| #ifndef _ASM_IA64_SN_SN_SAL_H |
| #define _ASM_IA64_SN_SN_SAL_H |
| |
| /* |
| * System Abstraction Layer definitions for IA64 |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved. |
| */ |
| |
| |
| #include <linux/config.h> |
| #include <asm/sal.h> |
| #include <asm/sn/sn_cpuid.h> |
| #include <asm/sn/arch.h> |
| #include <asm/sn/geo.h> |
| #include <asm/sn/nodepda.h> |
| #include <asm/sn/shub_mmr.h> |
| |
| // SGI Specific Calls |
| #define SN_SAL_POD_MODE 0x02000001 |
| #define SN_SAL_SYSTEM_RESET 0x02000002 |
| #define SN_SAL_PROBE 0x02000003 |
| #define SN_SAL_GET_MASTER_NASID 0x02000004 |
| #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005 |
| #define SN_SAL_LOG_CE 0x02000006 |
| #define SN_SAL_REGISTER_CE 0x02000007 |
| #define SN_SAL_GET_PARTITION_ADDR 0x02000009 |
| #define SN_SAL_XP_ADDR_REGION 0x0200000f |
| #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010 |
| #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011 |
| #define SN_SAL_PRINT_ERROR 0x02000012 |
| #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant |
| #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant |
| #define SN_SAL_GET_SAPIC_INFO 0x0200001d |
| #define SN_SAL_GET_SN_INFO 0x0200001e |
| #define SN_SAL_CONSOLE_PUTC 0x02000021 |
| #define SN_SAL_CONSOLE_GETC 0x02000022 |
| #define SN_SAL_CONSOLE_PUTS 0x02000023 |
| #define SN_SAL_CONSOLE_GETS 0x02000024 |
| #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025 |
| #define SN_SAL_CONSOLE_POLL 0x02000026 |
| #define SN_SAL_CONSOLE_INTR 0x02000027 |
| #define SN_SAL_CONSOLE_PUTB 0x02000028 |
| #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a |
| #define SN_SAL_CONSOLE_READC 0x0200002b |
| #define SN_SAL_SYSCTL_MODID_GET 0x02000031 |
| #define SN_SAL_SYSCTL_GET 0x02000032 |
| #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033 |
| #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035 |
| #define SN_SAL_SYSCTL_SLAB_GET 0x02000036 |
| #define SN_SAL_BUS_CONFIG 0x02000037 |
| #define SN_SAL_SYS_SERIAL_GET 0x02000038 |
| #define SN_SAL_PARTITION_SERIAL_GET 0x02000039 |
| #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b |
| #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c |
| #define SN_SAL_COHERENCE 0x0200003d |
| #define SN_SAL_MEMPROTECT 0x0200003e |
| #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f |
| |
| #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant |
| #define SN_SAL_IROUTER_OP 0x02000043 |
| #define SN_SAL_SYSCTL_EVENT 0x02000044 |
| #define SN_SAL_IOIF_INTERRUPT 0x0200004a |
| #define SN_SAL_HWPERF_OP 0x02000050 // lock |
| #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051 |
| |
| #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053 |
| #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054 |
| #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055 |
| #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056 |
| #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057 |
| #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 |
| |
| #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060 |
| #define SN_SAL_BTE_RECOVER 0x02000061 |
| #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062 |
| #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064 |
| |
| #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065 |
| #define SN_SAL_SET_OS_FEATURE_SET 0x02000066 |
| |
| /* |
| * Service-specific constants |
| */ |
| |
| /* Console interrupt manipulation */ |
| /* action codes */ |
| #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */ |
| #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */ |
| #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */ |
| /* interrupt specification & status return codes */ |
| #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */ |
| #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */ |
| |
| /* interrupt handling */ |
| #define SAL_INTR_ALLOC 1 |
| #define SAL_INTR_FREE 2 |
| |
| /* |
| * IRouter (i.e. generalized system controller) operations |
| */ |
| #define SAL_IROUTER_OPEN 0 /* open a subchannel */ |
| #define SAL_IROUTER_CLOSE 1 /* close a subchannel */ |
| #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */ |
| #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */ |
| #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for |
| * an open subchannel |
| */ |
| #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */ |
| #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */ |
| #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */ |
| |
| /* IRouter interrupt mask bits */ |
| #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT |
| #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV |
| |
| /* |
