| * in a rejection of a pending interrupt: |
| * |
| * ICP State: Reject_Current |
| * |
| * We can remove EE from the current processor, the update |
| * transaction will set it again if needed |
| */ |
| kvmppc_book3s_dequeue_irqprio(icp->vcpu, |
| BOOK3S_INTERRUPT_EXTERNAL_LEVEL); |
| |
| do { |
| old_state = new_state = ACCESS_ONCE(icp->state); |
| |
| reject = 0; |
| new_state.cppr = cppr; |
| |
| if (cppr <= new_state.pending_pri) { |
| reject = new_state.xisr; |
| new_state.xisr = 0; |
| new_state.pending_pri = 0xff; |
| } |
| |
| } while (!icp_try_update(icp, old_state, new_state, true)); |
| |
| /* |
| * Check for rejects. They are handled by doing a new delivery |
| * attempt (see comments in icp_deliver_irq). |
| */ |
| if (reject && reject != XICS_IPI) |
| icp_deliver_irq(xics, icp, reject); |
| } |
| |
| static noinline int kvmppc_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) |
| { |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *state; |
| u32 irq = xirr & 0x00ffffff; |
| u16 src; |
| |
| XICS_DBG("h_eoi vcpu %d eoi %#lx\n", vcpu->vcpu_id, xirr); |
| |
| /* |
| * ICP State: EOI |
| * |
| * Note: If EOI is incorrectly used by SW to lower the CPPR |
| * value (ie more favored), we do not check for rejection of |
| * a pending interrupt, this is a SW error and PAPR sepcifies |
| * that we don't have to deal with it. |
| * |
| * The sending of an EOI to the ICS is handled after the |
| * CPPR update |
| * |
| * ICP State: Down_CPPR which we handle |
| * in a separate function as it's shared with H_CPPR. |
| */ |
| icp_down_cppr(xics, icp, xirr >> 24); |
| |
| /* IPIs have no EOI */ |
| if (irq == XICS_IPI) |
| return H_SUCCESS; |
| /* |
| * EOI handling: If the interrupt is still asserted, we need to |
| * resend it. We can take a lockless "peek" at the ICS state here. |
| * |
| * "Message" interrupts will never have "asserted" set |
| */ |
| ics = kvmppc_xics_find_ics(xics, irq, &src); |
| if (!ics) { |
| XICS_DBG("h_eoi: IRQ 0x%06x not found !\n", irq); |
| return H_PARAMETER; |
| } |
| state = &ics->irq_state[src]; |
| |
| /* Still asserted, resend it */ |
| if (state->asserted) |
| icp_deliver_irq(xics, icp, irq); |
| |
| kvm_notify_acked_irq(vcpu->kvm, 0, irq); |
| |
| return H_SUCCESS; |
| } |
| |
| static noinline int kvmppc_xics_rm_complete(struct kvm_vcpu *vcpu, u32 hcall) |
| { |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| |
| XICS_DBG("XICS_RM: H_%x completing, act: %x state: %lx tgt: %p\n", |
| hcall, icp->rm_action, icp->rm_dbgstate.raw, icp->rm_dbgtgt); |
| |
| if (icp->rm_action & XICS_RM_KICK_VCPU) |
| kvmppc_fast_vcpu_kick(icp->rm_kick_target); |
| if (icp->rm_action & XICS_RM_CHECK_RESEND) |
| icp_check_resend(xics, icp->rm_resend_icp); |
| if (icp->rm_action & XICS_RM_REJECT) |
| icp_deliver_irq(xics, icp, icp->rm_reject); |
| if (icp->rm_action & XICS_RM_NOTIFY_EOI) |
| kvm_notify_acked_irq(vcpu->kvm, 0, icp->rm_eoied_irq); |
| |
| icp->rm_action = 0; |
| |
| return H_SUCCESS; |
| } |
| |
| int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 req) |
| { |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| unsigned long res; |
| int rc = H_SUCCESS; |
| |
| /* Check if we have an ICP */ |
| if (!xics || !vcpu->arch.icp) |
| return H_HARDWARE; |
| |
| /* These requests don't have real-mode implementations at present */ |
