blob: 1000e0fd96d9b4972cec3327739f5ca7ff59b7b3 [file] [log] [blame]
#ifndef _HFI1_KERNEL_H
#define _HFI1_KERNEL_H
/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/sched.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
#include <rdma/rdma_vt.h>
#include "chip_registers.h"
#include "common.h"
#include "verbs.h"
#include "pio.h"
#include "chip.h"
#include "mad.h"
#include "qsfp.h"
#include "platform.h"
#include "affinity.h"
/* bumped 1 from s/w major version of TrueScale */
#define HFI1_CHIP_VERS_MAJ 3U
/* don't care about this except printing */
#define HFI1_CHIP_VERS_MIN 0U
/* The Organization Unique Identifier (Mfg code), and its position in GUID */
#define HFI1_OUI 0x001175
#define HFI1_OUI_LSB 40
#define DROP_PACKET_OFF 0
#define DROP_PACKET_ON 1
extern unsigned long hfi1_cap_mask;
#define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
#define HFI1_CAP_UGET_MASK(mask, cap) \
(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
#define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
#define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
#define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
HFI1_CAP_MISC_MASK)
/* Offline Disabled Reason is 4-bits */
#define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
/*
* Control context is always 0 and handles the error packets.
* It also handles the VL15 and multicast packets.
*/
#define HFI1_CTRL_CTXT 0
/*
* Driver context will store software counters for each of the events
* associated with these status registers
*/
#define NUM_CCE_ERR_STATUS_COUNTERS 41
#define NUM_RCV_ERR_STATUS_COUNTERS 64
#define NUM_MISC_ERR_STATUS_COUNTERS 13
#define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
#define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
#define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
#define NUM_SEND_ERR_STATUS_COUNTERS 3
#define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
#define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
/*
* per driver stats, either not device nor port-specific, or
* summed over all of the devices and ports.
* They are described by name via ipathfs filesystem, so layout
* and number of elements can change without breaking compatibility.
* If members are added or deleted hfi1_statnames[] in debugfs.c must
* change to match.
*/
struct hfi1_ib_stats {
__u64 sps_ints; /* number of interrupts handled */
__u64 sps_errints; /* number of error interrupts */
__u64 sps_txerrs; /* tx-related packet errors */
__u64 sps_rcverrs; /* non-crc rcv packet errors */
__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
__u64 sps_ctxts; /* number of contexts currently open */
__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
__u64 sps_buffull;
__u64 sps_hdrfull;
};
extern struct hfi1_ib_stats hfi1_stats;
extern const struct pci_error_handlers hfi1_pci_err_handler;
/*
* First-cut criterion for "device is active" is
* two thousand dwords combined Tx, Rx traffic per
* 5-second interval. SMA packets are 64 dwords,
* and occur "a few per second", presumably each way.
*/
#define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
/*
* Below contains all data related to a single context (formerly called port).
*/
#ifdef CONFIG_DEBUG_FS
struct hfi1_opcode_stats_perctx;
#endif
struct ctxt_eager_bufs {
ssize_t size; /* total size of eager buffers */
u32 count; /* size of buffers array */
u32 numbufs; /* number of buffers allocated */
u32 alloced; /* number of rcvarray entries used */
u32 rcvtid_size; /* size of each eager rcv tid */
u32 threshold; /* head update threshold */
struct eager_buffer {
void *addr;
dma_addr_t phys;
ssize_t len;
} *buffers;
struct {
void *addr;
dma_addr_t phys;
} *rcvtids;
};
struct exp_tid_set {
struct list_head list;
u32 count;
};
struct hfi1_ctxtdata {
/* shadow the ctxt's RcvCtrl register */
u64 rcvctrl;
/* rcvhdrq base, needs mmap before useful */
void *rcvhdrq;
/* kernel virtual address where hdrqtail is updated */
volatile __le64 *rcvhdrtail_kvaddr;
/*
* Shared page for kernel to signal user processes that send buffers
* need disarming. The process should call HFI1_CMD_DISARM_BUFS
* or HFI1_CMD_ACK_EVENT with IPATH_EVENT_DISARM_BUFS set.
*/
unsigned long *user_event_mask;
/* when waiting for rcv or pioavail */
wait_queue_head_t wait;
/* rcvhdrq size (for freeing) */
size_t rcvhdrq_size;
/* number of rcvhdrq entries */
u16 rcvhdrq_cnt;
/* size of each of the rcvhdrq entries */
u16 rcvhdrqentsize;
/* mmap of hdrq, must fit in 44 bits */
dma_addr_t rcvhdrq_phys;
dma_addr_t rcvhdrqtailaddr_phys;
struct ctxt_eager_bufs egrbufs;
/* this receive context's assigned PIO ACK send context */
struct send_context *sc;
/* dynamic receive available interrupt timeout */
u32 rcvavail_timeout;
/*
* number of opens (including slave sub-contexts) on this instance
* (ignoring forks, dup, etc. for now)
*/
int cnt;
/*
* how much space to leave at start of eager TID entries for
* protocol use, on each TID
*/
/* instead of calculating it */
unsigned ctxt;
/* non-zero if ctxt is being shared. */
u16 subctxt_cnt;
/* non-zero if ctxt is being shared. */
u16 subctxt_id;
u8 uuid[16];
/* job key */
u16 jkey;
/* number of RcvArray groups for this context. */
u32 rcv_array_groups;
/* index of first eager TID entry. */
u32 eager_base;
/* number of expected TID entries */
u32 expected_count;
/* index of first expected TID entry. */
u32 expected_base;
struct exp_tid_set tid_group_list;
struct exp_tid_set tid_used_list;
struct exp_tid_set tid_full_list;
/* lock protecting all Expected TID data */
struct mutex exp_lock;
/* number of pio bufs for this ctxt (all procs, if shared) */
u32 piocnt;
/* first pio buffer for this ctxt */
u32 pio_base;
/* chip offset of PIO buffers for this ctxt */
u32 piobufs;
/* per-context configuration flags */
unsigned long flags;
/* per-context event flags for fileops/intr communication */
unsigned long event_flags;
/* WAIT_RCV that timed out, no interrupt */
u32 rcvwait_to;
/* WAIT_PIO that timed out, no interrupt */
u32 piowait_to;
/* WAIT_RCV already happened, no wait */
u32 rcvnowait;
/* WAIT_PIO already happened, no wait */
u32 pionowait;
/* total number of polled urgent packets */
u32 urgent;
/* saved total number of polled urgent packets for poll edge trigger */
u32 urgent_poll;
/* same size as task_struct .comm[], command that opened context */
char comm[TASK_COMM_LEN];
/* so file ops can get at unit */
struct hfi1_devdata *dd;
/* so functions that need physical port can get it easily */
struct hfi1_pportdata *ppd;
/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
void *subctxt_uregbase;
/* An array of pages for the eager receive buffers * N */
void *subctxt_rcvegrbuf;
/* An array of pages for the eager header queue entries * N */
void *subctxt_rcvhdr_base;
/* The version of the library which opened this ctxt */
u32 userversion;
/* Bitmask of active slaves */
u32 active_slaves;
/* Type of packets or conditions we want to poll for */
u16 poll_type;
/* receive packet sequence counter */
u8 seq_cnt;
u8 redirect_seq_cnt;
/* ctxt rcvhdrq head offset */
u32 head;
u32 pkt_count;
/* QPs waiting for context processing */
struct list_head qp_wait_list;
/* interrupt handling */
u64 imask; /* clear interrupt mask */
int ireg; /* clear interrupt register */
unsigned numa_id; /* numa node of this context */
/* verbs stats per CTX */
struct hfi1_opcode_stats_perctx *opstats;
/*
* This is the kernel thread that will keep making
* progress on the user sdma requests behind the scenes.
