| /* |
| * Driver for Zarlink DVB-T ZL10353 demodulator |
| * |
| * Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <asm/div64.h> |
| |
| #include "dvb_frontend.h" |
| #include "zl10353_priv.h" |
| #include "zl10353.h" |
| |
| struct zl10353_state { |
| struct i2c_adapter *i2c; |
| struct dvb_frontend frontend; |
| |
| struct zl10353_config config; |
| |
| enum fe_bandwidth bandwidth; |
| }; |
| |
| static int debug; |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) printk(KERN_DEBUG "zl10353: " args); \ |
| } while (0) |
| |
| static int debug_regs; |
| |
| static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u8 buf[2] = { reg, val }; |
| struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, |
| .buf = buf, .len = 2 }; |
| int err = i2c_transfer(state->i2c, &msg, 1); |
| if (err != 1) { |
| printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err); |
| return err; |
| } |
| return 0; |
| } |
| |
| static int zl10353_write(struct dvb_frontend *fe, u8 *ibuf, int ilen) |
| { |
| int err, i; |
| for (i = 0; i < ilen - 1; i++) |
| if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1]))) |
| return err; |
| |
| return 0; |
| } |
| |
| static int zl10353_read_register(struct zl10353_state *state, u8 reg) |
| { |
| int ret; |
| u8 b0[1] = { reg }; |
| u8 b1[1] = { 0 }; |
| struct i2c_msg msg[2] = { { .addr = state->config.demod_address, |
| .flags = 0, |
| .buf = b0, .len = 1 }, |
| { .addr = state->config.demod_address, |
| .flags = I2C_M_RD, |
| .buf = b1, .len = 1 } }; |
| |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| printk("%s: readreg error (reg=%d, ret==%i)\n", |
| __func__, reg, ret); |
| return ret; |
| } |
| |
| return b1[0]; |
| } |
| |
| static void zl10353_dump_regs(struct dvb_frontend *fe) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| char buf[52], buf2[4]; |
| int ret; |
| u8 reg; |
| |
| /* Dump all registers. */ |
| for (reg = 0; ; reg++) { |
| if (reg % 16 == 0) { |
| if (reg) |
| printk(KERN_DEBUG "%s\n", buf); |
| sprintf(buf, "%02x: ", reg); |
| } |
| ret = zl10353_read_register(state, reg); |
| if (ret >= 0) |
| sprintf(buf2, "%02x ", (u8)ret); |
| else |
| strcpy(buf2, "-- "); |
| strcat(buf, buf2); |
| if (reg == 0xff) |
| break; |
| } |
| printk(KERN_DEBUG "%s\n", buf); |
| } |
| |
| static void zl10353_calc_nominal_rate(struct dvb_frontend *fe, |
| enum fe_bandwidth bandwidth, |
| u16 *nominal_rate) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u32 adc_clock = 450560; /* 45.056 MHz */ |
| u64 value; |
| u8 bw; |
| |
| if (state->config.adc_clock) |
| adc_clock = state->config.adc_clock; |
| |
| switch (bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| bw = 6; |
| break; |
| case BANDWIDTH_7_MHZ: |
| bw = 7; |
| break; |
| case BANDWIDTH_8_MHZ: |
| default: |
| bw = 8; |
| break; |
| } |
| |
| value = (u64)10 * (1 << 23) / 7 * 125; |
| value = (bw * value) + adc_clock / 2; |
| do_div(value, adc_clock); |
| *nominal_rate = value; |
| |
| dprintk("%s: bw %d, adc_clock %d => 0x%x\n", |
| __func__, bw, adc_clock, *nominal_rate); |
| } |
| |
| static void zl10353_calc_input_freq(struct dvb_frontend *fe, |
| u16 *input_freq) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u32 adc_clock = 450560; /* 45.056 MHz */ |
| int if2 = 361667; /* 36.1667 MHz */ |
| int ife; |
| u64 value; |
| |
| if (state->config.adc_clock) |
| adc_clock = state->config.adc_clock; |
| if (state->config.if2) |
| if2 = state->config.if2; |
| |
| if (adc_clock >= if2 * 2) |
| ife = if2; |
| else { |
| ife = adc_clock - (if2 % adc_clock); |
| if (ife > adc_clock / 2) |
| ife = adc_clock - ife; |
| } |
| value = (u64)65536 * ife + adc_clock / 2; |
| do_div(value, adc_clock); |
| *input_freq = -value; |
| |
| dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", |
| __func__, if2, ife, adc_clock, -(int)value, *input_freq); |
| } |
| |
| static int zl10353_sleep(struct dvb_frontend *fe) |
| { |
| static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 }; |
| |
| zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown)); |