| switch (req) { |
| case H_XIRR_X: |
| res = kvmppc_h_xirr(vcpu); |
| kvmppc_set_gpr(vcpu, 4, res); |
| kvmppc_set_gpr(vcpu, 5, get_tb()); |
| return rc; |
| case H_IPOLL: |
| rc = kvmppc_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| return rc; |
| } |
| |
| /* Check for real mode returning too hard */ |
| if (xics->real_mode && is_kvmppc_hv_enabled(vcpu->kvm)) |
| return kvmppc_xics_rm_complete(vcpu, req); |
| |
| switch (req) { |
| case H_XIRR: |
| res = kvmppc_h_xirr(vcpu); |
| kvmppc_set_gpr(vcpu, 4, res); |
| break; |
| case H_CPPR: |
| kvmppc_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| break; |
| case H_EOI: |
| rc = kvmppc_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); |
| break; |
| case H_IPI: |
| rc = kvmppc_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5)); |
| break; |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_xics_hcall); |
| |
| |
| /* -- Initialisation code etc. -- */ |
| |
| static int xics_debug_show(struct seq_file *m, void *private) |
| { |
| struct kvmppc_xics *xics = m->private; |
| struct kvm *kvm = xics->kvm; |
| struct kvm_vcpu *vcpu; |
| int icsid, i; |
| |
| if (!kvm) |
| return 0; |
| |
| seq_printf(m, "=========\nICP state\n=========\n"); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| union kvmppc_icp_state state; |
| |
| if (!icp) |
| continue; |
| |
| state.raw = ACCESS_ONCE(icp->state.raw); |
| seq_printf(m, "cpu server %#lx XIRR:%#x PPRI:%#x CPPR:%#x MFRR:%#x OUT:%d NR:%d\n", |
| icp->server_num, state.xisr, |
| state.pending_pri, state.cppr, state.mfrr, |
| state.out_ee, state.need_resend); |
| } |
| |
| for (icsid = 0; icsid <= KVMPPC_XICS_MAX_ICS_ID; icsid++) { |
| struct kvmppc_ics *ics = xics->ics[icsid]; |
| |
| if (!ics) |
| continue; |
| |
| seq_printf(m, "=========\nICS state for ICS 0x%x\n=========\n", |
| icsid); |
| |
| mutex_lock(&ics->lock); |
| |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| struct ics_irq_state *irq = &ics->irq_state[i]; |
| |
| seq_printf(m, "irq 0x%06x: server %#x prio %#x save prio %#x asserted %d resend %d masked pending %d\n", |
| irq->number, irq->server, irq->priority, |
| irq->saved_priority, irq->asserted, |
| irq->resend, irq->masked_pending); |
| |
| } |
| mutex_unlock(&ics->lock); |
| } |
| return 0; |
| } |
| |
| static int xics_debug_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, xics_debug_show, inode->i_private); |
| } |
| |
| static const struct file_operations xics_debug_fops = { |
| .open = xics_debug_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void xics_debugfs_init(struct kvmppc_xics *xics) |
| { |
| char *name; |
| |
| name = kasprintf(GFP_KERNEL, "kvm-xics-%p", xics); |
| if (!name) { |
| pr_err("%s: no memory for name\n", __func__); |
| return; |
| } |
| |
| xics->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, |
| xics, &xics_debug_fops); |
| |
| pr_debug("%s: created %s\n", __func__, name); |
| kfree(name); |
| } |
| |
| static struct kvmppc_ics *kvmppc_xics_create_ics(struct kvm *kvm, |
| struct kvmppc_xics *xics, int irq) |
| { |
| struct kvmppc_ics *ics; |
| int i, icsid; |
| |
| icsid = irq >> KVMPPC_XICS_ICS_SHIFT; |
| |
| mutex_lock(&kvm->lock); |
| |
| /* ICS already exists - somebody else got here first */ |
| if (xics->ics[icsid]) |
| goto out; |
| |
| /* Create the ICS */ |