* There is one per context (shared contexts use the master's).
*/
struct task_struct *progress;
struct list_head sdma_queues;
/* protect sdma queues */
spinlock_t sdma_qlock;
/* Is ASPM interrupt supported for this context */
bool aspm_intr_supported;
/* ASPM state (enabled/disabled) for this context */
bool aspm_enabled;
/* Timer for re-enabling ASPM if interrupt activity quietens down */
struct timer_list aspm_timer;
/* Lock to serialize between intr, timer intr and user threads */
spinlock_t aspm_lock;
/* Is ASPM processing enabled for this context (in intr context) */
bool aspm_intr_enable;
/* Last interrupt timestamp */
ktime_t aspm_ts_last_intr;
/* Last timestamp at which we scheduled a timer for this context */
ktime_t aspm_ts_timer_sched;
/*
* The interrupt handler for a particular receive context can vary
* throughout it's lifetime. This is not a lock protected data member so
* it must be updated atomically and the prev and new value must always
* be valid. Worst case is we process an extra interrupt and up to 64
* packets with the wrong interrupt handler.
*/
int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
};
/*
* Represents a single packet at a high level. Put commonly computed things in
* here so we do not have to keep doing them over and over. The rule of thumb is
* if something is used one time to derive some value, store that something in
* here. If it is used multiple times, then store the result of that derivation
* in here.
*/
struct hfi1_packet {
void *ebuf;
void *hdr;
struct hfi1_ctxtdata *rcd;
__le32 *rhf_addr;
struct rvt_qp *qp;
struct hfi1_other_headers *ohdr;
u64 rhf;
u32 maxcnt;
u32 rhqoff;
u32 hdrqtail;
int numpkt;
u16 tlen;
u16 hlen;
s16 etail;
u16 rsize;
u8 updegr;
u8 rcv_flags;
u8 etype;
};
/*
* Private data for snoop/capture support.
*/
struct hfi1_snoop_data {
int mode_flag;
struct cdev cdev;
struct device *class_dev;
/* protect snoop data */
spinlock_t snoop_lock;
struct list_head queue;
wait_queue_head_t waitq;
void *filter_value;
int (*filter_callback)(void *hdr, void *data, void *value);
u64 dcc_cfg; /* saved value of DCC Cfg register */
};
/* snoop mode_flag values */
#define HFI1_PORT_SNOOP_MODE 1U
#define HFI1_PORT_CAPTURE_MODE 2U
struct rvt_sge_state;
/*
* Get/Set IB link-level config parameters for f_get/set_ib_cfg()
* Mostly for MADs that set or query link parameters, also ipath
* config interfaces
*/
#define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
#define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
#define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
#define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
#define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
#define HFI1_IB_CFG_SPD 5 /* current Link spd */
#define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
#define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
#define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
#define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
#define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
#define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
#define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
#define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
#define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
#define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
#define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
#define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
#define HFI1_IB_CFG_VL_HIGH_LIMIT 19
#define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
#define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
/*
* HFI or Host Link States
*
* These describe the states the driver thinks the logical and physical
* states are in. Used as an argument to set_link_state(). Implemented
* as bits for easy multi-state checking. The actual state can only be
* one.
*/
#define __HLS_UP_INIT_BP 0
#define __HLS_UP_ARMED_BP 1
#define __HLS_UP_ACTIVE_BP 2
#define __HLS_DN_DOWNDEF_BP 3 /* link down default */
#define __HLS_DN_POLL_BP 4
#define __HLS_DN_DISABLE_BP 5
#define __HLS_DN_OFFLINE_BP 6
#define __HLS_VERIFY_CAP_BP 7
#define __HLS_GOING_UP_BP 8
#define __HLS_GOING_OFFLINE_BP 9
#define __HLS_LINK_COOLDOWN_BP 10
#define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
#define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
#define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
#define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
#define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
#define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
#define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
#define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
#define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
#define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
#define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
#define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
#define HLS_DOWN ~(HLS_UP)
/* use this MTU size if none other is given */
#define HFI1_DEFAULT_ACTIVE_MTU 10240
/* use this MTU size as the default maximum */
#define HFI1_DEFAULT_MAX_MTU 10240
/* default partition key */
#define DEFAULT_PKEY 0xffff
/*
* Possible fabric manager config parameters for fm_{get,set}_table()
*/
#define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
#define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
#define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
#define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
#define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
#define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
/*
* Possible "operations" for f_rcvctrl(ppd, op, ctxt)
* these are bits so they can be combined, e.g.
* HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
*/
#define HFI1_RCVCTRL_TAILUPD_ENB 0x01
#define HFI1_RCVCTRL_TAILUPD_DIS 0x02
#define HFI1_RCVCTRL_CTXT_ENB 0x04
#define HFI1_RCVCTRL_CTXT_DIS 0x08
#define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
#define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
#define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
#define HFI1_RCVCTRL_PKEY_DIS 0x80
#define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
#define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
#define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
#define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
#define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
#define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
#define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
#define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
/* partition enforcement flags */
#define HFI1_PART_ENFORCE_IN 0x1
#define HFI1_PART_ENFORCE_OUT 0x2
/* how often we check for synthetic counter wrap around */
#define SYNTH_CNT_TIME 2
/* Counter flags */
#define CNTR_NORMAL 0x0 /* Normal counters, just read register */
#define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
#define CNTR_DISABLED 0x2 /* Disable this counter */
#define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
#define CNTR_VL 0x8 /* Per VL counter */
#define CNTR_SDMA 0x10
#define CNTR_INVALID_VL -1 /* Specifies invalid VL */
#define CNTR_MODE_W 0x0
#define CNTR_MODE_R 0x1
/* VLs Supported/Operational */
#define HFI1_MIN_VLS_SUPPORTED 1
#define HFI1_MAX_VLS_SUPPORTED 8
static inline void incr_cntr64(u64 *cntr)
{
if (*cntr < (u64)-1LL)
(*cntr)++;
}
static inline void incr_cntr32(u32 *cntr)
{
if (*cntr < (u32)-1LL)
(*cntr)++;
}
#define MAX_NAME_SIZE 64
struct hfi1_msix_entry {
enum irq_type type;
struct msix_entry msix;
void *arg;
char name[MAX_NAME_SIZE];
cpumask_t mask;
};
/* per-SL CCA information */
struct cca_timer {
struct hrtimer hrtimer;
struct hfi1_pportdata *ppd; /* read-only */
int sl; /* read-only */
u16 ccti; /* read/write - current value of CCTI */
};
struct link_down_reason {
/*
* SMA-facing value. Should be set from .latest when
* HLS_UP_* -> HLS_DN_* transition actually occurs.
