| // ------------------------------------------------------------------------- |
| // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. |
| // All rights reserved. |
| // |
| // LICENSE TERMS |
| // |
| // The free distribution and use of this software in both source and binary |
| // form is allowed (with or without changes) provided that: |
| // |
| // 1. distributions of this source code include the above copyright |
| // notice, this list of conditions and the following disclaimer// |
| // |
| // 2. distributions in binary form include the above copyright |
| // notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other associated materials// |
| // |
| // 3. the copyright holder's name is not used to endorse products |
| // built using this software without specific written permission. |
| // |
| // |
| // ALTERNATIVELY, provided that this notice is retained in full, this product |
| // may be distributed under the terms of the GNU General Public License (GPL), |
| // in which case the provisions of the GPL apply INSTEAD OF those given above. |
| // |
| // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> |
| // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> |
| |
| // DISCLAIMER |
| // |
| // This software is provided 'as is' with no explicit or implied warranties |
| // in respect of its properties including, but not limited to, correctness |
| // and fitness for purpose. |
| // ------------------------------------------------------------------------- |
| // Issue Date: 29/07/2002 |
| |
| .file "aes-i586-asm.S" |
| .text |
| |
| #include <asm/asm-offsets.h> |
| |
| #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) |
| |
| /* offsets to parameters with one register pushed onto stack */ |
| #define tfm 8 |
| #define out_blk 12 |
| #define in_blk 16 |
| |
| /* offsets in crypto_tfm structure */ |
| #define klen (crypto_tfm_ctx_offset + 0) |
| #define ekey (crypto_tfm_ctx_offset + 4) |
| #define dkey (crypto_tfm_ctx_offset + 244) |
| |
| // register mapping for encrypt and decrypt subroutines |
| |
| #define r0 eax |
| #define r1 ebx |
| #define r2 ecx |
| #define r3 edx |
| #define r4 esi |
| #define r5 edi |
| |
| #define eaxl al |
| #define eaxh ah |
| #define ebxl bl |
| #define ebxh bh |
| #define ecxl cl |
| #define ecxh ch |
| #define edxl dl |
| #define edxh dh |
| |
| #define _h(reg) reg##h |
| #define h(reg) _h(reg) |
| |
| #define _l(reg) reg##l |
| #define l(reg) _l(reg) |
| |
| // This macro takes a 32-bit word representing a column and uses |
| // each of its four bytes to index into four tables of 256 32-bit |
| // words to obtain values that are then xored into the appropriate |
| // output registers r0, r1, r4 or r5. |
| |
| // Parameters: |
| // table table base address |
| // %1 out_state[0] |
| // %2 out_state[1] |
| // %3 out_state[2] |
| // %4 out_state[3] |
| // idx input register for the round (destroyed) |
| // tmp scratch register for the round |
| // sched key schedule |
| |
| #define do_col(table, a1,a2,a3,a4, idx, tmp) \ |
| movzx %l(idx),%tmp; \ |
| xor table(,%tmp,4),%a1; \ |
| movzx %h(idx),%tmp; \ |
| shr $16,%idx; \ |
| xor table+tlen(,%tmp,4),%a2; \ |
| movzx %l(idx),%tmp; \ |
| movzx %h(idx),%idx; \ |
| xor table+2*tlen(,%tmp,4),%a3; \ |
| xor table+3*tlen(,%idx,4),%a4; |
| |
| // initialise output registers from the key schedule |
| // NB1: original value of a3 is in idx on exit |
| // NB2: original values of a1,a2,a4 aren't used |
| #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ |
| mov 0 sched,%a1; \ |
| movzx %l(idx),%tmp; \ |
| mov 12 sched,%a2; \ |