| return 0; |
| } |
| |
| static int zl10353_set_parameters(struct dvb_frontend *fe, |
| struct dvb_frontend_parameters *param) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u16 nominal_rate, input_freq; |
| u8 pllbuf[6] = { 0x67 }, acq_ctl = 0; |
| u16 tps = 0; |
| struct dvb_ofdm_parameters *op = ¶m->u.ofdm; |
| |
| zl10353_single_write(fe, RESET, 0x80); |
| udelay(200); |
| zl10353_single_write(fe, 0xEA, 0x01); |
| udelay(200); |
| zl10353_single_write(fe, 0xEA, 0x00); |
| |
| zl10353_single_write(fe, AGC_TARGET, 0x28); |
| |
| if (op->transmission_mode != TRANSMISSION_MODE_AUTO) |
| acq_ctl |= (1 << 0); |
| if (op->guard_interval != GUARD_INTERVAL_AUTO) |
| acq_ctl |= (1 << 1); |
| zl10353_single_write(fe, ACQ_CTL, acq_ctl); |
| |
| switch (op->bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| /* These are extrapolated from the 7 and 8MHz values */ |
| zl10353_single_write(fe, MCLK_RATIO, 0x97); |
| zl10353_single_write(fe, 0x64, 0x34); |
| zl10353_single_write(fe, 0xcc, 0xdd); |
| break; |
| case BANDWIDTH_7_MHZ: |
| zl10353_single_write(fe, MCLK_RATIO, 0x86); |
| zl10353_single_write(fe, 0x64, 0x35); |
| zl10353_single_write(fe, 0xcc, 0x73); |
| break; |
| case BANDWIDTH_8_MHZ: |
| default: |
| zl10353_single_write(fe, MCLK_RATIO, 0x75); |
| zl10353_single_write(fe, 0x64, 0x36); |
| zl10353_single_write(fe, 0xcc, 0x73); |
| } |
| |
| zl10353_calc_nominal_rate(fe, op->bandwidth, &nominal_rate); |
| zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate)); |
| zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate)); |
| state->bandwidth = op->bandwidth; |
| |
| zl10353_calc_input_freq(fe, &input_freq); |
| zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq)); |
| zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq)); |
| |
| /* Hint at TPS settings */ |
| switch (op->code_rate_HP) { |
| case FEC_2_3: |
| tps |= (1 << 7); |
| break; |
| case FEC_3_4: |
| tps |= (2 << 7); |
| break; |
| case FEC_5_6: |
| tps |= (3 << 7); |
| break; |
| case FEC_7_8: |
| tps |= (4 << 7); |
| break; |
| case FEC_1_2: |
| case FEC_AUTO: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (op->code_rate_LP) { |
| case FEC_2_3: |
| tps |= (1 << 4); |
| break; |
| case FEC_3_4: |
| tps |= (2 << 4); |
| break; |
| case FEC_5_6: |
| tps |= (3 << 4); |
| break; |
| case FEC_7_8: |
| tps |= (4 << 4); |
| break; |
| case FEC_1_2: |
| case FEC_AUTO: |
| break; |
| case FEC_NONE: |
| if (op->hierarchy_information == HIERARCHY_AUTO || |
| op->hierarchy_information == HIERARCHY_NONE) |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (op->constellation) { |
| case QPSK: |
| break; |
| case QAM_AUTO: |
| case QAM_16: |
| tps |= (1 << 13); |
| break; |
| case QAM_64: |
| tps |= (2 << 13); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (op->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| case TRANSMISSION_MODE_AUTO: |
| break; |
| case TRANSMISSION_MODE_8K: |
| tps |= (1 << 0); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (op->guard_interval) { |
| case GUARD_INTERVAL_1_32: |
| case GUARD_INTERVAL_AUTO: |
| break; |
| case GUARD_INTERVAL_1_16: |
| tps |= (1 << 2); |
| break; |
| case GUARD_INTERVAL_1_8: |
| tps |= (2 << 2); |
| break; |
| case GUARD_INTERVAL_1_4: |
| tps |= (3 << 2); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (op->hierarchy_information) { |
| case HIERARCHY_AUTO: |
| case HIERARCHY_NONE: |
| break; |
| case HIERARCHY_1: |
| tps |= (1 << 10); |
| break; |
| case HIERARCHY_2: |
| tps |= (2 << 10); |
| break; |
| case HIERARCHY_4: |
| tps |= (3 << 10); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| zl10353_single_write(fe, TPS_GIVEN_1, msb(tps)); |
| zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps)); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| /* |
| * If there is no tuner attached to the secondary I2C bus, we call |
| * set_params to program a potential tuner attached somewhere else. |
| * Otherwise, we update the PLL registers via calc_regs. |
| */ |
| if (state->config.no_tuner) { |
| if (fe->ops.tuner_ops.set_params) { |