| * Error Handling Features |
| */ |
| #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete |
| #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete |
| #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4 |
| #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000 |
| |
| /* |
| * SAL Error Codes |
| */ |
| #define SALRET_MORE_PASSES 1 |
| #define SALRET_OK 0 |
| #define SALRET_NOT_IMPLEMENTED (-1) |
| #define SALRET_INVALID_ARG (-2) |
| #define SALRET_ERROR (-3) |
| |
| #define SN_SAL_FAKE_PROM 0x02009999 |
| |
| /** |
| * sn_sal_revision - get the SGI SAL revision number |
| * |
| * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor). |
| * This routine simply extracts the major and minor values and |
| * presents them in a u32 format. |
| * |
| * For example, version 4.05 would be represented at 0x0405. |
| */ |
| static inline u32 |
| sn_sal_rev(void) |
| { |
| struct ia64_sal_systab *systab = efi.sal_systab; |
| |
| return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor); |
| } |
| |
| /* |
| * Returns the master console nasid, if the call fails, return an illegal |
| * value. |
| */ |
| static inline u64 |
| ia64_sn_get_console_nasid(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0); |
| |
| if (ret_stuff.status < 0) |
| return ret_stuff.status; |
| |
| /* Master console nasid is in 'v0' */ |
| return ret_stuff.v0; |
| } |
| |
| /* |
| * Returns the master baseio nasid, if the call fails, return an illegal |
| * value. |
| */ |
| static inline u64 |
| ia64_sn_get_master_baseio_nasid(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0); |
| |
| if (ret_stuff.status < 0) |
| return ret_stuff.status; |
| |
| /* Master baseio nasid is in 'v0' */ |
| return ret_stuff.v0; |
| } |
| |
| static inline char * |
| ia64_sn_get_klconfig_addr(nasid_t nasid) |
| { |
| struct ia64_sal_retval ret_stuff; |
| int cnodeid; |
| |
| cnodeid = nasid_to_cnodeid(nasid); |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0); |
| |
| /* |
| * We should panic if a valid cnode nasid does not produce |
| * a klconfig address. |
| */ |
| if (ret_stuff.status != 0) { |
| panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status); |
| } |
| return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL; |
| } |
| |
| /* |
| * Returns the next console character. |
| */ |
| static inline u64 |
| ia64_sn_console_getc(int *ch) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0); |
| |
| /* character is in 'v0' */ |
| *ch = (int)ret_stuff.v0; |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Read a character from the SAL console device, after a previous interrupt |
| * or poll operation has given us to know that a character is available |
| * to be read. |
| */ |
| static inline u64 |
| ia64_sn_console_readc(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0); |
| |
| /* character is in 'v0' */ |
| return ret_stuff.v0; |
| } |
| |
| /* |
| * Sends the given character to the console. |
| */ |
| static inline u64 |
| ia64_sn_console_putc(char ch) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0); |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Sends the given buffer to the console. |
| */ |
| static inline u64 |
| ia64_sn_console_putb(const char *buf, int len) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0); |
| |
| if ( ret_stuff.status == 0 ) { |
| return ret_stuff.v0; |
| } |
| return (u64)0; |
| } |
| |
| /* |
| * Print a platform error record |
| */ |
| static inline u64 |
| ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0); |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Check for Platform errors |
| */ |
| static inline u64 |
| ia64_sn_plat_cpei_handler(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0); |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Set Error Handling Features (Obsolete) |
| */ |
| static inline u64 |
| ia64_sn_plat_set_error_handling_features(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES, |
| (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES), |
| 0, 0, 0, 0, 0, 0); |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Checks for console input. |
| */ |
| static inline u64 |
| ia64_sn_console_check(int *result) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0); |
| |
| /* result is in 'v0' */ |
| *result = (int)ret_stuff.v0; |
| |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Checks console interrupt status |
| */ |
| static inline u64 |
| ia64_sn_console_intr_status(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, |
| 0, SAL_CONSOLE_INTR_STATUS, |
| 0, 0, 0, 0, 0); |
| |
| if (ret_stuff.status == 0) { |
| return ret_stuff.v0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Enable an interrupt on the SAL console device. |
