| /* |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * rpc_rdma.c |
| * |
| * This file contains the guts of the RPC RDMA protocol, and |
| * does marshaling/unmarshaling, etc. It is also where interfacing |
| * to the Linux RPC framework lives. |
| */ |
| |
| #include "xprt_rdma.h" |
| |
| #include <linux/highmem.h> |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| static const char transfertypes[][12] = { |
| "inline", /* no chunks */ |
| "read list", /* some argument via rdma read */ |
| "*read list", /* entire request via rdma read */ |
| "write list", /* some result via rdma write */ |
| "reply chunk" /* entire reply via rdma write */ |
| }; |
| |
| /* Returns size of largest RPC-over-RDMA header in a Call message |
| * |
| * The largest Call header contains a full-size Read list and a |
| * minimal Reply chunk. |
| */ |
| static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Read list size */ |
| maxsegs += 2; /* segment for head and tail buffers */ |
| size = maxsegs * sizeof(struct rpcrdma_read_chunk); |
| |
| /* Minimal Read chunk size */ |
| size += sizeof(__be32); /* segment count */ |
| size += sizeof(struct rpcrdma_segment); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| dprintk("RPC: %s: max call header size = %u\n", |
| __func__, size); |
| return size; |
| } |
| |
| /* Returns size of largest RPC-over-RDMA header in a Reply message |
| * |
| * There is only one Write list or one Reply chunk per Reply |
| * message. The larger list is the Write list. |
| */ |
| static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) |
| { |
| unsigned int size; |
| |
| /* Fixed header fields and list discriminators */ |
| size = RPCRDMA_HDRLEN_MIN; |
| |
| /* Maximum Write list size */ |
| maxsegs += 2; /* segment for head and tail buffers */ |
| size = sizeof(__be32); /* segment count */ |
| size += maxsegs * sizeof(struct rpcrdma_segment); |
| size += sizeof(__be32); /* list discriminator */ |
| |
| dprintk("RPC: %s: max reply header size = %u\n", |
| __func__, size); |
| return size; |
| } |
| |
| void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| unsigned int maxsegs = ia->ri_max_segs; |
| |
| ia->ri_max_inline_write = cdata->inline_wsize - |
| rpcrdma_max_call_header_size(maxsegs); |
| ia->ri_max_inline_read = cdata->inline_rsize - |
| rpcrdma_max_reply_header_size(maxsegs); |
| } |
| |
| /* The client can send a request inline as long as the RPCRDMA header |
| * plus the RPC call fit under the transport's inline limit. If the |
| * combined call message size exceeds that limit, the client must use |
| * a Read chunk for this operation. |
| * |
| * A Read chunk is also required if sending the RPC call inline would |
| * exceed this device's max_sge limit. |
| */ |
| static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| struct xdr_buf *xdr = &rqst->rq_snd_buf; |
| unsigned int count, remaining, offset; |
| |
| if (xdr->len > r_xprt->rx_ia.ri_max_inline_write) |
| return false; |
| |
| if (xdr->page_len) { |
| remaining = xdr->page_len; |
| offset = xdr->page_base & ~PAGE_MASK; |
| count = 0; |
| while (remaining) { |
| remaining -= min_t(unsigned int, |
| PAGE_SIZE - offset, remaining); |
| offset = 0; |
| if (++count > r_xprt->rx_ia.ri_max_send_sges) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* The client can't know how large the actual reply will be. Thus it |
| * plans for the largest possible reply for that particular ULP |
| * operation. If the maximum combined reply message size exceeds that |
| * limit, the client must provide a write list or a reply chunk for |
| * this request. |
| */ |
| static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, |
| struct rpc_rqst *rqst) |
| { |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| |
| return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read; |
| } |
| |
| /* Split "vec" on page boundaries into segments. FMR registers pages, |
| * not a byte range. Other modes coalesce these segments into a single |
| * MR when they can. |
| */ |
| static int |
| rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n) |
| { |
| size_t page_offset; |
| u32 remaining; |
| char *base; |
| |
| base = vec->iov_base; |
| page_offset = offset_in_page(base); |
| remaining = vec->iov_len; |
| while (remaining && n < RPCRDMA_MAX_SEGS) { |
| seg[n].mr_page = NULL; |
| seg[n].mr_offset = base; |
| seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); |
| remaining -= seg[n].mr_len; |
