blob: ff796e42c3ebbf1b146a28b677e7bb885e1f6bf6 [file] [log] [blame]
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2012 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics@intel.com>
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/netdevice.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "e1000.h"
/*
* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define E1000_MAX_NIC 32
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
#define COPYBREAK_DEFAULT 256
unsigned int copybreak = COPYBREAK_DEFAULT;
module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak,
"Maximum size of packet that is copied to a new buffer on receive");
/*
* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
#define E1000_PARAM(X, desc) \
static int __devinitdata X[E1000_MAX_NIC+1] \
= E1000_PARAM_INIT; \
static unsigned int num_##X; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
/*
* Transmit Interrupt Delay in units of 1.024 microseconds
* Tx interrupt delay needs to typically be set to something non-zero
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
#define DEFAULT_TIDV 8
#define MAX_TXDELAY 0xFFFF
#define MIN_TXDELAY 0
/*
* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
#define DEFAULT_TADV 32
#define MAX_TXABSDELAY 0xFFFF
#define MIN_TXABSDELAY 0
/*
* Receive Interrupt Delay in units of 1.024 microseconds
* hardware will likely hang if you set this to anything but zero.
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
#define MAX_RXDELAY 0xFFFF
#define MIN_RXDELAY 0
/*
* Receive Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
#define MAX_RXABSDELAY 0xFFFF
#define MIN_RXABSDELAY 0
/*
* Interrupt Throttle Rate (interrupts/sec)
*
* Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
*/
E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
#define DEFAULT_ITR 3
#define MAX_ITR 100000
#define MIN_ITR 100
/*
* IntMode (Interrupt Mode)
*
* Valid Range: varies depending on kernel configuration & hardware support
*
* legacy=0, MSI=1, MSI-X=2
*
* When MSI/MSI-X support is enabled in kernel-
* Default Value: 2 (MSI-X) when supported by hardware, 1 (MSI) otherwise
* When MSI/MSI-X support is not enabled in kernel-
* Default Value: 0 (legacy)
*
* When a mode is specified that is not allowed/supported, it will be
* demoted to the most advanced interrupt mode available.
*/
E1000_PARAM(IntMode, "Interrupt Mode");
#define MAX_INTMODE 2
#define MIN_INTMODE 0
/*
* Enable Smart Power Down of the PHY
*
* Valid Range: 0, 1
*
* Default Value: 0 (disabled)
*/
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
/*
* Enable Kumeran Lock Loss workaround
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
/*
* Write Protect NVM
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
/*
* Enable CRC Stripping
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
"the CRC");
struct e1000_option {
enum { enable_option, range_option, list_option } type;
const char *name;
const char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct e1000_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit e1000_validate_option(unsigned int *value,
const struct e1000_option *opt,
struct e1000_adapter *adapter)
{
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
e_info("%s Enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
e_info("%s Disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
e_info("%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option: {
int i;
struct e1000_opt_list *ent;
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
e_info("%s\n", ent->str);
return 0;
}
}
}
break;
default:
BUG();
}
e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
opt->err);
*value = opt->def;
return -1;
}
/**
* e1000e_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
**/
void __devinit e1000e_check_options(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int bd = adapter->bd_number;
if (bd >= E1000_MAX_NIC) {
e_notice("Warning: no configuration for board #%i\n", bd);
e_notice("Using defaults for all values\n");
}
{ /* Transmit Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TIDV),
.def = DEFAULT_TIDV,
.arg = { .r = { .min = MIN_TXDELAY,
.max = MAX_TXDELAY } }
};
if (num_TxIntDelay > bd) {
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt,
adapter);
} else {
adapter->tx_int_delay = opt.def;
}
}
{ /* Transmit Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TADV),
.def = DEFAULT_TADV,
.arg = { .r = { .min = MIN_TXABSDELAY,
.max = MAX_TXABSDELAY } }
};
if (num_TxAbsIntDelay > bd) {
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
} else {
adapter->tx_abs_int_delay = opt.def;
}
}
{ /* Receive Interrupt Delay */
static struct e1000_option opt = {
.type = range_option,
.name = "Receive Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RDTR),
.def = DEFAULT_RDTR,
.arg = { .r = { .min = MIN_RXDELAY,
.max = MAX_RXDELAY } }
};
if (num_RxIntDelay > bd) {
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt,
adapter);
} else {
adapter->rx_int_delay = opt.def;
}
}
{ /* Receive Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Receive Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RADV),
.def = DEFAULT_RADV,
.arg = { .r = { .min = MIN_RXABSDELAY,
.max = MAX_RXABSDELAY } }
};
if (num_RxAbsIntDelay > bd) {
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
} else {
adapter->rx_abs_int_delay = opt.def;
}
}
{ /* Interrupt Throttling Rate */
static const struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Throttling Rate (ints/sec)",
.err = "using default of "
__MODULE_STRING(DEFAULT_ITR),
.def = DEFAULT_ITR,
.arg = { .r = { .min = MIN_ITR,
.max = MAX_ITR } }
};
if (num_InterruptThrottleRate > bd) {
adapter->itr = InterruptThrottleRate[bd];
switch (adapter->itr) {
case 0:
e_info("%s turned off\n", opt.name);
break;
case 1:
e_info("%s set to dynamic mode\n", opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 3:
e_info("%s set to dynamic conservative mode\n",
opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 4:
e_info("%s set to simplified (2000-8000 ints) "
"mode\n", opt.name);
adapter->itr_setting = 4;
break;
default:
/*
* Save the setting, because the dynamic bits
* change itr.