*/
u8 sma;
u8 latest;
};
enum {
LO_PRIO_TABLE,
HI_PRIO_TABLE,
MAX_PRIO_TABLE
};
struct vl_arb_cache {
/* protect vl arb cache */
spinlock_t lock;
struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
};
/*
* The structure below encapsulates data relevant to a physical IB Port.
* Current chips support only one such port, but the separation
* clarifies things a bit. Note that to conform to IB conventions,
* port-numbers are one-based. The first or only port is port1.
*/
struct hfi1_pportdata {
struct hfi1_ibport ibport_data;
struct hfi1_devdata *dd;
struct kobject pport_cc_kobj;
struct kobject sc2vl_kobj;
struct kobject sl2sc_kobj;
struct kobject vl2mtu_kobj;
/* PHY support */
u32 port_type;
struct qsfp_data qsfp_info;
/* GUID for this interface, in host order */
u64 guid;
/* GUID for peer interface, in host order */
u64 neighbor_guid;
/* up or down physical link state */
u32 linkup;
/*
* this address is mapped read-only into user processes so they can
* get status cheaply, whenever they want. One qword of status per port
*/
u64 *statusp;
/* SendDMA related entries */
struct workqueue_struct *hfi1_wq;
/* move out of interrupt context */
struct work_struct link_vc_work;
struct work_struct link_up_work;
struct work_struct link_down_work;
struct work_struct sma_message_work;
struct work_struct freeze_work;
struct work_struct link_downgrade_work;
struct work_struct link_bounce_work;
/* host link state variables */
struct mutex hls_lock;
u32 host_link_state;
spinlock_t sdma_alllock ____cacheline_aligned_in_smp;
u32 lstate; /* logical link state */
/* these are the "32 bit" regs */
u32 ibmtu; /* The MTU programmed for this unit */
/*
* Current max size IB packet (in bytes) including IB headers, that
* we can send. Changes when ibmtu changes.
*/
u32 ibmaxlen;
u32 current_egress_rate; /* units [10^6 bits/sec] */
/* LID programmed for this instance */
u16 lid;
/* list of pkeys programmed; 0 if not set */
u16 pkeys[MAX_PKEY_VALUES];
u16 link_width_supported;
u16 link_width_downgrade_supported;
u16 link_speed_supported;
u16 link_width_enabled;
u16 link_width_downgrade_enabled;
u16 link_speed_enabled;
u16 link_width_active;
u16 link_width_downgrade_tx_active;
u16 link_width_downgrade_rx_active;
u16 link_speed_active;
u8 vls_supported;
u8 vls_operational;
u8 actual_vls_operational;
/* LID mask control */
u8 lmc;
/* Rx Polarity inversion (compensate for ~tx on partner) */
u8 rx_pol_inv;
u8 hw_pidx; /* physical port index */
u8 port; /* IB port number and index into dd->pports - 1 */
/* type of neighbor node */
u8 neighbor_type;
u8 neighbor_normal;
u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
u8 neighbor_port_number;
u8 is_sm_config_started;
u8 offline_disabled_reason;
u8 is_active_optimize_enabled;
u8 driver_link_ready; /* driver ready for active link */
u8 link_enabled; /* link enabled? */
u8 linkinit_reason;
u8 local_tx_rate; /* rate given to 8051 firmware */
u8 last_pstate; /* info only */
/* placeholders for IB MAD packet settings */
u8 overrun_threshold;
u8 phy_error_threshold;
/* Used to override LED behavior for things like maintenance beaconing*/
/*
* Alternates per phase of blink
* [0] holds LED off duration, [1] holds LED on duration
*/
unsigned long led_override_vals[2];
u8 led_override_phase; /* LSB picks from vals[] */
atomic_t led_override_timer_active;
/* Used to flash LEDs in override mode */
struct timer_list led_override_timer;
u32 sm_trap_qp;
u32 sa_qp;
/*
* cca_timer_lock protects access to the per-SL cca_timer
* structures (specifically the ccti member).
*/
spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
struct cca_timer cca_timer[OPA_MAX_SLS];
/* List of congestion control table entries */
struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
/* congestion entries, each entry corresponding to a SL */
struct opa_congestion_setting_entry_shadow
congestion_entries[OPA_MAX_SLS];
/*
* cc_state_lock protects (write) access to the per-port
* struct cc_state.
*/
spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
struct cc_state __rcu *cc_state;
/* Total number of congestion control table entries */
u16 total_cct_entry;
/* Bit map identifying service level */
u32 cc_sl_control_map;
/* CA's max number of 64 entry units in the congestion control table */
u8 cc_max_table_entries;
/*
* begin congestion log related entries
* cc_log_lock protects all congestion log related data
*/
spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
u16 threshold_event_counter;
struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
int cc_log_idx; /* index for logging events */
int cc_mad_idx; /* index for reporting events */
/* end congestion log related entries */
struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
/* port relative counter buffer */
u64 *cntrs;
/* port relative synthetic counter buffer */
u64 *scntrs;
/* port_xmit_discards are synthesized from different egress errors */
u64 port_xmit_discards;
u64 port_xmit_discards_vl[C_VL_COUNT];
u64 port_xmit_constraint_errors;
u64 port_rcv_constraint_errors;
/* count of 'link_err' interrupts from DC */
u64 link_downed;
/* number of times link retrained successfully */
u64 link_up;
/* number of times a link unknown frame was reported */
u64 unknown_frame_count;
/* port_ltp_crc_mode is returned in 'portinfo' MADs */
u16 port_ltp_crc_mode;
/* port_crc_mode_enabled is the crc we support */
u8 port_crc_mode_enabled;
/* mgmt_allowed is also returned in 'portinfo' MADs */
u8 mgmt_allowed;
u8 part_enforce; /* partition enforcement flags */
struct link_down_reason local_link_down_reason;
struct link_down_reason neigh_link_down_reason;
/* Value to be sent to link peer on LinkDown .*/
u8 remote_link_down_reason;
/* Error events that will cause a port bounce. */
u32 port_error_action;
struct work_struct linkstate_active_work;
/* Does this port need to prescan for FECNs */
bool cc_prescan;
};
typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
typedef void (*opcode_handler)(struct hfi1_packet *packet);
/* return values for the RHF receive functions */
#define RHF_RCV_CONTINUE 0 /* keep going */
#define RHF_RCV_DONE 1 /* stop, this packet processed */
#define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
struct rcv_array_data {
u8 group_size;
u16 ngroups;
u16 nctxt_extra;
};
struct per_vl_data {
u16 mtu;
struct send_context *sc;
};
/* 16 to directly index */
#define PER_VL_SEND_CONTEXTS 16
struct err_info_rcvport {
u8 status_and_code;
u64 packet_flit1;
u64 packet_flit2;
};
struct err_info_constraint {
u8 status;
u16 pkey;
u32 slid;
};
struct hfi1_temp {
unsigned int curr; /* current temperature */
unsigned int lo_lim; /* low temperature limit */
unsigned int hi_lim; /* high temperature limit */
unsigned int crit_lim; /* critical temperature limit */
u8 triggers; /* temperature triggers */
};
struct hfi1_i2c_bus {
struct hfi1_devdata *controlling_dd; /* current controlling device */
struct i2c_adapter adapter; /* bus details */
struct i2c_algo_bit_data algo; /* bus algorithm details */
int num; /* bus number, 0 or 1 */
};
/* common data between shared ASIC HFIs */
struct hfi1_asic_data {
struct hfi1_devdata *dds[2]; /* back pointers */
struct mutex asic_resource_mutex;
struct hfi1_i2c_bus *i2c_bus0;
struct hfi1_i2c_bus *i2c_bus1;
};
/* device data struct now contains only "general per-device" info.