| base += seg[n].mr_len; |
| ++n; |
| page_offset = 0; |
| } |
| return n; |
| } |
| |
| /* |
| * Chunk assembly from upper layer xdr_buf. |
| * |
| * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk |
| * elements. Segments are then coalesced when registered, if possible |
| * within the selected memreg mode. |
| * |
| * Returns positive number of segments converted, or a negative errno. |
| */ |
| |
| static int |
| rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, |
| unsigned int pos, enum rpcrdma_chunktype type, |
| struct rpcrdma_mr_seg *seg) |
| { |
| int len, n, p, page_base; |
| struct page **ppages; |
| |
| n = 0; |
| if (pos == 0) { |
| n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n); |
| if (n == RPCRDMA_MAX_SEGS) |
| goto out_overflow; |
| } |
| |
| len = xdrbuf->page_len; |
| ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); |
| page_base = xdrbuf->page_base & ~PAGE_MASK; |
| p = 0; |
| while (len && n < RPCRDMA_MAX_SEGS) { |
| if (!ppages[p]) { |
| /* alloc the pagelist for receiving buffer */ |
| ppages[p] = alloc_page(GFP_ATOMIC); |
| if (!ppages[p]) |
| return -EAGAIN; |
| } |
| seg[n].mr_page = ppages[p]; |
| seg[n].mr_offset = (void *)(unsigned long) page_base; |
| seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len); |
| if (seg[n].mr_len > PAGE_SIZE) |
| goto out_overflow; |
| len -= seg[n].mr_len; |
| ++n; |
| ++p; |
| page_base = 0; /* page offset only applies to first page */ |
| } |
| |
| /* Message overflows the seg array */ |
| if (len && n == RPCRDMA_MAX_SEGS) |
| goto out_overflow; |
| |
| /* When encoding a Read chunk, the tail iovec contains an |
| * XDR pad and may be omitted. |
| */ |
| if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) |
| return n; |
| |
| /* When encoding a Write chunk, some servers need to see an |
| * extra segment for non-XDR-aligned Write chunks. The upper |
| * layer provides space in the tail iovec that may be used |
| * for this purpose. |
| */ |
| if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) |
| return n; |
| |
| if (xdrbuf->tail[0].iov_len) { |
| n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n); |
| if (n == RPCRDMA_MAX_SEGS) |
| goto out_overflow; |
| } |
| |
| return n; |
| |
| out_overflow: |
| pr_err("rpcrdma: segment array overflow\n"); |
| return -EIO; |
| } |
| |
| static inline __be32 * |
| xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw) |
| { |
| *iptr++ = cpu_to_be32(mw->mw_handle); |
| *iptr++ = cpu_to_be32(mw->mw_length); |
| return xdr_encode_hyper(iptr, mw->mw_offset); |
| } |
| |
| /* XDR-encode the Read list. Supports encoding a list of read |
| * segments that belong to a single read chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Read chunklist (a linked list): |
| * N elements, position P (same P for all chunks of same arg!): |
| * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 |
| * |
| * Returns a pointer to the XDR word in the RDMA header following |
| * the end of the Read list, or an error pointer. |
| */ |
| static __be32 * |
| rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, struct rpc_rqst *rqst, |
| __be32 *iptr, enum rpcrdma_chunktype rtype) |
| { |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mw *mw; |
| unsigned int pos; |
| int n, nsegs; |
| |
| if (rtype == rpcrdma_noch) { |
| *iptr++ = xdr_zero; /* item not present */ |
| return iptr; |
| } |
| |
| pos = rqst->rq_snd_buf.head[0].iov_len; |
| if (rtype == rpcrdma_areadch) |
| pos = 0; |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, |
| rtype, seg); |
| if (nsegs < 0) |
| return ERR_PTR(nsegs); |
| |
| do { |
| n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| false, &mw); |
| if (n < 0) |
| return ERR_PTR(n); |
| list_add(&mw->mw_list, &req->rl_registered); |
| |
| *iptr++ = xdr_one; /* item present */ |
| |
| /* All read segments in this chunk |
| * have the same "position". |
| */ |
| *iptr++ = cpu_to_be32(pos); |
| iptr = xdr_encode_rdma_segment(iptr, mw); |
| |
| dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n", |
| rqst->rq_task->tk_pid, __func__, pos, |
| mw->mw_length, (unsigned long long)mw->mw_offset, |
| mw->mw_handle, n < nsegs ? "more" : "last"); |
| |
| r_xprt->rx_stats.read_chunk_count++; |
| seg += n; |
| nsegs -= n; |
| } while (nsegs); |
| |
| /* Finish Read list */ |
| *iptr++ = xdr_zero; /* Next item not present */ |
| return iptr; |
| } |
| |
| /* XDR-encode the Write list. Supports encoding a list containing |