| fe->ops.tuner_ops.set_params(fe, param); |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| } |
| } else if (fe->ops.tuner_ops.calc_regs) { |
| fe->ops.tuner_ops.calc_regs(fe, param, pllbuf + 1, 5); |
| pllbuf[1] <<= 1; |
| zl10353_write(fe, pllbuf, sizeof(pllbuf)); |
| } |
| |
| zl10353_single_write(fe, 0x5F, 0x13); |
| |
| /* If no attached tuner or invalid PLL registers, just start the FSM. */ |
| if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL) |
| zl10353_single_write(fe, FSM_GO, 0x01); |
| else |
| zl10353_single_write(fe, TUNER_GO, 0x01); |
| |
| return 0; |
| } |
| |
| static int zl10353_get_parameters(struct dvb_frontend *fe, |
| struct dvb_frontend_parameters *param) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| struct dvb_ofdm_parameters *op = ¶m->u.ofdm; |
| int s6, s9; |
| u16 tps; |
| static const u8 tps_fec_to_api[8] = { |
| FEC_1_2, |
| FEC_2_3, |
| FEC_3_4, |
| FEC_5_6, |
| FEC_7_8, |
| FEC_AUTO, |
| FEC_AUTO, |
| FEC_AUTO |
| }; |
| |
| s6 = zl10353_read_register(state, STATUS_6); |
| s9 = zl10353_read_register(state, STATUS_9); |
| if (s6 < 0 || s9 < 0) |
| return -EREMOTEIO; |
| if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0) |
| return -EINVAL; /* no FE or TPS lock */ |
| |
| tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 | |
| zl10353_read_register(state, TPS_RECEIVED_0); |
| |
| op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; |
| op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; |
| |
| switch ((tps >> 13) & 3) { |
| case 0: |
| op->constellation = QPSK; |
| break; |
| case 1: |
| op->constellation = QAM_16; |
| break; |
| case 2: |
| op->constellation = QAM_64; |
| break; |
| default: |
| op->constellation = QAM_AUTO; |
| break; |
| } |
| |
| op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : |
| TRANSMISSION_MODE_2K; |
| |
| switch ((tps >> 2) & 3) { |
| case 0: |
| op->guard_interval = GUARD_INTERVAL_1_32; |
| break; |
| case 1: |
| op->guard_interval = GUARD_INTERVAL_1_16; |
| break; |
| case 2: |
| op->guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 3: |
| op->guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| default: |
| op->guard_interval = GUARD_INTERVAL_AUTO; |
| break; |
| } |
| |
| switch ((tps >> 10) & 7) { |
| case 0: |
| op->hierarchy_information = HIERARCHY_NONE; |
| break; |
| case 1: |
| op->hierarchy_information = HIERARCHY_1; |
| break; |
| case 2: |
| op->hierarchy_information = HIERARCHY_2; |
| break; |
| case 3: |
| op->hierarchy_information = HIERARCHY_4; |
| break; |
| default: |
| op->hierarchy_information = HIERARCHY_AUTO; |
| break; |
| } |
| |
| param->frequency = 0; |
| op->bandwidth = state->bandwidth; |
| param->inversion = INVERSION_AUTO; |
| |
| return 0; |
| } |
| |
| static int zl10353_read_status(struct dvb_frontend *fe, fe_status_t *status) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| int s6, s7, s8; |
| |
| if ((s6 = zl10353_read_register(state, STATUS_6)) < 0) |
| return -EREMOTEIO; |
| if ((s7 = zl10353_read_register(state, STATUS_7)) < 0) |
| return -EREMOTEIO; |
| if ((s8 = zl10353_read_register(state, STATUS_8)) < 0) |
| return -EREMOTEIO; |
| |
| *status = 0; |
| if (s6 & (1 << 2)) |
| *status |= FE_HAS_CARRIER; |
| if (s6 & (1 << 1)) |
| *status |= FE_HAS_VITERBI; |
| if (s6 & (1 << 5)) |
| *status |= FE_HAS_LOCK; |
| if (s7 & (1 << 4)) |
| *status |= FE_HAS_SYNC; |
| if (s8 & (1 << 6)) |
| *status |= FE_HAS_SIGNAL; |
| |
| if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != |
| (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) |
| *status &= ~FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| |
| *ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 | |
| zl10353_read_register(state, RS_ERR_CNT_1) << 8 | |
| zl10353_read_register(state, RS_ERR_CNT_0); |
| |
| return 0; |
| } |
| |
| static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| |
| u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 | |
| zl10353_read_register(state, AGC_GAIN_0) << 2 | 3; |
| |
| *strength = ~signal; |
| |