| */ |
| static inline void |
| ia64_sn_console_intr_enable(uint64_t intr) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, |
| intr, SAL_CONSOLE_INTR_ON, |
| 0, 0, 0, 0, 0); |
| } |
| |
| /* |
| * Disable an interrupt on the SAL console device. |
| */ |
| static inline void |
| ia64_sn_console_intr_disable(uint64_t intr) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, |
| intr, SAL_CONSOLE_INTR_OFF, |
| 0, 0, 0, 0, 0); |
| } |
| |
| /* |
| * Sends a character buffer to the console asynchronously. |
| */ |
| static inline u64 |
| ia64_sn_console_xmit_chars(char *buf, int len) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS, |
| (uint64_t)buf, (uint64_t)len, |
| 0, 0, 0, 0, 0); |
| |
| if (ret_stuff.status == 0) { |
| return ret_stuff.v0; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns the iobrick module Id |
| */ |
| static inline u64 |
| ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0); |
| |
| /* result is in 'v0' */ |
| *result = (int)ret_stuff.v0; |
| |
| return ret_stuff.status; |
| } |
| |
| /** |
| * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function |
| * |
| * SN_SAL_POD_MODE actually takes an argument, but it's always |
| * 0 when we call it from the kernel, so we don't have to expose |
| * it to the caller. |
| */ |
| static inline u64 |
| ia64_sn_pod_mode(void) |
| { |
| struct ia64_sal_retval isrv; |
| SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0); |
| if (isrv.status) |
| return 0; |
| return isrv.v0; |
| } |
| |
| /** |
| * ia64_sn_probe_mem - read from memory safely |
| * @addr: address to probe |
| * @size: number bytes to read (1,2,4,8) |
| * @data_ptr: address to store value read by probe (-1 returned if probe fails) |
| * |
| * Call into the SAL to do a memory read. If the read generates a machine |
| * check, this routine will recover gracefully and return -1 to the caller. |
| * @addr is usually a kernel virtual address in uncached space (i.e. the |
| * address starts with 0xc), but if called in physical mode, @addr should |
| * be a physical address. |
| * |
| * Return values: |
| * 0 - probe successful |
| * 1 - probe failed (generated MCA) |
| * 2 - Bad arg |
| * <0 - PAL error |
| */ |
| static inline u64 |
| ia64_sn_probe_mem(long addr, long size, void *data_ptr) |
| { |
| struct ia64_sal_retval isrv; |
| |
| SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0); |
| |
| if (data_ptr) { |
| switch (size) { |
| case 1: |
| *((u8*)data_ptr) = (u8)isrv.v0; |
| break; |
| case 2: |
| *((u16*)data_ptr) = (u16)isrv.v0; |
| break; |
| case 4: |
| *((u32*)data_ptr) = (u32)isrv.v0; |
| break; |
| case 8: |
| *((u64*)data_ptr) = (u64)isrv.v0; |
| break; |
| default: |
| isrv.status = 2; |
| } |
| } |
| return isrv.status; |
| } |
| |
| /* |
| * Retrieve the system serial number as an ASCII string. |
| */ |
| static inline u64 |
| ia64_sn_sys_serial_get(char *buf) |
| { |
| struct ia64_sal_retval ret_stuff; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0); |
| return ret_stuff.status; |
| } |
| |
| extern char sn_system_serial_number_string[]; |
| extern u64 sn_partition_serial_number; |
| |
| static inline char * |
| sn_system_serial_number(void) { |
| if (sn_system_serial_number_string[0]) { |
| return(sn_system_serial_number_string); |
| } else { |
| ia64_sn_sys_serial_get(sn_system_serial_number_string); |
| return(sn_system_serial_number_string); |
| } |
| } |
| |
| |
| /* |
| * Returns a unique id number for this system and partition (suitable for |
| * use with license managers), based in part on the system serial number. |
| */ |
| static inline u64 |
| ia64_sn_partition_serial_get(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, |
| 0, 0, 0, 0, 0, 0); |
| if (ret_stuff.status != 0) |
| return 0; |
| return ret_stuff.v0; |
| } |
| |
| static inline u64 |
| sn_partition_serial_number_val(void) { |
| if (unlikely(sn_partition_serial_number == 0)) { |
| sn_partition_serial_number = ia64_sn_partition_serial_get(); |
| } |
| return sn_partition_serial_number; |
| } |
| |
| /* |
| * Returns the physical address of the partition's reserved page through |
| * an iterative number of calls. |
| * |
| * On first call, 'cookie' and 'len' should be set to 0, and 'addr' |
| * set to the nasid of the partition whose reserved page's address is |
| * being sought. |
| * On subsequent calls, pass the values, that were passed back on the |
| * previous call. |
| * |
| * While the return status equals SALRET_MORE_PASSES, keep calling |
| * this function after first copying 'len' bytes starting at 'addr' |
| * into 'buf'. Once the return status equals SALRET_OK, 'addr' will |
| * be the physical address of the partition's reserved page. If the |