* fields related to a physical IB port are in a hfi1_pportdata struct.
*/
struct sdma_engine;
struct sdma_vl_map;
#define BOARD_VERS_MAX 96 /* how long the version string can be */
#define SERIAL_MAX 16 /* length of the serial number */
typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
struct hfi1_devdata {
struct hfi1_ibdev verbs_dev; /* must be first */
struct list_head list;
/* pointers to related structs for this device */
/* pci access data structure */
struct pci_dev *pcidev;
struct cdev user_cdev;
struct cdev diag_cdev;
struct cdev ui_cdev;
struct device *user_device;
struct device *diag_device;
struct device *ui_device;
/* mem-mapped pointer to base of chip regs */
u8 __iomem *kregbase;
/* end of mem-mapped chip space excluding sendbuf and user regs */
u8 __iomem *kregend;
/* physical address of chip for io_remap, etc. */
resource_size_t physaddr;
/* receive context data */
struct hfi1_ctxtdata **rcd;
/* send context data */
struct send_context_info *send_contexts;
/* map hardware send contexts to software index */
u8 *hw_to_sw;
/* spinlock for allocating and releasing send context resources */
spinlock_t sc_lock;
/* Per VL data. Enough for all VLs but not all elements are set/used. */
struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
/* lock for pio_map */
spinlock_t pio_map_lock;
/* array of kernel send contexts */
struct send_context **kernel_send_context;
/* array of vl maps */
struct pio_vl_map __rcu *pio_map;
/* seqlock for sc2vl */
seqlock_t sc2vl_lock;
u64 sc2vl[4];
/* Send Context initialization lock. */
spinlock_t sc_init_lock;
/* fields common to all SDMA engines */
/* default flags to last descriptor */
u64 default_desc1;
volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
dma_addr_t sdma_heads_phys;
void *sdma_pad_dma; /* DMA'ed by chip */
dma_addr_t sdma_pad_phys;
/* for deallocation */
size_t sdma_heads_size;
/* number from the chip */
u32 chip_sdma_engines;
/* num used */
u32 num_sdma;
/* lock for sdma_map */
spinlock_t sde_map_lock;
/* array of engines sized by num_sdma */
struct sdma_engine *per_sdma;
/* array of vl maps */
struct sdma_vl_map __rcu *sdma_map;
/* SPC freeze waitqueue and variable */
wait_queue_head_t sdma_unfreeze_wq;
atomic_t sdma_unfreeze_count;
/* common data between shared ASIC HFIs in this OS */
struct hfi1_asic_data *asic_data;
/* hfi1_pportdata, points to array of (physical) port-specific
* data structs, indexed by pidx (0..n-1)
*/
struct hfi1_pportdata *pport;
/* mem-mapped pointer to base of PIO buffers */
void __iomem *piobase;
/*
* write-combining mem-mapped pointer to base of RcvArray
* memory.
*/
void __iomem *rcvarray_wc;
/*
* credit return base - a per-NUMA range of DMA address that
* the chip will use to update the per-context free counter
*/
struct credit_return_base *cr_base;
/* send context numbers and sizes for each type */
struct sc_config_sizes sc_sizes[SC_MAX];
u32 lcb_access_count; /* count of LCB users */
char *boardname; /* human readable board info */
/* device (not port) flags, basically device capabilities */
u32 flags;
/* reset value */
u64 z_int_counter;
u64 z_rcv_limit;
u64 z_send_schedule;
/* percpu int_counter */
u64 __percpu *int_counter;
u64 __percpu *rcv_limit;
u64 __percpu *send_schedule;
/* number of receive contexts in use by the driver */
u32 num_rcv_contexts;
/* number of pio send contexts in use by the driver */
u32 num_send_contexts;
/*
* number of ctxts available for PSM open
*/
u32 freectxts;
/* total number of available user/PSM contexts */
u32 num_user_contexts;
/* base receive interrupt timeout, in CSR units */
u32 rcv_intr_timeout_csr;
u64 __iomem *egrtidbase;
spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
/* around rcd and (user ctxts) ctxt_cnt use (intr vs free) */
spinlock_t uctxt_lock; /* rcd and user context changes */
/* exclusive access to 8051 */
spinlock_t dc8051_lock;
/* exclusive access to 8051 memory */
spinlock_t dc8051_memlock;
int dc8051_timed_out; /* remember if the 8051 timed out */
/*
* A page that will hold event notification bitmaps for all
* contexts. This page will be mapped into all processes.