| return 0; |
| } |
| |
| static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u8 _snr; |
| |
| if (debug_regs) |
| zl10353_dump_regs(fe); |
| |
| _snr = zl10353_read_register(state, SNR); |
| *snr = (_snr << 8) | _snr; |
| |
| return 0; |
| } |
| |
| static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| |
| *ucblocks = zl10353_read_register(state, RS_UBC_1) << 8 | |
| zl10353_read_register(state, RS_UBC_0); |
| |
| return 0; |
| } |
| |
| static int zl10353_get_tune_settings(struct dvb_frontend *fe, |
| struct dvb_frontend_tune_settings |
| *fe_tune_settings) |
| { |
| fe_tune_settings->min_delay_ms = 1000; |
| fe_tune_settings->step_size = 0; |
| fe_tune_settings->max_drift = 0; |
| |
| return 0; |
| } |
| |
| static int zl10353_init(struct dvb_frontend *fe) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F }; |
| int rc = 0; |
| |
| if (debug_regs) |
| zl10353_dump_regs(fe); |
| if (state->config.parallel_ts) |
| zl10353_reset_attach[2] &= ~0x20; |
| |
| /* Do a "hard" reset if not already done */ |
| if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] || |
| zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) { |
| rc = zl10353_write(fe, zl10353_reset_attach, |
| sizeof(zl10353_reset_attach)); |
| if (debug_regs) |
| zl10353_dump_regs(fe); |
| } |
| |
| return 0; |
| } |
| |
| static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| u8 val = 0x0a; |
| |
| if (state->config.no_tuner) { |
| /* No tuner attached to the internal I2C bus */ |
| /* If set enable I2C bridge, the main I2C bus stopped hardly */ |
| return 0; |
| } |
| |
| if (enable) |
| val |= 0x10; |
| |
| return zl10353_single_write(fe, 0x62, val); |
| } |
| |
| static void zl10353_release(struct dvb_frontend *fe) |
| { |
| struct zl10353_state *state = fe->demodulator_priv; |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops zl10353_ops; |
| |
| struct dvb_frontend *zl10353_attach(const struct zl10353_config *config, |
| struct i2c_adapter *i2c) |
| { |
| struct zl10353_state *state = NULL; |
| |
| /* allocate memory for the internal state */ |
| state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL); |
| if (state == NULL) |
| goto error; |
| |
| /* setup the state */ |
| state->i2c = i2c; |
| memcpy(&state->config, config, sizeof(struct zl10353_config)); |
| |
| /* check if the demod is there */ |
| if (zl10353_read_register(state, CHIP_ID) != ID_ZL10353) |
| goto error; |
| |
| /* create dvb_frontend */ |
| memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops)); |
| state->frontend.demodulator_priv = state; |
| |
| return &state->frontend; |
| error: |
| kfree(state); |
| return NULL; |
| } |
| |
| static struct dvb_frontend_ops zl10353_ops = { |
| |
| .info = { |
| .name = "Zarlink ZL10353 DVB-T", |
| .type = FE_OFDM, |
| .frequency_min = 174000000, |
| .frequency_max = 862000000, |
| .frequency_stepsize = 166667, |
| .frequency_tolerance = 0, |
| .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | |
| FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | |
| FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | |
| FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | |
| FE_CAN_MUTE_TS |
| }, |
| |
| .release = zl10353_release, |
| |
| .init = zl10353_init, |
| .sleep = zl10353_sleep, |
| .i2c_gate_ctrl = zl10353_i2c_gate_ctrl, |
| .write = zl10353_write, |
| |
| .set_frontend = zl10353_set_parameters, |
| .get_frontend = zl10353_get_parameters, |
| .get_tune_settings = zl10353_get_tune_settings, |
| |
| .read_status = zl10353_read_status, |
| .read_ber = zl10353_read_ber, |
| .read_signal_strength = zl10353_read_signal_strength, |
| .read_snr = zl10353_read_snr, |
| .read_ucblocks = zl10353_read_ucblocks, |
| }; |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); |
| |
| module_param(debug_regs, int, 0644); |
| MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off)."); |
| |
| MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver"); |
| MODULE_AUTHOR("Chris Pascoe"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(zl10353_attach); |