| xor table(,%tmp,4),%a1; \ |
| mov 4 sched,%a4; \ |
| movzx %h(idx),%tmp; \ |
| shr $16,%idx; \ |
| xor table+tlen(,%tmp,4),%a2; \ |
| movzx %l(idx),%tmp; \ |
| movzx %h(idx),%idx; \ |
| xor table+3*tlen(,%idx,4),%a4; \ |
| mov %a3,%idx; \ |
| mov 8 sched,%a3; \ |
| xor table+2*tlen(,%tmp,4),%a3; |
| |
| // initialise output registers from the key schedule |
| // NB1: original value of a3 is in idx on exit |
| // NB2: original values of a1,a2,a4 aren't used |
| #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ |
| mov 0 sched,%a1; \ |
| movzx %l(idx),%tmp; \ |
| mov 4 sched,%a2; \ |
| xor table(,%tmp,4),%a1; \ |
| mov 12 sched,%a4; \ |
| movzx %h(idx),%tmp; \ |
| shr $16,%idx; \ |
| xor table+tlen(,%tmp,4),%a2; \ |
| movzx %l(idx),%tmp; \ |
| movzx %h(idx),%idx; \ |
| xor table+3*tlen(,%idx,4),%a4; \ |
| mov %a3,%idx; \ |
| mov 8 sched,%a3; \ |
| xor table+2*tlen(,%tmp,4),%a3; |
| |
| |
| // original Gladman had conditional saves to MMX regs. |
| #define save(a1, a2) \ |
| mov %a2,4*a1(%esp) |
| |
| #define restore(a1, a2) \ |
| mov 4*a2(%esp),%a1 |
| |
| // These macros perform a forward encryption cycle. They are entered with |
| // the first previous round column values in r0,r1,r4,r5 and |
| // exit with the final values in the same registers, using stack |
| // for temporary storage. |
| |
| // round column values |
| // on entry: r0,r1,r4,r5 |
| // on exit: r2,r1,r4,r5 |
| #define fwd_rnd1(arg, table) \ |
| save (0,r1); \ |
| save (1,r5); \ |
| \ |
| /* compute new column values */ \ |
| do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ |
| do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ |
| restore(r0,0); \ |
| do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ |
| restore(r0,1); \ |
| do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ |
| |
| // round column values |
| // on entry: r2,r1,r4,r5 |
| // on exit: r0,r1,r4,r5 |
| #define fwd_rnd2(arg, table) \ |
| save (0,r1); \ |
| save (1,r5); \ |
| \ |
| /* compute new column values */ \ |
| do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ |
| do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ |
| restore(r2,0); \ |
| do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ |
| restore(r2,1); \ |
| do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ |
| |
| // These macros performs an inverse encryption cycle. They are entered with |
| // the first previous round column values in r0,r1,r4,r5 and |
| // exit with the final values in the same registers, using stack |
| // for temporary storage |
| |
| // round column values |
| // on entry: r0,r1,r4,r5 |
| // on exit: r2,r1,r4,r5 |
| #define inv_rnd1(arg, table) \ |
| save (0,r1); \ |
| save (1,r5); \ |
| \ |
| /* compute new column values */ \ |
| do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ |
| do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ |
| restore(r0,0); \ |
| do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ |
| restore(r0,1); \ |
| do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ |
| |
| // round column values |
| // on entry: r2,r1,r4,r5 |
| // on exit: r0,r1,r4,r5 |
| #define inv_rnd2(arg, table) \ |
| save (0,r1); \ |
| save (1,r5); \ |
| \ |
| /* compute new column values */ \ |
| do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ |
| do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ |
| restore(r2,0); \ |
| do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ |
| restore(r2,1); \ |
| do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ |
| |
| // AES (Rijndael) Encryption Subroutine |