*/
unsigned long *events;
/*
* per unit status, see also portdata statusp
* mapped read-only into user processes so they can get unit and
* IB link status cheaply
*/
struct hfi1_status *status;
u32 freezelen; /* max length of freezemsg */
/* revision register shadow */
u64 revision;
/* Base GUID for device (network order) */
u64 base_guid;
/* these are the "32 bit" regs */
/* value we put in kr_rcvhdrsize */
u32 rcvhdrsize;
/* number of receive contexts the chip supports */
u32 chip_rcv_contexts;
/* number of receive array entries */
u32 chip_rcv_array_count;
/* number of PIO send contexts the chip supports */
u32 chip_send_contexts;
/* number of bytes in the PIO memory buffer */
u32 chip_pio_mem_size;
/* number of bytes in the SDMA memory buffer */
u32 chip_sdma_mem_size;
/* size of each rcvegrbuffer */
u32 rcvegrbufsize;
/* log2 of above */
u16 rcvegrbufsize_shift;
/* both sides of the PCIe link are gen3 capable */
u8 link_gen3_capable;
/* localbus width (1, 2,4,8,16,32) from config space */
u32 lbus_width;
/* localbus speed in MHz */
u32 lbus_speed;
int unit; /* unit # of this chip */
int node; /* home node of this chip */
/* save these PCI fields to restore after a reset */
u32 pcibar0;
u32 pcibar1;
u32 pci_rom;
u16 pci_command;
u16 pcie_devctl;
u16 pcie_lnkctl;
u16 pcie_devctl2;
u32 pci_msix0;
u32 pci_lnkctl3;
u32 pci_tph2;
/*
* ASCII serial number, from flash, large enough for original
* all digit strings, and longer serial number format
*/
u8 serial[SERIAL_MAX];
/* human readable board version */
u8 boardversion[BOARD_VERS_MAX];
u8 lbus_info[32]; /* human readable localbus info */
/* chip major rev, from CceRevision */
u8 majrev;
/* chip minor rev, from CceRevision */
u8 minrev;
/* hardware ID */
u8 hfi1_id;
/* implementation code */
u8 icode;
/* default link down value (poll/sleep) */
u8 link_default;
/* vAU of this device */
u8 vau;
/* vCU of this device */
u8 vcu;
/* link credits of this device */
u16 link_credits;
/* initial vl15 credits to use */
u16 vl15_init;
/* Misc small ints */
/* Number of physical ports available */
u8 num_pports;
/* Lowest context number which can be used by user processes */
u8 first_user_ctxt;
u8 n_krcv_queues;
u8 qos_shift;
u8 qpn_mask;
u16 rhf_offset; /* offset of RHF within receive header entry */
u16 irev; /* implementation revision */
u16 dc8051_ver; /* 8051 firmware version */
struct platform_config platform_config;
struct platform_config_cache pcfg_cache;
struct diag_client *diag_client;
spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
u8 psxmitwait_supported;
/* cycle length of PS* counters in HW (in picoseconds) */
u16 psxmitwait_check_rate;
/* high volume overflow errors deferred to tasklet */
struct tasklet_struct error_tasklet;
/* MSI-X information */
struct hfi1_msix_entry *msix_entries;
u32 num_msix_entries;
/* INTx information */
u32 requested_intx_irq; /* did we request one? */
char intx_name[MAX_NAME_SIZE]; /* INTx name */
/* general interrupt: mask of handled interrupts */
u64 gi_mask[CCE_NUM_INT_CSRS];
struct rcv_array_data rcv_entries;
/*
* 64 bit synthetic counters
*/
struct timer_list synth_stats_timer;
/*
* device counters
*/
char *cntrnames;
size_t cntrnameslen;
size_t ndevcntrs;
u64 *cntrs;
u64 *scntrs;
/*
* remembered values for synthetic counters
*/
u64 last_tx;
u64 last_rx;
/*
* per-port counters
*/
size_t nportcntrs;
char *portcntrnames;
size_t portcntrnameslen;
struct hfi1_snoop_data hfi1_snoop;
struct err_info_rcvport err_info_rcvport;
struct err_info_constraint err_info_rcv_constraint;
struct err_info_constraint err_info_xmit_constraint;
u8 err_info_uncorrectable;
u8 err_info_fmconfig;
atomic_t drop_packet;
u8 do_drop;
/*
* Software counters for the status bits defined by the
* associated error status registers
*/
u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
/* Software counter that spans all contexts */
u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
/* Software counter that spans all DMA engines */
u64 sw_send_dma_eng_err_status_cnt[
NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
/* Software counter that aggregates all cce_err_status errors */
u64 sw_cce_err_status_aggregate;
/* Software counter that aggregates all bypass packet rcv errors */
u64 sw_rcv_bypass_packet_errors;
/* receive interrupt functions */
rhf_rcv_function_ptr *rhf_rcv_function_map;
rhf_rcv_function_ptr normal_rhf_rcv_functions[8];
/*
* Handlers for outgoing data so that snoop/capture does not
* have to have its hooks in the send path
*/
send_routine process_pio_send;
send_routine process_dma_send;
void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
u64 pbc, const void *from, size_t count);
/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
u8 oui1;
u8 oui2;
u8 oui3;
/* Timer and counter used to detect RcvBufOvflCnt changes */
struct timer_list rcverr_timer;
u32 rcv_ovfl_cnt;
wait_queue_head_t event_queue;
/* Save the enabled LCB error bits */
u64 lcb_err_en;
u8 dc_shutdown;
/* receive context tail dummy address */
__le64 *rcvhdrtail_dummy_kvaddr;
dma_addr_t rcvhdrtail_dummy_physaddr;
bool eprom_available; /* true if EPROM is available for this device */
bool aspm_supported; /* Does HW support ASPM */
bool aspm_enabled; /* ASPM state: enabled/disabled */
/* Serialize ASPM enable/disable between multiple verbs contexts */
spinlock_t aspm_lock;
/* Number of verbs contexts which have disabled ASPM */
atomic_t aspm_disabled_cnt;
struct hfi1_affinity *affinity;
struct kobject kobj;
};
/* 8051 firmware version helper */
#define dc8051_ver(a, b) ((a) << 8 | (b))
#define dc8051_ver_maj(a) ((a & 0xff00) >> 8)
#define dc8051_ver_min(a) (a & 0x00ff)
/* f_put_tid types */
#define PT_EXPECTED 0
#define PT_EAGER 1
#define PT_INVALID 2
struct tid_rb_node;
struct mmu_rb_node;
struct mmu_rb_handler;
/* Private data for file operations */
struct hfi1_filedata {
struct hfi1_ctxtdata *uctxt;
unsigned subctxt;
struct hfi1_user_sdma_comp_q *cq;
struct hfi1_user_sdma_pkt_q *pq;
/* for cpu affinity; -1 if none */
int rec_cpu_num;
u32 tid_n_pinned;
struct mmu_rb_handler *handler;
struct tid_rb_node **entry_to_rb;
spinlock_t tid_lock; /* protect tid_[limit,used] counters */
u32 tid_limit;
u32 tid_used;
u32 *invalid_tids;
u32 invalid_tid_idx;
/* protect invalid_tids array and invalid_tid_idx */
spinlock_t invalid_lock;
struct mm_struct *mm;
};
extern struct list_head hfi1_dev_list;
extern spinlock_t hfi1_devs_lock;
struct hfi1_devdata *hfi1_lookup(int unit);
extern u32 hfi1_cpulist_count;
extern unsigned long *hfi1_cpulist;
extern unsigned int snoop_drop_send;
extern unsigned int snoop_force_capture;