| * return status equals neither of these, an error as occurred. |
| */ |
| static inline s64 |
| sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len) |
| { |
| struct ia64_sal_retval rv; |
| ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie, |
| *addr, buf, *len, 0, 0, 0); |
| *cookie = rv.v0; |
| *addr = rv.v1; |
| *len = rv.v2; |
| return rv.status; |
| } |
| |
| /* |
| * Register or unregister a physical address range being referenced across |
| * a partition boundary for which certain SAL errors should be scanned for, |
| * cleaned up and ignored. This is of value for kernel partitioning code only. |
| * Values for the operation argument: |
| * 1 = register this address range with SAL |
| * 0 = unregister this address range with SAL |
| * |
| * SAL maintains a reference count on an address range in case it is registered |
| * multiple times. |
| * |
| * On success, returns the reference count of the address range after the SAL |
| * call has performed the current registration/unregistration. Returns a |
| * negative value if an error occurred. |
| */ |
| static inline int |
| sn_register_xp_addr_region(u64 paddr, u64 len, int operation) |
| { |
| struct ia64_sal_retval ret_stuff; |
| ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, |
| (u64)operation, 0, 0, 0, 0); |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Register or unregister an instruction range for which SAL errors should |
| * be ignored. If an error occurs while in the registered range, SAL jumps |
| * to return_addr after ignoring the error. Values for the operation argument: |
| * 1 = register this instruction range with SAL |
| * 0 = unregister this instruction range with SAL |
| * |
| * Returns 0 on success, or a negative value if an error occurred. |
| */ |
| static inline int |
| sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, |
| int virtual, int operation) |
| { |
| struct ia64_sal_retval ret_stuff; |
| u64 call; |
| if (virtual) { |
| call = SN_SAL_NO_FAULT_ZONE_VIRTUAL; |
| } else { |
| call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; |
| } |
| ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr, |
| (u64)1, 0, 0, 0); |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Change or query the coherence domain for this partition. Each cpu-based |
| * nasid is represented by a bit in an array of 64-bit words: |
| * 0 = not in this partition's coherency domain |
| * 1 = in this partition's coherency domain |
| * |
| * It is not possible for the local system's nasids to be removed from |
| * the coherency domain. Purpose of the domain arguments: |
| * new_domain = set the coherence domain to the given nasids |
| * old_domain = return the current coherence domain |
| * |
| * Returns 0 on success, or a negative value if an error occurred. |
| */ |
| static inline int |
| sn_change_coherence(u64 *new_domain, u64 *old_domain) |
| { |
| struct ia64_sal_retval ret_stuff; |
| ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain, |
| (u64)old_domain, 0, 0, 0, 0, 0); |
| return ret_stuff.status; |
| } |
| |
| /* |
| * Change memory access protections for a physical address range. |
| * nasid_array is not used on Altix, but may be in future architectures. |
| * Available memory protection access classes are defined after the function. |
| */ |
| static inline int |
| sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) |
| { |
| struct ia64_sal_retval ret_stuff; |
| int cnodeid; |
| unsigned long irq_flags; |
| |
| cnodeid = nasid_to_cnodeid(get_node_number(paddr)); |
| // spin_lock(&NODEPDA(cnodeid)->bist_lock); |
| local_irq_save(irq_flags); |
| ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len, |
| (u64)nasid_array, perms, 0, 0, 0); |
| local_irq_restore(irq_flags); |
| // spin_unlock(&NODEPDA(cnodeid)->bist_lock); |
| return ret_stuff.status; |
| } |
| #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080 |
| #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2 |
| #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca |
| #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290 |
| #define SN_MEMPROT_ACCESS_CLASS_6 0x084080 |
| #define SN_MEMPROT_ACCESS_CLASS_7 0x021080 |
| |
| /* |
| * Turns off system power. |
| */ |
| static inline void |
| ia64_sn_power_down(void) |
| { |
| struct ia64_sal_retval ret_stuff; |
| SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0); |
| while(1) |
| cpu_relax(); |
| /* never returns */ |
| } |
| |
| /** |
| * ia64_sn_fru_capture - tell the system controller to capture hw state |
| * |
| * This routine will call the SAL which will tell the system controller(s) |
| * to capture hw mmr information from each SHub in the system. |
| */ |