| * one array of plain segments that belong to a single write chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Write chunklist (a list of (one) counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO - 0 |
| * |
| * Returns a pointer to the XDR word in the RDMA header following |
| * the end of the Write list, or an error pointer. |
| */ |
| static __be32 * |
| rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, |
| struct rpc_rqst *rqst, __be32 *iptr, |
| enum rpcrdma_chunktype wtype) |
| { |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mw *mw; |
| int n, nsegs, nchunks; |
| __be32 *segcount; |
| |
| if (wtype != rpcrdma_writech) { |
| *iptr++ = xdr_zero; /* no Write list present */ |
| return iptr; |
| } |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, |
| rqst->rq_rcv_buf.head[0].iov_len, |
| wtype, seg); |
| if (nsegs < 0) |
| return ERR_PTR(nsegs); |
| |
| *iptr++ = xdr_one; /* Write list present */ |
| segcount = iptr++; /* save location of segment count */ |
| |
| nchunks = 0; |
| do { |
| n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| true, &mw); |
| if (n < 0) |
| return ERR_PTR(n); |
| list_add(&mw->mw_list, &req->rl_registered); |
| |
| iptr = xdr_encode_rdma_segment(iptr, mw); |
| |
| dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n", |
| rqst->rq_task->tk_pid, __func__, |
| mw->mw_length, (unsigned long long)mw->mw_offset, |
| mw->mw_handle, n < nsegs ? "more" : "last"); |
| |
| r_xprt->rx_stats.write_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += seg->mr_len; |
| nchunks++; |
| seg += n; |
| nsegs -= n; |
| } while (nsegs); |
| |
| /* Update count of segments in this Write chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| /* Finish Write list */ |
| *iptr++ = xdr_zero; /* Next item not present */ |
| return iptr; |
| } |
| |
| /* XDR-encode the Reply chunk. Supports encoding an array of plain |
| * segments that belong to a single write (reply) chunk. |
| * |
| * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): |
| * |
| * Reply chunk (a counted array): |
| * N elements: |
| * 1 - N - HLOO - HLOO - ... - HLOO |
| * |
| * Returns a pointer to the XDR word in the RDMA header following |
| * the end of the Reply chunk, or an error pointer. |
| */ |
| static __be32 * |
| rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, |
| struct rpcrdma_req *req, struct rpc_rqst *rqst, |
| __be32 *iptr, enum rpcrdma_chunktype wtype) |
| { |
| struct rpcrdma_mr_seg *seg; |
| struct rpcrdma_mw *mw; |
| int n, nsegs, nchunks; |
| __be32 *segcount; |
| |
| if (wtype != rpcrdma_replych) { |
| *iptr++ = xdr_zero; /* no Reply chunk present */ |
| return iptr; |
| } |
| |
| seg = req->rl_segments; |
| nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); |
| if (nsegs < 0) |
| return ERR_PTR(nsegs); |
| |
| *iptr++ = xdr_one; /* Reply chunk present */ |
| segcount = iptr++; /* save location of segment count */ |
| |
| nchunks = 0; |
| do { |
| n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, |
| true, &mw); |
| if (n < 0) |
| return ERR_PTR(n); |
| list_add(&mw->mw_list, &req->rl_registered); |
| |
| iptr = xdr_encode_rdma_segment(iptr, mw); |
| |
| dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n", |
| rqst->rq_task->tk_pid, __func__, |
| mw->mw_length, (unsigned long long)mw->mw_offset, |
| mw->mw_handle, n < nsegs ? "more" : "last"); |
| |
| r_xprt->rx_stats.reply_chunk_count++; |
| r_xprt->rx_stats.total_rdma_request += seg->mr_len; |
| nchunks++; |
| seg += n; |
| nsegs -= n; |
| } while (nsegs); |
| |
| /* Update count of segments in the Reply chunk */ |
| *segcount = cpu_to_be32(nchunks); |
| |
| return iptr; |
| } |
| |
| /* Prepare the RPC-over-RDMA header SGE. |
| */ |
| static bool |
| rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req, |
| u32 len) |
| { |
| struct rpcrdma_regbuf *rb = req->rl_rdmabuf; |
| struct ib_sge *sge = &req->rl_send_sge[0]; |
| |
| if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) { |
| if (!__rpcrdma_dma_map_regbuf(ia, rb)) |
| return false; |
| sge->addr = rdmab_addr(rb); |
| sge->lkey = rdmab_lkey(rb); |
| } |
| sge->length = len; |
| |
| ib_dma_sync_single_for_device(ia->ri_device, sge->addr, |
| sge->length, DMA_TO_DEVICE); |
| req->rl_send_wr.num_sge++; |
| return true; |
| } |
| |
| /* Prepare the Send SGEs. The head and tail iovec, and each entry |
| * in the page list, gets its own SGE. |
| */ |
| static bool |
| rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, |
| struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) |
| { |
| unsigned int sge_no, page_base, len, remaining; |
| struct rpcrdma_regbuf *rb = req->rl_sendbuf; |
| struct ib_device *device = ia->ri_device; |
| struct ib_sge *sge = req->rl_send_sge; |
| u32 lkey = ia->ri_pd->local_dma_lkey; |
| struct page *page, **ppages; |
| |
| /* The head iovec is straightforward, as it is already |
| * DMA-mapped. Sync the content that has changed. |
| */ |
| if (!rpcrdma_dma_map_regbuf(ia, rb)) |
| return false; |
| sge_no = 1; |
| sge[sge_no].addr = rdmab_addr(rb); |
| sge[sge_no].length = xdr->head[0].iov_len; |
| sge[sge_no].lkey = rdmab_lkey(rb); |
| ib_dma_sync_single_for_device(device, sge[sge_no].addr, |
| sge[sge_no].length, DMA_TO_DEVICE); |
| |
| /* If there is a Read chunk, the page list is being handled |
| * via explicit RDMA, and thus is skipped here. However, the |
| * tail iovec may include an XDR pad for the page list, as |
| * well as additional content, and may not reside in the |
| * same page as the head iovec. |
| */ |
| if (rtype == rpcrdma_readch) { |
| len = xdr->tail[0].iov_len; |
| |
| /* Do not include the tail if it is only an XDR pad */ |
| if (len < 4) |
| goto out; |
| |
| page = virt_to_page(xdr->tail[0].iov_base); |
| page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK; |
| |
| /* If the content in the page list is an odd length, |
| * xdr_write_pages() has added a pad at the beginning |
| * of the tail iovec. Force the tail's non-pad content |
| * to land at the next XDR position in the Send message. |
| */ |
| page_base += len & 3; |
| len -= len & 3; |
| goto map_tail; |
| } |
| |
| /* If there is a page list present, temporarily DMA map |
| * and prepare an SGE for each page to be sent. |
| */ |
| if (xdr->page_len) { |
| ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); |
| page_base = xdr->page_base & ~PAGE_MASK; |
| remaining = xdr->page_len; |
| while (remaining) { |
| sge_no++; |
| if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) |
| goto out_mapping_overflow; |
| |
| len = min_t(u32, PAGE_SIZE - page_base, remaining); |
| sge[sge_no].addr = ib_dma_map_page(device, *ppages, |
| page_base, len, |
| DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(device, sge[sge_no].addr)) |
| goto out_mapping_err; |
| sge[sge_no].length = len; |
| sge[sge_no].lkey = lkey; |
| |
| req->rl_mapped_sges++; |
| ppages++; |
| remaining -= len; |
| page_base = 0; |
| } |
| } |
| |
| /* The tail iovec is not always constructed in the same |
| * page where the head iovec resides (see, for example, |
| * gss_wrap_req_priv). To neatly accommodate that case, |
| * DMA map it separately. |
| */ |
| if (xdr->tail[0].iov_len) { |
| page = virt_to_page(xdr->tail[0].iov_base); |
| page_base = (unsigned long)xdr->tail[0].iov_base & ~PAGE_MASK; |
| len = xdr->tail[0].iov_len; |
| |
| map_tail: |
| sge_no++; |
| sge[sge_no].addr = ib_dma_map_page(device, page, |
| page_base, len, |
| DMA_TO_DEVICE); |
| if (ib_dma_mapping_error(device, sge[sge_no].addr)) |
| goto out_mapping_err; |
| sge[sge_no].length = len; |
| sge[sge_no].lkey = lkey; |
| req->rl_mapped_sges++; |
| } |
| |
| out: |
| req->rl_send_wr.num_sge = sge_no + 1; |
| return true; |
| |
| out_mapping_overflow: |
| pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); |
| return false; |
| |
| out_mapping_err: |
| pr_err("rpcrdma: Send mapping error\n"); |
| return false; |
| } |
| |
| bool |
| rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, |
| u32 hdrlen, struct xdr_buf *xdr, |
| enum rpcrdma_chunktype rtype) |
| { |
| req->rl_send_wr.num_sge = 0; |
| req->rl_mapped_sges = 0; |
| |
| if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen)) |
| goto out_map; |
| |
| if (rtype != rpcrdma_areadch) |
| if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype)) |
| goto out_map; |
| |
| return true; |
| |
| out_map: |
| pr_err("rpcrdma: failed to DMA map a Send buffer\n"); |
| return false; |
| } |
| |
| void |
| rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req) |
| { |
| struct ib_device *device = ia->ri_device; |
| struct ib_sge *sge; |
| int count; |
| |
| sge = &req->rl_send_sge[2]; |
| for (count = req->rl_mapped_sges; count--; sge++) |
| ib_dma_unmap_page(device, sge->addr, sge->length, |
| DMA_TO_DEVICE); |
| req->rl_mapped_sges = 0; |
| } |
| |
| /* |
| * Marshal a request: the primary job of this routine is to choose |
