| /* calibrate.c: default delay calibration |
| * |
| * Excised from init/main.c |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| */ |
| |
| #include <linux/jiffies.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/timex.h> |
| #include <linux/smp.h> |
| #include <linux/percpu.h> |
| |
| unsigned long lpj_fine; |
| unsigned long preset_lpj; |
| static int __init lpj_setup(char *str) |
| { |
| preset_lpj = simple_strtoul(str,NULL,0); |
| return 1; |
| } |
| |
| __setup("lpj=", lpj_setup); |
| |
| #ifdef ARCH_HAS_READ_CURRENT_TIMER |
| |
| /* This routine uses the read_current_timer() routine and gets the |
| * loops per jiffy directly, instead of guessing it using delay(). |
| * Also, this code tries to handle non-maskable asynchronous events |
| * (like SMIs) |
| */ |
| #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100)) |
| #define MAX_DIRECT_CALIBRATION_RETRIES 5 |
| |
| static unsigned long calibrate_delay_direct(void) |
| { |
| unsigned long pre_start, start, post_start; |
| unsigned long pre_end, end, post_end; |
| unsigned long start_jiffies; |
| unsigned long timer_rate_min, timer_rate_max; |
| unsigned long good_timer_sum = 0; |
| unsigned long good_timer_count = 0; |
| unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES]; |
| int max = -1; /* index of measured_times with max/min values or not set */ |
| int min = -1; |
| int i; |
| |
| if (read_current_timer(&pre_start) < 0 ) |
| return 0; |
| |
| /* |
| * A simple loop like |
| * while ( jiffies < start_jiffies+1) |
| * start = read_current_timer(); |
| * will not do. As we don't really know whether jiffy switch |
| * happened first or timer_value was read first. And some asynchronous |
| * event can happen between these two events introducing errors in lpj. |
| * |
| * So, we do |
| * 1. pre_start <- When we are sure that jiffy switch hasn't happened |
| * 2. check jiffy switch |
| * 3. start <- timer value before or after jiffy switch |
| * 4. post_start <- When we are sure that jiffy switch has happened |
| * |
| * Note, we don't know anything about order of 2 and 3. |
| * Now, by looking at post_start and pre_start difference, we can |
| * check whether any asynchronous event happened or not |
| */ |
| |
| for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { |
| pre_start = 0; |
| read_current_timer(&start); |
| start_jiffies = jiffies; |
| while (time_before_eq(jiffies, start_jiffies + 1)) { |
| pre_start = start; |
| read_current_timer(&start); |
| } |
| read_current_timer(&post_start); |
| |
| pre_end = 0; |
| end = post_start; |
| while (time_before_eq(jiffies, start_jiffies + 1 + |
| DELAY_CALIBRATION_TICKS)) { |
| pre_end = end; |
| read_current_timer(&end); |
| } |
| read_current_timer(&post_end); |
| |
| timer_rate_max = (post_end - pre_start) / |
| DELAY_CALIBRATION_TICKS; |
| timer_rate_min = (pre_end - post_start) / |
| DELAY_CALIBRATION_TICKS; |
| |
| /* |
| * If the upper limit and lower limit of the timer_rate is |
| * >= 12.5% apart, redo calibration. |
| */ |
| if (start >= post_end) |
| printk(KERN_NOTICE "calibrate_delay_direct() ignoring " |
| "timer_rate as we had a TSC wrap around" |
| " start=%lu >=post_end=%lu\n", |
| start, post_end); |
| if (start < post_end && pre_start != 0 && pre_end != 0 && |
| (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) { |
| good_timer_count++; |
| good_timer_sum += timer_rate_max; |
| measured_times[i] = timer_rate_max; |
| if (max < 0 || timer_rate_max > measured_times[max]) |
| max = i; |
| if (min < 0 || timer_rate_max < measured_times[min]) |
| min = i; |
| } else |
| measured_times[i] = 0; |
| |
| } |
| |
| /* |
| * Find the maximum & minimum - if they differ too much throw out the |
| * one with the largest difference from the mean and try again... |
| */ |
| while (good_timer_count > 1) { |
| unsigned long estimate; |
| unsigned long maxdiff; |
| |
| /* compute the estimate */ |
| estimate = (good_timer_sum/good_timer_count); |
| maxdiff = estimate >> 3; |
| |
| /* if range is within 12% let's take it */ |
| if ((measured_times[max] - measured_times[min]) < maxdiff) |
| return estimate; |
| |
| /* ok - drop the worse value and try again... */ |
| good_timer_sum = 0; |
| good_timer_count = 0; |
| if ((measured_times[max] - estimate) < |
| (estimate - measured_times[min])) { |
| printk(KERN_NOTICE "calibrate_delay_direct() dropping " |
| "min bogoMips estimate %d = %lu\n", |
| min, measured_times[min]); |
| measured_times[min] = 0; |
| min = max; |
| } else { |
| printk(KERN_NOTICE "calibrate_delay_direct() dropping " |