*/
if (e1000_validate_option(&adapter->itr, &opt,
adapter) &&
(adapter->itr == 3)) {
/*
* In case of invalid user value,
* default to conservative mode.
*/
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
} else {
/*
* Clear the lower two bits because
* they are used as control.
*/
adapter->itr_setting =
adapter->itr & ~3;
}
break;
}
} else {
adapter->itr_setting = opt.def;
adapter->itr = 20000;
}
}
{ /* Interrupt Mode */
static struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Mode",
#ifndef CONFIG_PCI_MSI
.err = "defaulting to 0 (legacy)",
.def = E1000E_INT_MODE_LEGACY,
.arg = { .r = { .min = 0,
.max = 0 } }
#endif
};
#ifdef CONFIG_PCI_MSI
if (adapter->flags & FLAG_HAS_MSIX) {
opt.err = kstrdup("defaulting to 2 (MSI-X)",
GFP_KERNEL);
opt.def = E1000E_INT_MODE_MSIX;
opt.arg.r.max = E1000E_INT_MODE_MSIX;
} else {
opt.err = kstrdup("defaulting to 1 (MSI)", GFP_KERNEL);
opt.def = E1000E_INT_MODE_MSI;
opt.arg.r.max = E1000E_INT_MODE_MSI;
}
if (!opt.err) {
dev_err(&adapter->pdev->dev,
"Failed to allocate memory\n");
return;
}
#endif
if (num_IntMode > bd) {
unsigned int int_mode = IntMode[bd];
e1000_validate_option(&int_mode, &opt, adapter);
adapter->int_mode = int_mode;
} else {
adapter->int_mode = opt.def;
}
#ifdef CONFIG_PCI_MSI
kfree(opt.err);
#endif
}
{ /* Smart Power Down */
static const struct e1000_option opt = {
.type = enable_option,
.name = "PHY Smart Power Down",
.err = "defaulting to Disabled",
.def = OPTION_DISABLED
};
if (num_SmartPowerDownEnable > bd) {
unsigned int spd = SmartPowerDownEnable[bd];
e1000_validate_option(&spd, &opt, adapter);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
&& spd)
adapter->flags |= FLAG_SMART_POWER_DOWN;
}
}
{ /* CRC Stripping */
static const struct e1000_option opt = {
.type = enable_option,
.name = "CRC Stripping",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_CrcStripping > bd) {
unsigned int crc_stripping = CrcStripping[bd];
e1000_validate_option(&crc_stripping, &opt, adapter);
if (crc_stripping == OPTION_ENABLED) {
adapter->flags2 |= FLAG2_CRC_STRIPPING;
adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING;
}
} else {
adapter->flags2 |= FLAG2_CRC_STRIPPING;
adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING;
}
}
{ /* Kumeran Lock Loss Workaround */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Kumeran Lock Loss Workaround",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_KumeranLockLoss > bd) {
unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
kmrn_lock_loss);
} else {
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
opt.def);
}
}
{ /* Write-protect NVM */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Write-protect NVM",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (adapter->flags & FLAG_IS_ICH) {
if (num_WriteProtectNVM > bd) {
unsigned int write_protect_nvm = WriteProtectNVM[bd];
e1000_validate_option(&write_protect_nvm, &opt,
adapter);
if (write_protect_nvm)
adapter->flags |= FLAG_READ_ONLY_NVM;
} else {
if (opt.def)
adapter->flags |= FLAG_READ_ONLY_NVM;
}
}
}
}