| * the transfer modes. See comments below. |
| * |
| * Returns zero on success, otherwise a negative errno. |
| */ |
| |
| int |
| rpcrdma_marshal_req(struct rpc_rqst *rqst) |
| { |
| struct rpc_xprt *xprt = rqst->rq_xprt; |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| enum rpcrdma_chunktype rtype, wtype; |
| struct rpcrdma_msg *headerp; |
| bool ddp_allowed; |
| ssize_t hdrlen; |
| size_t rpclen; |
| __be32 *iptr; |
| |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state)) |
| return rpcrdma_bc_marshal_reply(rqst); |
| #endif |
| |
| headerp = rdmab_to_msg(req->rl_rdmabuf); |
| /* don't byte-swap XID, it's already done in request */ |
| headerp->rm_xid = rqst->rq_xid; |
| headerp->rm_vers = rpcrdma_version; |
| headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); |
| headerp->rm_type = rdma_msg; |
| |
| /* When the ULP employs a GSS flavor that guarantees integrity |
| * or privacy, direct data placement of individual data items |
| * is not allowed. |
| */ |
| ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & |
| RPCAUTH_AUTH_DATATOUCH); |
| |
| /* |
| * Chunks needed for results? |
| * |
| * o If the expected result is under the inline threshold, all ops |
| * return as inline. |
| * o Large read ops return data as write chunk(s), header as |
| * inline. |
| * o Large non-read ops return as a single reply chunk. |
| */ |
| if (rpcrdma_results_inline(r_xprt, rqst)) |
| wtype = rpcrdma_noch; |
| else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) |
| wtype = rpcrdma_writech; |
| else |
| wtype = rpcrdma_replych; |
| |
| /* |
| * Chunks needed for arguments? |
| * |
| * o If the total request is under the inline threshold, all ops |
| * are sent as inline. |
| * o Large write ops transmit data as read chunk(s), header as |
| * inline. |
| * o Large non-write ops are sent with the entire message as a |
| * single read chunk (protocol 0-position special case). |
| * |
| * This assumes that the upper layer does not present a request |
| * that both has a data payload, and whose non-data arguments |
| * by themselves are larger than the inline threshold. |
| */ |
| if (rpcrdma_args_inline(r_xprt, rqst)) { |
| rtype = rpcrdma_noch; |
| rpclen = rqst->rq_snd_buf.len; |
| } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { |
| rtype = rpcrdma_readch; |
| rpclen = rqst->rq_snd_buf.head[0].iov_len + |
| rqst->rq_snd_buf.tail[0].iov_len; |
| } else { |
| r_xprt->rx_stats.nomsg_call_count++; |
| headerp->rm_type = htonl(RDMA_NOMSG); |
| rtype = rpcrdma_areadch; |
| rpclen = 0; |
| } |
| |
| /* This implementation supports the following combinations |
| * of chunk lists in one RPC-over-RDMA Call message: |
| * |
| * - Read list |
| * - Write list |
| * - Reply chunk |
| * - Read list + Reply chunk |
| * |
| * It might not yet support the following combinations: |
| * |
| * - Read list + Write list |
| * |
| * It does not support the following combinations: |
| * |
| * - Write list + Reply chunk |
| * - Read list + Write list + Reply chunk |
| * |
| * This implementation supports only a single chunk in each |
| * Read or Write list. Thus for example the client cannot |
| * send a Call message with a Position Zero Read chunk and a |
| * regular Read chunk at the same time. |
| */ |
| iptr = headerp->rm_body.rm_chunks; |
| iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype); |
| if (IS_ERR(iptr)) |
| goto out_unmap; |
| iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype); |
| if (IS_ERR(iptr)) |
| goto out_unmap; |
| iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype); |
| if (IS_ERR(iptr)) |
| goto out_unmap; |
| hdrlen = (unsigned char *)iptr - (unsigned char *)headerp; |
| |
| dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n", |
| rqst->rq_task->tk_pid, __func__, |
| transfertypes[rtype], transfertypes[wtype], |
| hdrlen, rpclen); |
| |
| if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen, |
| &rqst->rq_snd_buf, rtype)) { |
| iptr = ERR_PTR(-EIO); |
| goto out_unmap; |
| } |
| return 0; |
| |
| out_unmap: |
| r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false); |
| return PTR_ERR(iptr); |
| } |
| |
| /* |
| * Chase down a received write or reply chunklist to get length |
| * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) |
| */ |
| static int |
| rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp) |
| { |
| unsigned int i, total_len; |
| struct rpcrdma_write_chunk *cur_wchunk; |