| ics = kzalloc(sizeof(struct kvmppc_ics), GFP_KERNEL); |
| if (!ics) |
| goto out; |
| |
| mutex_init(&ics->lock); |
| ics->icsid = icsid; |
| |
| for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { |
| ics->irq_state[i].number = (icsid << KVMPPC_XICS_ICS_SHIFT) | i; |
| ics->irq_state[i].priority = MASKED; |
| ics->irq_state[i].saved_priority = MASKED; |
| } |
| smp_wmb(); |
| xics->ics[icsid] = ics; |
| |
| if (icsid > xics->max_icsid) |
| xics->max_icsid = icsid; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return xics->ics[icsid]; |
| } |
| |
| int kvmppc_xics_create_icp(struct kvm_vcpu *vcpu, unsigned long server_num) |
| { |
| struct kvmppc_icp *icp; |
| |
| if (!vcpu->kvm->arch.xics) |
| return -ENODEV; |
| |
| if (kvmppc_xics_find_server(vcpu->kvm, server_num)) |
| return -EEXIST; |
| |
| icp = kzalloc(sizeof(struct kvmppc_icp), GFP_KERNEL); |
| if (!icp) |
| return -ENOMEM; |
| |
| icp->vcpu = vcpu; |
| icp->server_num = server_num; |
| icp->state.mfrr = MASKED; |
| icp->state.pending_pri = MASKED; |
| vcpu->arch.icp = icp; |
| |
| XICS_DBG("created server for vcpu %d\n", vcpu->vcpu_id); |
| |
| return 0; |
| } |
| |
| u64 kvmppc_xics_get_icp(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| union kvmppc_icp_state state; |
| |
| if (!icp) |
| return 0; |
| state = icp->state; |
| return ((u64)state.cppr << KVM_REG_PPC_ICP_CPPR_SHIFT) | |
| ((u64)state.xisr << KVM_REG_PPC_ICP_XISR_SHIFT) | |
| ((u64)state.mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) | |
| ((u64)state.pending_pri << KVM_REG_PPC_ICP_PPRI_SHIFT); |
| } |
| |
| int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval) |
| { |
| struct kvmppc_icp *icp = vcpu->arch.icp; |
| struct kvmppc_xics *xics = vcpu->kvm->arch.xics; |
| union kvmppc_icp_state old_state, new_state; |
| struct kvmppc_ics *ics; |
| u8 cppr, mfrr, pending_pri; |
| u32 xisr; |
| u16 src; |
| bool resend; |
| |
| if (!icp || !xics) |
| return -ENOENT; |
| |
| cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; |
| xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & |
| KVM_REG_PPC_ICP_XISR_MASK; |
| mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; |
| pending_pri = icpval >> KVM_REG_PPC_ICP_PPRI_SHIFT; |
| |
| /* Require the new state to be internally consistent */ |
| if (xisr == 0) { |
| if (pending_pri != 0xff) |
| return -EINVAL; |
| } else if (xisr == XICS_IPI) { |
| if (pending_pri != mfrr || pending_pri >= cppr) |
| return -EINVAL; |
| } else { |
| if (pending_pri >= mfrr || pending_pri >= cppr) |
| return -EINVAL; |
| ics = kvmppc_xics_find_ics(xics, xisr, &src); |
| if (!ics) |
| return -EINVAL; |
| } |
| |
| new_state.raw = 0; |
| new_state.cppr = cppr; |
| new_state.xisr = xisr; |
| new_state.mfrr = mfrr; |
| new_state.pending_pri = pending_pri; |
| |
| /* |
| * Deassert the CPU interrupt request. |
| * icp_try_update will reassert it if necessary. |
| */ |
| kvmppc_book3s_dequeue_irqprio(icp->vcpu, |
| BOOK3S_INTERRUPT_EXTERNAL_LEVEL); |
| |
| /* |
| * Note that if we displace an interrupt from old_state.xisr, |
| * we don't mark it as rejected. We expect userspace to set |
| * the state of the interrupt sources to be consistent with |
| * the ICP states (either before or afterwards, which doesn't |
| * matter). We do handle resends due to CPPR becoming less |
| * favoured because that is necessary to end up with a |