int hfi1_init(struct hfi1_devdata *, int);
int hfi1_count_units(int *npresentp, int *nupp);
int hfi1_count_active_units(void);
int hfi1_diag_add(struct hfi1_devdata *);
void hfi1_diag_remove(struct hfi1_devdata *);
void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
int hfi1_create_rcvhdrq(struct hfi1_devdata *, struct hfi1_ctxtdata *);
int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *);
int hfi1_create_ctxts(struct hfi1_devdata *dd);
struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *, u32, int);
void hfi1_init_pportdata(struct pci_dev *, struct hfi1_pportdata *,
struct hfi1_devdata *, u8, u8);
void hfi1_free_ctxtdata(struct hfi1_devdata *, struct hfi1_ctxtdata *);
int handle_receive_interrupt(struct hfi1_ctxtdata *, int);
int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *, int);
int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *, int);
void set_all_slowpath(struct hfi1_devdata *dd);
extern const struct pci_device_id hfi1_pci_tbl[];
/* receive packet handler dispositions */
#define RCV_PKT_OK 0x0 /* keep going */
#define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
#define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
/* calculate the current RHF address */
static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
{
return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset;
}
int hfi1_reset_device(int);
/* return the driver's idea of the logical OPA port state */
static inline u32 driver_lstate(struct hfi1_pportdata *ppd)
{
return ppd->lstate; /* use the cached value */
}
void receive_interrupt_work(struct work_struct *work);
/* extract service channel from header and rhf */
static inline int hdr2sc(struct hfi1_message_header *hdr, u64 rhf)
{
return ((be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf) |
((!!(rhf_dc_info(rhf))) << 4);
}
static inline u16 generate_jkey(kuid_t uid)
{
return from_kuid(current_user_ns(), uid) & 0xffff;
}
/*
* active_egress_rate
*
* returns the active egress rate in units of [10^6 bits/sec]
*/
static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
{
u16 link_speed = ppd->link_speed_active;
u16 link_width = ppd->link_width_active;
u32 egress_rate;
if (link_speed == OPA_LINK_SPEED_25G)
egress_rate = 25000;
else /* assume OPA_LINK_SPEED_12_5G */
egress_rate = 12500;
switch (link_width) {
case OPA_LINK_WIDTH_4X:
egress_rate *= 4;
break;
case OPA_LINK_WIDTH_3X:
egress_rate *= 3;
break;
case OPA_LINK_WIDTH_2X:
egress_rate *= 2;
break;
default:
/* assume IB_WIDTH_1X */
break;
}
return egress_rate;
}
/*
* egress_cycles
*
* Returns the number of 'fabric clock cycles' to egress a packet
* of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
* rate is (approximately) 805 MHz, the units of the returned value
* are (1/805 MHz).
*/
static inline u32 egress_cycles(u32 len, u32 rate)
{
u32 cycles;
/*
* cycles is:
*
* (length) [bits] / (rate) [bits/sec]
* ---------------------------------------------------
* fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
*/
cycles = len * 8; /* bits */
cycles *= 805;
cycles /= rate;
return cycles;
}
void set_link_ipg(struct hfi1_pportdata *ppd);
void process_becn(struct hfi1_pportdata *ppd, u8 sl, u16 rlid, u32 lqpn,
u32 rqpn, u8 svc_type);
void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
u32 pkey, u32 slid, u32 dlid, u8 sc5,
const struct ib_grh *old_grh);
#define PKEY_CHECK_INVALID -1
int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
u8 sc5, int8_t s_pkey_index);
#define PACKET_EGRESS_TIMEOUT 350
static inline void pause_for_credit_return(struct hfi1_devdata *dd)
{
/* Pause at least 1us, to ensure chip returns all credits */
u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
udelay(usec ? usec : 1);
}
/**
* sc_to_vlt() reverse lookup sc to vl
* @dd - devdata
* @sc5 - 5 bit sc
*/
static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
{
unsigned seq;
u8 rval;
if (sc5 >= OPA_MAX_SCS)
return (u8)(0xff);
do {
seq = read_seqbegin(&dd->sc2vl_lock);
rval = *(((u8 *)dd->sc2vl) + sc5);
} while (read_seqretry(&dd->sc2vl_lock, seq));
return rval;
}
#define PKEY_MEMBER_MASK 0x8000
#define PKEY_LOW_15_MASK 0x7fff
/*
* ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
* being an entry from the ingress partition key table), return 0
* otherwise. Use the matching criteria for ingress partition keys
* specified in the OPAv1 spec., section 9.10.14.
*/
static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
{
u16 mkey = pkey & PKEY_LOW_15_MASK;
u16 ment = ent & PKEY_LOW_15_MASK;
if (mkey == ment) {
/*
* If pkey[15] is clear (limited partition member),
* is bit 15 in the corresponding table element
* clear (limited member)?
*/
if (!(pkey & PKEY_MEMBER_MASK))
return !!(ent & PKEY_MEMBER_MASK);
return 1;
}
return 0;
}
/*
* ingress_pkey_table_search - search the entire pkey table for
* an entry which matches 'pkey'. return 0 if a match is found,
* and 1 otherwise.
*/
static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
{
int i;
for (i = 0; i < MAX_PKEY_VALUES; i++) {
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
return 0;
}
return 1;
}
/*
* ingress_pkey_table_fail - record a failure of ingress pkey validation,
* i.e., increment port_rcv_constraint_errors for the port, and record
* the 'error info' for this failure.
*/
static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
u16 slid)
{
struct hfi1_devdata *dd = ppd->dd;
incr_cntr64(&ppd->port_rcv_constraint_errors);
if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
dd->err_info_rcv_constraint.slid = slid;
dd->err_info_rcv_constraint.pkey = pkey;
}
}
/*
* ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
* is a hint as to the best place in the partition key table to begin
* searching. This function should not be called on the data path because
* of performance reasons. On datapath pkey check is expected to be done
* by HW and rcv_pkey_check function should be called instead.
*/
static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u8 idx, u16 slid)
{
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
/* Is the pkey = 0x0, or 0x8000? */
if ((pkey & PKEY_LOW_15_MASK) == 0)
goto bad;
/* The most likely matching pkey has index 'idx' */
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
return 0;
/* no match - try the whole table */
if (!ingress_pkey_table_search(ppd, pkey))
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/*
* rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. It only ensures pkey is vlid for QP0. This function
* should be called on the data path instead of ingress_pkey_check
* as on data path, pkey check is done by HW (except for QP0).