| "max bogoMips estimate %d = %lu\n", |
| max, measured_times[max]); |
| measured_times[max] = 0; |
| max = min; |
| } |
| |
| for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { |
| if (measured_times[i] == 0) |
| continue; |
| good_timer_count++; |
| good_timer_sum += measured_times[i]; |
| if (measured_times[i] < measured_times[min]) |
| min = i; |
| if (measured_times[i] > measured_times[max]) |
| max = i; |
| } |
| |
| } |
| |
| printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good " |
| "estimate for loops_per_jiffy.\nProbably due to long platform " |
| "interrupts. Consider using \"lpj=\" boot option.\n"); |
| return 0; |
| } |
| #else |
| static unsigned long calibrate_delay_direct(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This is the number of bits of precision for the loops_per_jiffy. Each |
| * time we refine our estimate after the first takes 1.5/HZ seconds, so try |
| * to start with a good estimate. |
| * For the boot cpu we can skip the delay calibration and assign it a value |
| * calculated based on the timer frequency. |
| * For the rest of the CPUs we cannot assume that the timer frequency is same as |
| * the cpu frequency, hence do the calibration for those. |
| */ |
| #define LPS_PREC 8 |
| |
| static unsigned long calibrate_delay_converge(void) |
| { |
| /* First stage - slowly accelerate to find initial bounds */ |
| unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit; |
| int trials = 0, band = 0, trial_in_band = 0; |
| |
| lpj = (1<<12); |
| |
| /* wait for "start of" clock tick */ |
| ticks = jiffies; |
| while (ticks == jiffies) |
| ; /* nothing */ |
| /* Go .. */ |
| ticks = jiffies; |
| do { |
| if (++trial_in_band == (1<<band)) { |
| ++band; |
| trial_in_band = 0; |
| } |
| __delay(lpj * band); |
| trials += band; |
| } while (ticks == jiffies); |
| /* |
| * We overshot, so retreat to a clear underestimate. Then estimate |
| * the largest likely undershoot. This defines our chop bounds. |
| */ |
| trials -= band; |
| loopadd_base = lpj * band; |
| lpj_base = lpj * trials; |
| |
| recalibrate: |
| lpj = lpj_base; |
| loopadd = loopadd_base; |
| |
| /* |
| * Do a binary approximation to get lpj set to |
| * equal one clock (up to LPS_PREC bits) |
| */ |
| chop_limit = lpj >> LPS_PREC; |
| while (loopadd > chop_limit) { |
| lpj += loopadd; |
| ticks = jiffies; |
| while (ticks == jiffies) |
| ; /* nothing */ |
| ticks = jiffies; |
| __delay(lpj); |
| if (jiffies != ticks) /* longer than 1 tick */ |
| lpj -= loopadd; |
| loopadd >>= 1; |
| } |
| /* |
| * If we incremented every single time possible, presume we've |
| * massively underestimated initially, and retry with a higher |
| * start, and larger range. (Only seen on x86_64, due to SMIs) |
| */ |
| if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) { |
| lpj_base = lpj; |
| loopadd_base <<= 2; |
| goto recalibrate; |
| } |
| |
| return lpj; |
| } |
| |
| static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 }; |
| |
| /* |
| * Check if cpu calibration delay is already known. For example, |
| * some processors with multi-core sockets may have all cores |
| * with the same calibration delay. |
| * |
| * Architectures should override this function if a faster calibration |
| * method is available. |
| */ |
| unsigned long __attribute__((weak)) calibrate_delay_is_known(void) |
| { |
| return 0; |
| } |
| |
| void calibrate_delay(void) |
| { |
| unsigned long lpj; |
| static bool printed; |
| int this_cpu = smp_processor_id(); |
| |
| if (per_cpu(cpu_loops_per_jiffy, this_cpu)) { |
| lpj = per_cpu(cpu_loops_per_jiffy, this_cpu); |
| if (!printed) |
| pr_info("Calibrating delay loop (skipped) " |
| "already calibrated this CPU"); |
| } else if (preset_lpj) { |
| lpj = preset_lpj; |
| if (!printed) |
| pr_info("Calibrating delay loop (skipped) " |
| "preset value.. "); |
| } else if ((!printed) && lpj_fine) { |
| lpj = lpj_fine; |
| pr_info("Calibrating delay loop (skipped), " |
| "value calculated using timer frequency.. "); |
| } else if ((lpj = calibrate_delay_is_known())) { |
| ; |
| } else if ((lpj = calibrate_delay_direct()) != 0) { |
| if (!printed) |
| pr_info("Calibrating delay using timer " |
| "specific routine.. "); |
| } else { |
| if (!printed) |
| pr_info("Calibrating delay loop... "); |
| lpj = calibrate_delay_converge(); |
| } |
| per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj; |
| if (!printed) |
| pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n", |
| lpj/(500000/HZ), |
| (lpj/(5000/HZ)) % 100, lpj); |
| |
| loops_per_jiffy = lpj; |
| printed = true; |
| } |