| * consistent state in the situation where userspace restores |
| * the ICS states before the ICP states. |
| */ |
| do { |
| old_state = ACCESS_ONCE(icp->state); |
| |
| if (new_state.mfrr <= old_state.mfrr) { |
| resend = false; |
| new_state.need_resend = old_state.need_resend; |
| } else { |
| resend = old_state.need_resend; |
| new_state.need_resend = 0; |
| } |
| } while (!icp_try_update(icp, old_state, new_state, false)); |
| |
| if (resend) |
| icp_check_resend(xics, icp); |
| |
| return 0; |
| } |
| |
| static int xics_get_source(struct kvmppc_xics *xics, long irq, u64 addr) |
| { |
| int ret; |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *irqp; |
| u64 __user *ubufp = (u64 __user *) addr; |
| u16 idx; |
| u64 val, prio; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &idx); |
| if (!ics) |
| return -ENOENT; |
| |
| irqp = &ics->irq_state[idx]; |
| mutex_lock(&ics->lock); |
| ret = -ENOENT; |
| if (irqp->exists) { |
| val = irqp->server; |
| prio = irqp->priority; |
| if (prio == MASKED) { |
| val |= KVM_XICS_MASKED; |
| prio = irqp->saved_priority; |
| } |
| val |= prio << KVM_XICS_PRIORITY_SHIFT; |
| if (irqp->asserted) |
| val |= KVM_XICS_LEVEL_SENSITIVE | KVM_XICS_PENDING; |
| else if (irqp->masked_pending || irqp->resend) |
| val |= KVM_XICS_PENDING; |
| ret = 0; |
| } |
| mutex_unlock(&ics->lock); |
| |
| if (!ret && put_user(val, ubufp)) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static int xics_set_source(struct kvmppc_xics *xics, long irq, u64 addr) |
| { |
| struct kvmppc_ics *ics; |
| struct ics_irq_state *irqp; |
| u64 __user *ubufp = (u64 __user *) addr; |
| u16 idx; |
| u64 val; |
| u8 prio; |
| u32 server; |
| |
| if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) |
| return -ENOENT; |
| |
| ics = kvmppc_xics_find_ics(xics, irq, &idx); |
| if (!ics) { |
| ics = kvmppc_xics_create_ics(xics->kvm, xics, irq); |
| if (!ics) |
| return -ENOMEM; |
| } |
| irqp = &ics->irq_state[idx]; |
| if (get_user(val, ubufp)) |
| return -EFAULT; |
| |
| server = val & KVM_XICS_DESTINATION_MASK; |
| prio = val >> KVM_XICS_PRIORITY_SHIFT; |
| if (prio != MASKED && |
| kvmppc_xics_find_server(xics->kvm, server) == NULL) |
| return -EINVAL; |
| |
| mutex_lock(&ics->lock); |
| irqp->server = server; |
| irqp->saved_priority = prio; |
| if (val & KVM_XICS_MASKED) |
| prio = MASKED; |
| irqp->priority = prio; |
| irqp->resend = 0; |
| irqp->masked_pending = 0; |
| irqp->asserted = 0; |
| if ((val & KVM_XICS_PENDING) && (val & KVM_XICS_LEVEL_SENSITIVE)) |
| irqp->asserted = 1; |
| irqp->exists = 1; |
| mutex_unlock(&ics->lock); |
| |
| if (val & KVM_XICS_PENDING) |
| icp_deliver_irq(xics, NULL, irqp->number); |
| |
| return 0; |
| } |
| |
| int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, |
| bool line_status) |
| { |
| struct kvmppc_xics *xics = kvm->arch.xics; |
| |
| return ics_deliver_irq(xics, irq, level); |
| } |
| |
| int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, |
| int irq_source_id, int level, bool line_status) |
| { |
| if (!level) |
| return -1; |
| return kvm_set_irq(kvm, irq_source_id, irq_entry->gsi, |
| level, line_status); |
| } |
| |
| static int xics_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| struct kvmppc_xics *xics = dev->private; |
| |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| return xics_set_source(xics, attr->attr, attr->addr); |