| char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf); |
| |
| i = be32_to_cpu(**iptrp); |
| cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); |
| total_len = 0; |
| while (i--) { |
| struct rpcrdma_segment *seg = &cur_wchunk->wc_target; |
| ifdebug(FACILITY) { |
| u64 off; |
| xdr_decode_hyper((__be32 *)&seg->rs_offset, &off); |
| dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n", |
| __func__, |
| be32_to_cpu(seg->rs_length), |
| (unsigned long long)off, |
| be32_to_cpu(seg->rs_handle)); |
| } |
| total_len += be32_to_cpu(seg->rs_length); |
| ++cur_wchunk; |
| } |
| /* check and adjust for properly terminated write chunk */ |
| if (wrchunk) { |
| __be32 *w = (__be32 *) cur_wchunk; |
| if (*w++ != xdr_zero) |
| return -1; |
| cur_wchunk = (struct rpcrdma_write_chunk *) w; |
| } |
| if ((char *)cur_wchunk > base + rep->rr_len) |
| return -1; |
| |
| *iptrp = (__be32 *) cur_wchunk; |
| return total_len; |
| } |
| |
| /** |
| * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs |
| * @rqst: controlling RPC request |
| * @srcp: points to RPC message payload in receive buffer |
| * @copy_len: remaining length of receive buffer content |
| * @pad: Write chunk pad bytes needed (zero for pure inline) |
| * |
| * The upper layer has set the maximum number of bytes it can |
| * receive in each component of rq_rcv_buf. These values are set in |
| * the head.iov_len, page_len, tail.iov_len, and buflen fields. |
| * |
| * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in |
| * many cases this function simply updates iov_base pointers in |
| * rq_rcv_buf to point directly to the received reply data, to |
| * avoid copying reply data. |
| * |
| * Returns the count of bytes which had to be memcopied. |
| */ |
| static unsigned long |
| rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) |
| { |
| unsigned long fixup_copy_count; |
| int i, npages, curlen; |
| char *destp; |
| struct page **ppages; |
| int page_base; |
| |
| /* The head iovec is redirected to the RPC reply message |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| rqst->rq_rcv_buf.head[0].iov_base = srcp; |
| rqst->rq_private_buf.head[0].iov_base = srcp; |
| |
| /* The contents of the receive buffer that follow |
| * head.iov_len bytes are copied into the page list. |
| */ |
| curlen = rqst->rq_rcv_buf.head[0].iov_len; |
| if (curlen > copy_len) |
| curlen = copy_len; |
| dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", |
| __func__, srcp, copy_len, curlen); |
| srcp += curlen; |
| copy_len -= curlen; |
| |
| page_base = rqst->rq_rcv_buf.page_base; |
| ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT); |
| page_base &= ~PAGE_MASK; |
| fixup_copy_count = 0; |
| if (copy_len && rqst->rq_rcv_buf.page_len) { |
| int pagelist_len; |
| |
| pagelist_len = rqst->rq_rcv_buf.page_len; |
| if (pagelist_len > copy_len) |
| pagelist_len = copy_len; |
| npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; |
| for (i = 0; i < npages; i++) { |
| curlen = PAGE_SIZE - page_base; |
| if (curlen > pagelist_len) |
| curlen = pagelist_len; |
| |
| dprintk("RPC: %s: page %d" |
| " srcp 0x%p len %d curlen %d\n", |
| __func__, i, srcp, copy_len, curlen); |
| destp = kmap_atomic(ppages[i]); |
| memcpy(destp + page_base, srcp, curlen); |
| flush_dcache_page(ppages[i]); |
| kunmap_atomic(destp); |
| srcp += curlen; |
| copy_len -= curlen; |
| fixup_copy_count += curlen; |
| pagelist_len -= curlen; |
| if (!pagelist_len) |
| break; |
| page_base = 0; |
| } |
| |
| /* Implicit padding for the last segment in a Write |
| * chunk is inserted inline at the front of the tail |
| * iovec. The upper layer ignores the content of |
| * the pad. Simply ensure inline content in the tail |
| * that follows the Write chunk is properly aligned. |
| */ |
| if (pad) |
| srcp -= pad; |
| } |
| |
| /* The tail iovec is redirected to the remaining data |
| * in the receive buffer, to avoid a memcopy. |
| */ |
| if (copy_len || pad) { |
| rqst->rq_rcv_buf.tail[0].iov_base = srcp; |
| rqst->rq_private_buf.tail[0].iov_base = srcp; |
| } |
| |
| return fixup_copy_count; |
| } |
| |
| void |
| rpcrdma_connect_worker(struct work_struct *work) |
| { |
| struct rpcrdma_ep *ep = |
| container_of(work, struct rpcrdma_ep, rep_connect_worker.work); |
| struct rpcrdma_xprt *r_xprt = |
| container_of(ep, struct rpcrdma_xprt, rx_ep); |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| |
| spin_lock_bh(&xprt->transport_lock); |