| static inline u64 |
| ia64_sn_fru_capture(void) |
| { |
| struct ia64_sal_retval isrv; |
| SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0); |
| if (isrv.status) |
| return 0; |
| return isrv.v0; |
| } |
| |
| /* |
| * Performs an operation on a PCI bus or slot -- power up, power down |
| * or reset. |
| */ |
| static inline u64 |
| ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, |
| u64 bus, char slot, |
| u64 action) |
| { |
| struct ia64_sal_retval rv = {0, 0, 0, 0}; |
| |
| SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action, |
| bus, (u64) slot, 0, 0); |
| if (rv.status) |
| return rv.v0; |
| return 0; |
| } |
| |
| |
| /* |
| * Open a subchannel for sending arbitrary data to the system |
| * controller network via the system controller device associated with |
| * 'nasid'. Return the subchannel number or a negative error code. |
| */ |
| static inline int |
| ia64_sn_irtr_open(nasid_t nasid) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid, |
| 0, 0, 0, 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /* |
| * Close system controller subchannel 'subch' previously opened on 'nasid'. |
| */ |
| static inline int |
| ia64_sn_irtr_close(nasid_t nasid, int subch) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE, |
| (u64) nasid, (u64) subch, 0, 0, 0, 0); |
| return (int) rv.status; |
| } |
| |
| /* |
| * Read data from system controller associated with 'nasid' on |
| * subchannel 'subch'. The buffer to be filled is pointed to by |
| * 'buf', and its capacity is in the integer pointed to by 'len'. The |
| * referent of 'len' is set to the number of bytes read by the SAL |
| * call. The return value is either SALRET_OK (for bytes read) or |
| * SALRET_ERROR (for error or "no data available"). |
| */ |
| static inline int |
| ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV, |
| (u64) nasid, (u64) subch, (u64) buf, (u64) len, |
| 0, 0); |
| return (int) rv.status; |
| } |
| |
| /* |
| * Write data to the system controller network via the system |
| * controller associated with 'nasid' on suchannel 'subch'. The |
| * buffer to be written out is pointed to by 'buf', and 'len' is the |
| * number of bytes to be written. The return value is either the |
| * number of bytes written (which could be zero) or a negative error |
| * code. |
| */ |
| static inline int |
| ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND, |
| (u64) nasid, (u64) subch, (u64) buf, (u64) len, |
| 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /* |
| * Check whether any interrupts are pending for the system controller |
| * associated with 'nasid' and its subchannel 'subch'. The return |
| * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or |
| * SAL_IROUTER_INTR_RECV). |
| */ |
| static inline int |
| ia64_sn_irtr_intr(nasid_t nasid, int subch) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS, |
| (u64) nasid, (u64) subch, 0, 0, 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /* |
| * Enable the interrupt indicated by the intr parameter (either |
| * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). |
| */ |
| static inline int |
| ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON, |
| (u64) nasid, (u64) subch, intr, 0, 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /* |
| * Disable the interrupt indicated by the intr parameter (either |
| * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). |
| */ |
| static inline int |
| ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF, |
| (u64) nasid, (u64) subch, intr, 0, 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /* |
| * Set up a node as the point of contact for system controller |
| * environmental event delivery. |
| */ |
| static inline int |
| ia64_sn_sysctl_event_init(nasid_t nasid) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid, |
| 0, 0, 0, 0, 0, 0); |
| return (int) rv.v0; |
| } |
| |
| /** |
| * ia64_sn_get_fit_compt - read a FIT entry from the PROM header |
| * @nasid: NASID of node to read |
| * @index: FIT entry index to be retrieved (0..n) |
| * @fitentry: 16 byte buffer where FIT entry will be stored. |
| * @banbuf: optional buffer for retrieving banner |
| * @banlen: length of banner buffer |
| * |
| * Access to the physical PROM chips needs to be serialized since reads and |
| * writes can't occur at the same time, so we need to call into the SAL when |
| * we want to look at the FIT entries on the chips. |
| * |
| * Returns: |
| * %SALRET_OK if ok |
| * %SALRET_INVALID_ARG if index too big |
| * %SALRET_NOT_IMPLEMENTED if running on older PROM |
| * ??? if nasid invalid OR banner buffer not large enough |
| */ |
| static inline int |
| ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf, |