| } |
| return -ENXIO; |
| } |
| |
| static int xics_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| struct kvmppc_xics *xics = dev->private; |
| |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| return xics_get_source(xics, attr->attr, attr->addr); |
| } |
| return -ENXIO; |
| } |
| |
| static int xics_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| switch (attr->group) { |
| case KVM_DEV_XICS_GRP_SOURCES: |
| if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && |
| attr->attr < KVMPPC_XICS_NR_IRQS) |
| return 0; |
| break; |
| } |
| return -ENXIO; |
| } |
| |
| static void kvmppc_xics_free(struct kvm_device *dev) |
| { |
| struct kvmppc_xics *xics = dev->private; |
| int i; |
| struct kvm *kvm = xics->kvm; |
| |
| debugfs_remove(xics->dentry); |
| |
| if (kvm) |
| kvm->arch.xics = NULL; |
| |
| for (i = 0; i <= xics->max_icsid; i++) |
| kfree(xics->ics[i]); |
| kfree(xics); |
| kfree(dev); |
| } |
| |
| static int kvmppc_xics_create(struct kvm_device *dev, u32 type) |
| { |
| struct kvmppc_xics *xics; |
| struct kvm *kvm = dev->kvm; |
| int ret = 0; |
| |
| xics = kzalloc(sizeof(*xics), GFP_KERNEL); |
| if (!xics) |
| return -ENOMEM; |
| |
| dev->private = xics; |
| xics->dev = dev; |
| xics->kvm = kvm; |
| |
| /* Already there ? */ |
| mutex_lock(&kvm->lock); |
| if (kvm->arch.xics) |
| ret = -EEXIST; |
| else |
| kvm->arch.xics = xics; |
| mutex_unlock(&kvm->lock); |
| |
| if (ret) { |
| kfree(xics); |
| return ret; |
| } |
| |
| xics_debugfs_init(xics); |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) { |
| /* Enable real mode support */ |
| xics->real_mode = ENABLE_REALMODE; |
| xics->real_mode_dbg = DEBUG_REALMODE; |
| } |
| #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ |
| |
| return 0; |
| } |
| |
| struct kvm_device_ops kvm_xics_ops = { |
| .name = "kvm-xics", |
| .create = kvmppc_xics_create, |
| .destroy = kvmppc_xics_free, |
| .set_attr = xics_set_attr, |
| .get_attr = xics_get_attr, |
| .has_attr = xics_has_attr, |
| }; |
| |
| int kvmppc_xics_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, |
| u32 xcpu) |
| { |
| struct kvmppc_xics *xics = dev->private; |
| int r = -EBUSY; |
| |
| if (dev->ops != &kvm_xics_ops) |
| return -EPERM; |
| if (xics->kvm != vcpu->kvm) |
| return -EPERM; |
| if (vcpu->arch.irq_type) |
| return -EBUSY; |
| |
| r = kvmppc_xics_create_icp(vcpu, xcpu); |
| if (!r) |
| vcpu->arch.irq_type = KVMPPC_IRQ_XICS; |
| |
| return r; |
| } |
| |
| void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->arch.icp) |
| return; |
| kfree(vcpu->arch.icp); |
| vcpu->arch.icp = NULL; |
| vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; |
| } |
| |
| static int xics_set_irq(struct kvm_kernel_irq_routing_entry *e, |
| struct kvm *kvm, int irq_source_id, int level, |
| bool line_status) |
| { |
| return kvm_set_irq(kvm, irq_source_id, e->gsi, level, line_status); |
| } |
| |
| int kvm_irq_map_gsi(struct kvm *kvm, |
| struct kvm_kernel_irq_routing_entry *entries, int gsi) |
| { |
| entries->gsi = gsi; |
| entries->type = KVM_IRQ_ROUTING_IRQCHIP; |
| entries->set = xics_set_irq; |
| entries->irqchip.irqchip = 0; |
| entries->irqchip.pin = gsi; |
| return 1; |
| } |
| |
| int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin) |
| { |
| return pin; |
| } |