*/
static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u16 slid)
{
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/* MTU handling */
/* MTU enumeration, 256-4k match IB */
#define OPA_MTU_0 0
#define OPA_MTU_256 1
#define OPA_MTU_512 2
#define OPA_MTU_1024 3
#define OPA_MTU_2048 4
#define OPA_MTU_4096 5
u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
int mtu_to_enum(u32 mtu, int default_if_bad);
u16 enum_to_mtu(int);
static inline int valid_ib_mtu(unsigned int mtu)
{
return mtu == 256 || mtu == 512 ||
mtu == 1024 || mtu == 2048 ||
mtu == 4096;
}
static inline int valid_opa_max_mtu(unsigned int mtu)
{
return mtu >= 2048 &&
(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
}
int set_mtu(struct hfi1_pportdata *);
int hfi1_set_lid(struct hfi1_pportdata *, u32, u8);
void hfi1_disable_after_error(struct hfi1_devdata *);
int hfi1_set_uevent_bits(struct hfi1_pportdata *, const int);
int hfi1_rcvbuf_validate(u32, u8, u16 *);
int fm_get_table(struct hfi1_pportdata *, int, void *);
int fm_set_table(struct hfi1_pportdata *, int, void *);
void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf);
void reset_link_credits(struct hfi1_devdata *dd);
void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
int snoop_recv_handler(struct hfi1_packet *packet);
int snoop_send_dma_handler(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc);
int snoop_send_pio_handler(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc);
void snoop_inline_pio_send(struct hfi1_devdata *dd, struct pio_buf *pbuf,
u64 pbc, const void *from, size_t count);
int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
{
return ppd->dd;
}
static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
{
return container_of(dev, struct hfi1_devdata, verbs_dev);
}
static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
{
return dd_from_dev(to_idev(ibdev));
}
static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
{
return container_of(ibp, struct hfi1_pportdata, ibport_data);
}
static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
{
return container_of(rdi, struct hfi1_ibdev, rdi);
}
static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
WARN_ON(pidx >= dd->num_pports);
return &dd->pport[pidx].ibport_data;
}
void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
bool do_cnp);
static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt,
bool do_cnp)
{
struct hfi1_other_headers *ohdr = pkt->ohdr;
u32 bth1;
bth1 = be32_to_cpu(ohdr->bth[1]);
if (unlikely(bth1 & (HFI1_BECN_SMASK | HFI1_FECN_SMASK))) {
hfi1_process_ecn_slowpath(qp, pkt, do_cnp);
return bth1 & HFI1_FECN_SMASK;
}
return false;
}
/*
* Return the indexed PKEY from the port PKEY table.
*/
static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 ret;
if (index >= ARRAY_SIZE(ppd->pkeys))
ret = 0;
else
ret = ppd->pkeys[index];
return ret;
}
/*
* Called by readers of cc_state only, must call under rcu_read_lock().
*/
static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
{
return rcu_dereference(ppd->cc_state);
}
/*
* Called by writers of cc_state only, must call under cc_state_lock.
*/
static inline
struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
{
return rcu_dereference_protected(ppd->cc_state,
lockdep_is_held(&ppd->cc_state_lock));
}
/*
* values for dd->flags (_device_ related flags)
*/
#define HFI1_INITTED 0x1 /* chip and driver up and initted */
#define HFI1_PRESENT 0x2 /* chip accesses can be done */
#define HFI1_FROZEN 0x4 /* chip in SPC freeze */
#define HFI1_HAS_SDMA_TIMEOUT 0x8
#define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
#define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
/* IB dword length mask in PBC (lower 11 bits); same for all chips */
#define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
/* ctxt_flag bit offsets */
/* context has been setup */
#define HFI1_CTXT_SETUP_DONE 1
/* waiting for a packet to arrive */
#define HFI1_CTXT_WAITING_RCV 2
/* master has not finished initializing */
#define HFI1_CTXT_MASTER_UNINIT 4
/* waiting for an urgent packet to arrive */
#define HFI1_CTXT_WAITING_URG 5
/* free up any allocated data at closes */
struct hfi1_devdata *hfi1_init_dd(struct pci_dev *,
const struct pci_device_id *);
void hfi1_free_devdata(struct hfi1_devdata *);
void cc_state_reclaim(struct rcu_head *rcu);
struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
/* LED beaconing functions */
void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
unsigned int timeoff);
void shutdown_led_override(struct hfi1_pportdata *ppd);
#define HFI1_CREDIT_RETURN_RATE (100)
/*
* The number of words for the KDETH protocol field. If this is
* larger then the actual field used, then part of the payload
* will be in the header.
*
* Optimally, we want this sized so that a typical case will
* use full cache lines. The typical local KDETH header would
* be:
*
* Bytes Field
* 8 LRH
* 12 BHT
* ?? KDETH
* 8 RHF
* ---
* 28 + KDETH
*
* For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
*/
#define DEFAULT_RCVHDRSIZE 9
/*
* Maximal header byte count:
*
* Bytes Field
* 8 LRH
* 40 GRH (optional)
* 12 BTH
* ?? KDETH
* 8 RHF
* ---
* 68 + KDETH
*
* We also want to maintain a cache line alignment to assist DMA'ing
* of the header bytes. Round up to a good size.
*/
#define DEFAULT_RCVHDR_ENTSIZE 32
bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
u32 nlocked, u32 npages);
int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
size_t npages, bool writable, struct page **pages);
void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
size_t npages, bool dirty);
static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
*((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
}
static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
/*
* volatile because it's a DMA target from the chip, routine is
* inlined, and don't want register caching or reordering.
*/
return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
}
/*
* sysfs interface.
*/
extern const char ib_hfi1_version[];
int hfi1_device_create(struct hfi1_devdata *);
void hfi1_device_remove(struct hfi1_devdata *);
int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
struct kobject *kobj);
int hfi1_verbs_register_sysfs(struct hfi1_devdata *);
void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *);
/* Hook for sysfs read of QSFP */
int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
int hfi1_pcie_init(struct pci_dev *, const struct pci_device_id *);
void hfi1_pcie_cleanup(struct pci_dev *);
int hfi1_pcie_ddinit(struct hfi1_devdata *, struct pci_dev *,
const struct pci_device_id *);
void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
void hfi1_pcie_flr(struct hfi1_devdata *);
int pcie_speeds(struct hfi1_devdata *);
void request_msix(struct hfi1_devdata *, u32 *, struct hfi1_msix_entry *);
void hfi1_enable_intx(struct pci_dev *);
void restore_pci_variables(struct hfi1_devdata *dd);
int do_pcie_gen3_transition(struct hfi1_devdata *dd);
int parse_platform_config(struct hfi1_devdata *dd);
int get_platform_config_field(struct hfi1_devdata *dd,
enum platform_config_table_type_encoding
table_type, int table_index, int field_index,
u32 *data, u32 len);
const char *get_unit_name(int unit);
const char *get_card_name(struct rvt_dev_info *rdi);
struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
/*
* Flush write combining store buffers (if present) and perform a write
* barrier.