| u64 banlen) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry, |
| banbuf, banlen, 0, 0); |
| return (int) rv.status; |
| } |
| |
| /* |
| * Initialize the SAL components of the system controller |
| * communication driver; specifically pass in a sizable buffer that |
| * can be used for allocation of subchannel queues as new subchannels |
| * are opened. "buf" points to the buffer, and "len" specifies its |
| * length. |
| */ |
| static inline int |
| ia64_sn_irtr_init(nasid_t nasid, void *buf, int len) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT, |
| (u64) nasid, (u64) buf, (u64) len, 0, 0, 0); |
| return (int) rv.status; |
| } |
| |
| /* |
| * Returns the nasid, subnode & slice corresponding to a SAPIC ID |
| * |
| * In: |
| * arg0 - SN_SAL_GET_SAPIC_INFO |
| * arg1 - sapicid (lid >> 16) |
| * Out: |
| * v0 - nasid |
| * v1 - subnode |
| * v2 - slice |
| */ |
| static inline u64 |
| ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0); |
| |
| /***** BEGIN HACK - temp til old proms no longer supported ********/ |
| if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { |
| if (nasid) *nasid = sapicid & 0xfff; |
| if (subnode) *subnode = (sapicid >> 13) & 1; |
| if (slice) *slice = (sapicid >> 12) & 3; |
| return 0; |
| } |
| /***** END HACK *******/ |
| |
| if (ret_stuff.status < 0) |
| return ret_stuff.status; |
| |
| if (nasid) *nasid = (int) ret_stuff.v0; |
| if (subnode) *subnode = (int) ret_stuff.v1; |
| if (slice) *slice = (int) ret_stuff.v2; |
| return 0; |
| } |
| |
| /* |
| * Returns information about the HUB/SHUB. |
| * In: |
| * arg0 - SN_SAL_GET_SN_INFO |
| * arg1 - 0 (other values reserved for future use) |
| * Out: |
| * v0 |
| * [7:0] - shub type (0=shub1, 1=shub2) |
| * [15:8] - Log2 max number of nodes in entire system (includes |
| * C-bricks, I-bricks, etc) |
| * [23:16] - Log2 of nodes per sharing domain |
| * [31:24] - partition ID |
| * [39:32] - coherency_id |
| * [47:40] - regionsize |
| * v1 |
| * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid) |
| * [23:15] - bit position of low nasid bit |
| */ |
| static inline u64 |
| ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, |
| u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg) |
| { |
| struct ia64_sal_retval ret_stuff; |
| |
| ret_stuff.status = 0; |
| ret_stuff.v0 = 0; |
| ret_stuff.v1 = 0; |
| ret_stuff.v2 = 0; |
| SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0); |
| |
| if (ret_stuff.status < 0) |
| return ret_stuff.status; |
| |
| if (shubtype) *shubtype = ret_stuff.v0 & 0xff; |
| if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff; |
| if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff; |
| if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff; |
| if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff; |
| if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff; |
| if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff); |
| if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff; |
| return 0; |
| } |
| |
| /* |
| * This is the access point to the Altix PROM hardware performance |
| * and status monitoring interface. For info on using this, see |
| * include/asm-ia64/sn/sn2/sn_hwperf.h |
| */ |
| static inline int |
| ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2, |
| u64 a3, u64 a4, int *v0) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid, |
| opcode, a0, a1, a2, a3, a4); |
| if (v0) |
| *v0 = (int) rv.v0; |
| return (int) rv.status; |
| } |
| |
| static inline int |
| ia64_sn_ioif_get_pci_topology(u64 buf, u64 len) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0); |
| return (int) rv.status; |
| } |
| |
| /* |
| * BTE error recovery is implemented in SAL |
| */ |
| static inline int |
| ia64_sn_bte_recovery(nasid_t nasid) |
| { |
| struct ia64_sal_retval rv; |
| |
| rv.status = 0; |
| SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0); |
| if (rv.status == SALRET_NOT_IMPLEMENTED) |
| return 0; |
| return (int) rv.status; |
| } |
| |
| static inline int |
| ia64_sn_is_fake_prom(void) |
| { |
| struct ia64_sal_retval rv; |
| SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0); |
| return (rv.status == 0); |
| } |
| |
| static inline int |
| ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set) |
| { |
| struct ia64_sal_retval rv; |
| |
| SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0); |
| if (rv.status != 0) |
| return rv.status; |
| *feature_set = rv.v0; |
| return 0; |
| } |
| |
| static inline int |
| ia64_sn_set_os_feature(int feature) |
| { |
| struct ia64_sal_retval rv; |
| |
| SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0); |
| return rv.status; |
| } |
| |
| #endif /* _ASM_IA64_SN_SN_SAL_H */ |