| if (++xprt->connect_cookie == 0) /* maintain a reserved value */ |
| ++xprt->connect_cookie; |
| if (ep->rep_connected > 0) { |
| if (!xprt_test_and_set_connected(xprt)) |
| xprt_wake_pending_tasks(xprt, 0); |
| } else { |
| if (xprt_test_and_clear_connected(xprt)) |
| xprt_wake_pending_tasks(xprt, -ENOTCONN); |
| } |
| spin_unlock_bh(&xprt->transport_lock); |
| } |
| |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| /* By convention, backchannel calls arrive via rdma_msg type |
| * messages, and never populate the chunk lists. This makes |
| * the RPC/RDMA header small and fixed in size, so it is |
| * straightforward to check the RPC header's direction field. |
| */ |
| static bool |
| rpcrdma_is_bcall(struct rpcrdma_msg *headerp) |
| { |
| __be32 *p = (__be32 *)headerp; |
| |
| if (headerp->rm_type != rdma_msg) |
| return false; |
| if (headerp->rm_body.rm_chunks[0] != xdr_zero) |
| return false; |
| if (headerp->rm_body.rm_chunks[1] != xdr_zero) |
| return false; |
| if (headerp->rm_body.rm_chunks[2] != xdr_zero) |
| return false; |
| |
| /* sanity */ |
| if (p[7] != headerp->rm_xid) |
| return false; |
| /* call direction */ |
| if (p[8] != cpu_to_be32(RPC_CALL)) |
| return false; |
| |
| return true; |
| } |
| #endif /* CONFIG_SUNRPC_BACKCHANNEL */ |
| |
| /* |
| * This function is called when an async event is posted to |
| * the connection which changes the connection state. All it |
| * does at this point is mark the connection up/down, the rpc |
| * timers do the rest. |
| */ |
| void |
| rpcrdma_conn_func(struct rpcrdma_ep *ep) |
| { |
| schedule_delayed_work(&ep->rep_connect_worker, 0); |
| } |
| |
| /* Process received RPC/RDMA messages. |
| * |
| * Errors must result in the RPC task either being awakened, or |
| * allowed to timeout, to discover the errors at that time. |
| */ |
| void |
| rpcrdma_reply_handler(struct work_struct *work) |
| { |
| struct rpcrdma_rep *rep = |
| container_of(work, struct rpcrdma_rep, rr_work); |
| struct rpcrdma_msg *headerp; |
| struct rpcrdma_req *req; |
| struct rpc_rqst *rqst; |
| struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; |
| struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| __be32 *iptr; |
| int rdmalen, status, rmerr; |
| unsigned long cwnd; |
| |
| dprintk("RPC: %s: incoming rep %p\n", __func__, rep); |
| |
| if (rep->rr_len == RPCRDMA_BAD_LEN) |
| goto out_badstatus; |
| if (rep->rr_len < RPCRDMA_HDRLEN_ERR) |
| goto out_shortreply; |
| |
| headerp = rdmab_to_msg(rep->rr_rdmabuf); |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| if (rpcrdma_is_bcall(headerp)) |
| goto out_bcall; |
| #endif |
| |
| /* Match incoming rpcrdma_rep to an rpcrdma_req to |
| * get context for handling any incoming chunks. |
| */ |
| spin_lock_bh(&xprt->transport_lock); |
| rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); |
| if (!rqst) |
| goto out_nomatch; |
| |
| req = rpcr_to_rdmar(rqst); |
| if (req->rl_reply) |
| goto out_duplicate; |
| |
| /* Sanity checking has passed. We are now committed |
| * to complete this transaction. |
| */ |
| list_del_init(&rqst->rq_list); |
| spin_unlock_bh(&xprt->transport_lock); |
| dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n", |
| __func__, rep, req, be32_to_cpu(headerp->rm_xid)); |
| |
| /* from here on, the reply is no longer an orphan */ |
| req->rl_reply = rep; |
| xprt->reestablish_timeout = 0; |
| |
| if (headerp->rm_vers != rpcrdma_version) |
| goto out_badversion; |
| |
| /* check for expected message types */ |
| /* The order of some of these tests is important. */ |
| switch (headerp->rm_type) { |
| case rdma_msg: |
| /* never expect read chunks */ |
| /* never expect reply chunks (two ways to check) */ |
| /* never expect write chunks without having offered RDMA */ |
| if (headerp->rm_body.rm_chunks[0] != xdr_zero || |
| (headerp->rm_body.rm_chunks[1] == xdr_zero && |
| headerp->rm_body.rm_chunks[2] != xdr_zero) || |
| (headerp->rm_body.rm_chunks[1] != xdr_zero && |
| list_empty(&req->rl_registered))) |
| goto badheader; |
| if (headerp->rm_body.rm_chunks[1] != xdr_zero) { |
| /* count any expected write chunks in read reply */ |
| /* start at write chunk array count */ |
| iptr = &headerp->rm_body.rm_chunks[2]; |
| rdmalen = rpcrdma_count_chunks(rep, 1, &iptr); |
| /* check for validity, and no reply chunk after */ |
| if (rdmalen < 0 || *iptr++ != xdr_zero) |
| goto badheader; |
| rep->rr_len -= |