*/
static inline void flush_wc(void)
{
asm volatile("sfence" : : : "memory");
}
void handle_eflags(struct hfi1_packet *packet);
int process_receive_ib(struct hfi1_packet *packet);
int process_receive_bypass(struct hfi1_packet *packet);
int process_receive_error(struct hfi1_packet *packet);
int kdeth_process_expected(struct hfi1_packet *packet);
int kdeth_process_eager(struct hfi1_packet *packet);
int process_receive_invalid(struct hfi1_packet *packet);
extern rhf_rcv_function_ptr snoop_rhf_rcv_functions[8];
void update_sge(struct rvt_sge_state *ss, u32 length);
/* global module parameter variables */
extern unsigned int hfi1_max_mtu;
extern unsigned int hfi1_cu;
extern unsigned int user_credit_return_threshold;
extern int num_user_contexts;
extern unsigned n_krcvqs;
extern uint krcvqs[];
extern int krcvqsset;
extern uint kdeth_qp;
extern uint loopback;
extern uint quick_linkup;
extern uint rcv_intr_timeout;
extern uint rcv_intr_count;
extern uint rcv_intr_dynamic;
extern ushort link_crc_mask;
extern struct mutex hfi1_mutex;
/* Number of seconds before our card status check... */
#define STATUS_TIMEOUT 60
#define DRIVER_NAME "hfi1"
#define HFI1_USER_MINOR_BASE 0
#define HFI1_TRACE_MINOR 127
#define HFI1_DIAGPKT_MINOR 128
#define HFI1_DIAG_MINOR_BASE 129
#define HFI1_SNOOP_CAPTURE_BASE 200
#define HFI1_NMINORS 255
#define PCI_VENDOR_ID_INTEL 0x8086
#define PCI_DEVICE_ID_INTEL0 0x24f0
#define PCI_DEVICE_ID_INTEL1 0x24f1
#define HFI1_PKT_USER_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
#define HFI1_PKT_KERNEL_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
u16 ctxt_type)
{
u64 base_sc_integrity =
SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (ctxt_type == SC_USER)
base_sc_integrity |= HFI1_PKT_USER_SC_INTEGRITY;
else
base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
if (is_ax(dd))
/* turn off send-side job key checks - A0 */
return base_sc_integrity &
~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sc_integrity;
}
static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
{
u64 base_sdma_integrity =
SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (is_ax(dd))
/* turn off send-side job key checks - A0 */
return base_sdma_integrity &
~SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sdma_integrity;
}
/*
* hfi1_early_err is used (only!) to print early errors before devdata is
* allocated, or when dd->pcidev may not be valid, and at the tail end of
* cleanup when devdata may have been freed, etc. hfi1_dev_porterr is
* the same as dd_dev_err, but is used when the message really needs
* the IB port# to be definitive as to what's happening..
*/
#define hfi1_early_err(dev, fmt, ...) \
dev_err(dev, fmt, ##__VA_ARGS__)
#define hfi1_early_info(dev, fmt, ...) \
dev_info(dev, fmt, ##__VA_ARGS__)
#define dd_dev_emerg(dd, fmt, ...) \
dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_err(dd, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_warn(dd, fmt, ...) \
dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_warn_ratelimited(dd, fmt, ...) \
dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_info(dd, fmt, ...) \
dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define dd_dev_dbg(dd, fmt, ...) \
dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
get_unit_name((dd)->unit), ##__VA_ARGS__)
#define hfi1_dev_porterr(dd, port, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
get_unit_name((dd)->unit), (port), ##__VA_ARGS__)
/*
* this is used for formatting hw error messages...
*/
struct hfi1_hwerror_msgs {
u64 mask;
const char *msg;
size_t sz;
};
/* in intr.c... */
void hfi1_format_hwerrors(u64 hwerrs,
const struct hfi1_hwerror_msgs *hwerrmsgs,
size_t nhwerrmsgs, char *msg, size_t lmsg);
#define USER_OPCODE_CHECK_VAL 0xC0
#define USER_OPCODE_CHECK_MASK 0xC0
#define OPCODE_CHECK_VAL_DISABLED 0x0
#define OPCODE_CHECK_MASK_DISABLED 0x0
static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int i;
dd->z_int_counter = get_all_cpu_total(dd->int_counter);
dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
ppd->ibport_data.rvp.z_rc_acks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
ppd->ibport_data.rvp.z_rc_qacks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
}
}
/* Control LED state */
static inline void setextled(struct hfi1_devdata *dd, u32 on)
{
if (on)
write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
else
write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
}
/* return the i2c resource given the target */
static inline u32 i2c_target(u32 target)
{
return target ? CR_I2C2 : CR_I2C1;
}
/* return the i2c chain chip resource that this HFI uses for QSFP */
static inline u32 qsfp_resource(struct hfi1_devdata *dd)
{
return i2c_target(dd->hfi1_id);
}
int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
#define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
#define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
#define packettype_name(etype) { RHF_RCV_TYPE_##etype, #etype }
#define show_packettype(etype) \
__print_symbolic(etype, \
packettype_name(EXPECTED), \
packettype_name(EAGER), \
packettype_name(IB), \
packettype_name(ERROR), \
packettype_name(BYPASS))
#define ib_opcode_name(opcode) { IB_OPCODE_##opcode, #opcode }
#define show_ib_opcode(opcode) \
__print_symbolic(opcode, \
ib_opcode_name(RC_SEND_FIRST), \
ib_opcode_name(RC_SEND_MIDDLE), \
ib_opcode_name(RC_SEND_LAST), \
ib_opcode_name(RC_SEND_LAST_WITH_IMMEDIATE), \
ib_opcode_name(RC_SEND_ONLY), \
ib_opcode_name(RC_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_WRITE_FIRST), \
ib_opcode_name(RC_RDMA_WRITE_MIDDLE), \
ib_opcode_name(RC_RDMA_WRITE_LAST), \
ib_opcode_name(RC_RDMA_WRITE_LAST_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_WRITE_ONLY), \
ib_opcode_name(RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(RC_RDMA_READ_REQUEST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_FIRST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_MIDDLE), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_LAST), \
ib_opcode_name(RC_RDMA_READ_RESPONSE_ONLY), \
ib_opcode_name(RC_ACKNOWLEDGE), \
ib_opcode_name(RC_ATOMIC_ACKNOWLEDGE), \
ib_opcode_name(RC_COMPARE_SWAP), \
ib_opcode_name(RC_FETCH_ADD), \
ib_opcode_name(UC_SEND_FIRST), \
ib_opcode_name(UC_SEND_MIDDLE), \
ib_opcode_name(UC_SEND_LAST), \
ib_opcode_name(UC_SEND_LAST_WITH_IMMEDIATE), \
ib_opcode_name(UC_SEND_ONLY), \
ib_opcode_name(UC_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(UC_RDMA_WRITE_FIRST), \
ib_opcode_name(UC_RDMA_WRITE_MIDDLE), \
ib_opcode_name(UC_RDMA_WRITE_LAST), \
ib_opcode_name(UC_RDMA_WRITE_LAST_WITH_IMMEDIATE), \
ib_opcode_name(UC_RDMA_WRITE_ONLY), \
ib_opcode_name(UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(UD_SEND_ONLY), \
ib_opcode_name(UD_SEND_ONLY_WITH_IMMEDIATE), \
ib_opcode_name(CNP))
#endif /* _HFI1_KERNEL_H */