| ((unsigned char *)iptr - (unsigned char *)headerp); |
| status = rep->rr_len + rdmalen; |
| r_xprt->rx_stats.total_rdma_reply += rdmalen; |
| /* special case - last chunk may omit padding */ |
| if (rdmalen &= 3) { |
| rdmalen = 4 - rdmalen; |
| status += rdmalen; |
| } |
| } else { |
| /* else ordinary inline */ |
| rdmalen = 0; |
| iptr = (__be32 *)((unsigned char *)headerp + |
| RPCRDMA_HDRLEN_MIN); |
| rep->rr_len -= RPCRDMA_HDRLEN_MIN; |
| status = rep->rr_len; |
| } |
| |
| r_xprt->rx_stats.fixup_copy_count += |
| rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, |
| rdmalen); |
| break; |
| |
| case rdma_nomsg: |
| /* never expect read or write chunks, always reply chunks */ |
| if (headerp->rm_body.rm_chunks[0] != xdr_zero || |
| headerp->rm_body.rm_chunks[1] != xdr_zero || |
| headerp->rm_body.rm_chunks[2] != xdr_one || |
| list_empty(&req->rl_registered)) |
| goto badheader; |
| iptr = (__be32 *)((unsigned char *)headerp + |
| RPCRDMA_HDRLEN_MIN); |
| rdmalen = rpcrdma_count_chunks(rep, 0, &iptr); |
| if (rdmalen < 0) |
| goto badheader; |
| r_xprt->rx_stats.total_rdma_reply += rdmalen; |
| /* Reply chunk buffer already is the reply vector - no fixup. */ |
| status = rdmalen; |
| break; |
| |
| case rdma_error: |
| goto out_rdmaerr; |
| |
| badheader: |
| default: |
| dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n", |
| rqst->rq_task->tk_pid, __func__, |
| be32_to_cpu(headerp->rm_type)); |
| status = -EIO; |
| r_xprt->rx_stats.bad_reply_count++; |
| break; |
| } |
| |
| out: |
| /* Invalidate and flush the data payloads before waking the |
| * waiting application. This guarantees the memory region is |
| * properly fenced from the server before the application |
| * accesses the data. It also ensures proper send flow |
| * control: waking the next RPC waits until this RPC has |
| * relinquished all its Send Queue entries. |
| */ |
| if (!list_empty(&req->rl_registered)) |
| r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req); |
| |
| spin_lock_bh(&xprt->transport_lock); |
| cwnd = xprt->cwnd; |
| xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT; |
| if (xprt->cwnd > cwnd) |
| xprt_release_rqst_cong(rqst->rq_task); |
| |
| xprt_complete_rqst(rqst->rq_task, status); |
| spin_unlock_bh(&xprt->transport_lock); |
| dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", |
| __func__, xprt, rqst, status); |
| return; |
| |
| out_badstatus: |
| rpcrdma_recv_buffer_put(rep); |
| if (r_xprt->rx_ep.rep_connected == 1) { |
| r_xprt->rx_ep.rep_connected = -EIO; |
| rpcrdma_conn_func(&r_xprt->rx_ep); |
| } |
| return; |
| |
| #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| out_bcall: |
| rpcrdma_bc_receive_call(r_xprt, rep); |
| return; |
| #endif |
| |
| /* If the incoming reply terminated a pending RPC, the next |
| * RPC call will post a replacement receive buffer as it is |
| * being marshaled. |
| */ |
| out_badversion: |
| dprintk("RPC: %s: invalid version %d\n", |
| __func__, be32_to_cpu(headerp->rm_vers)); |
| status = -EIO; |
| r_xprt->rx_stats.bad_reply_count++; |
| goto out; |
| |
| out_rdmaerr: |
| rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err); |
| switch (rmerr) { |
| case ERR_VERS: |
| pr_err("%s: server reports header version error (%u-%u)\n", |
| __func__, |
| be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low), |
| be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high)); |
| break; |
| case ERR_CHUNK: |
| pr_err("%s: server reports header decoding error\n", |
| __func__); |
| break; |
| default: |
| pr_err("%s: server reports unknown error %d\n", |
| __func__, rmerr); |
| } |
| status = -EREMOTEIO; |
| r_xprt->rx_stats.bad_reply_count++; |
| goto out; |
| |
| /* If no pending RPC transaction was matched, post a replacement |
| * receive buffer before returning. |
| */ |
| out_shortreply: |
| dprintk("RPC: %s: short/invalid reply\n", __func__); |
| goto repost; |
| |
| out_nomatch: |
| spin_unlock_bh(&xprt->transport_lock); |
| dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n", |
| __func__, be32_to_cpu(headerp->rm_xid), |
| rep->rr_len); |
| goto repost; |
| |
| out_duplicate: |
| spin_unlock_bh(&xprt->transport_lock); |
| dprintk("RPC: %s: " |
| "duplicate reply %p to RPC request %p: xid 0x%08x\n", |
| __func__, rep, req, be32_to_cpu(headerp->rm_xid)); |
| |
| repost: |
| r_xprt->rx_stats.bad_reply_count++; |
| if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) |
| rpcrdma_recv_buffer_put(rep); |
| } |