| /* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ |
| |
| .global aes_enc_blk |
| |
| .extern crypto_ft_tab |
| .extern crypto_fl_tab |
| |
| .align 4 |
| |
| aes_enc_blk: |
| push %ebp |
| mov tfm(%esp),%ebp |
| |
| // CAUTION: the order and the values used in these assigns |
| // rely on the register mappings |
| |
| 1: push %ebx |
| mov in_blk+4(%esp),%r2 |
| push %esi |
| mov klen(%ebp),%r3 // key size |
| push %edi |
| #if ekey != 0 |
| lea ekey(%ebp),%ebp // key pointer |
| #endif |
| |
| // input four columns and xor in first round key |
| |
| mov (%r2),%r0 |
| mov 4(%r2),%r1 |
| mov 8(%r2),%r4 |
| mov 12(%r2),%r5 |
| xor (%ebp),%r0 |
| xor 4(%ebp),%r1 |
| xor 8(%ebp),%r4 |
| xor 12(%ebp),%r5 |
| |
| sub $8,%esp // space for register saves on stack |
| add $16,%ebp // increment to next round key |
| cmp $24,%r3 |
| jb 4f // 10 rounds for 128-bit key |
| lea 32(%ebp),%ebp |
| je 3f // 12 rounds for 192-bit key |
| lea 32(%ebp),%ebp |
| |
| 2: fwd_rnd1( -64(%ebp), crypto_ft_tab) // 14 rounds for 256-bit key |
| fwd_rnd2( -48(%ebp), crypto_ft_tab) |
| 3: fwd_rnd1( -32(%ebp), crypto_ft_tab) // 12 rounds for 192-bit key |
| fwd_rnd2( -16(%ebp), crypto_ft_tab) |
| 4: fwd_rnd1( (%ebp), crypto_ft_tab) // 10 rounds for 128-bit key |
| fwd_rnd2( +16(%ebp), crypto_ft_tab) |
| fwd_rnd1( +32(%ebp), crypto_ft_tab) |
| fwd_rnd2( +48(%ebp), crypto_ft_tab) |
| fwd_rnd1( +64(%ebp), crypto_ft_tab) |
| fwd_rnd2( +80(%ebp), crypto_ft_tab) |
| fwd_rnd1( +96(%ebp), crypto_ft_tab) |
| fwd_rnd2(+112(%ebp), crypto_ft_tab) |
| fwd_rnd1(+128(%ebp), crypto_ft_tab) |
| fwd_rnd2(+144(%ebp), crypto_fl_tab) // last round uses a different table |
| |
| // move final values to the output array. CAUTION: the |
| // order of these assigns rely on the register mappings |
| |
| add $8,%esp |
| mov out_blk+12(%esp),%ebp |
| mov %r5,12(%ebp) |
| pop %edi |
| mov %r4,8(%ebp) |
| pop %esi |
| mov %r1,4(%ebp) |
| pop %ebx |
| mov %r0,(%ebp) |
| pop %ebp |
| mov $1,%eax |
| ret |
| |
| // AES (Rijndael) Decryption Subroutine |
| /* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ |
| |
| .global aes_dec_blk |
| |
| .extern crypto_it_tab |
| .extern crypto_il_tab |
| |
| .align 4 |
| |
| aes_dec_blk: |
| push %ebp |
| mov tfm(%esp),%ebp |
| |
| // CAUTION: the order and the values used in these assigns |
| // rely on the register mappings |
| |
| 1: push %ebx |
| mov in_blk+4(%esp),%r2 |
| push %esi |
| mov klen(%ebp),%r3 // key size |
| push %edi |
| #if dkey != 0 |
| lea dkey(%ebp),%ebp // key pointer |
| #endif |
| |
| // input four columns and xor in first round key |
| |
| mov (%r2),%r0 |
| mov 4(%r2),%r1 |
| mov 8(%r2),%r4 |
| mov 12(%r2),%r5 |
| xor (%ebp),%r0 |
| xor 4(%ebp),%r1 |
| xor 8(%ebp),%r4 |
| xor 12(%ebp),%r5 |
| |
| sub $8,%esp // space for register saves on stack |
| add $16,%ebp // increment to next round key |
| cmp $24,%r3 |
| jb 4f // 10 rounds for 128-bit key |
| lea 32(%ebp),%ebp |
| je 3f // 12 rounds for 192-bit key |
| lea 32(%ebp),%ebp |
| |
| 2: inv_rnd1( -64(%ebp), crypto_it_tab) // 14 rounds for 256-bit key |
| inv_rnd2( -48(%ebp), crypto_it_tab) |
| 3: inv_rnd1( -32(%ebp), crypto_it_tab) // 12 rounds for 192-bit key |
| inv_rnd2( -16(%ebp), crypto_it_tab) |
| 4: inv_rnd1( (%ebp), crypto_it_tab) // 10 rounds for 128-bit key |
| inv_rnd2( +16(%ebp), crypto_it_tab) |
| inv_rnd1( +32(%ebp), crypto_it_tab) |
| inv_rnd2( +48(%ebp), crypto_it_tab) |
| inv_rnd1( +64(%ebp), crypto_it_tab) |
| inv_rnd2( +80(%ebp), crypto_it_tab) |
| inv_rnd1( +96(%ebp), crypto_it_tab) |
| inv_rnd2(+112(%ebp), crypto_it_tab) |
| inv_rnd1(+128(%ebp), crypto_it_tab) |
| inv_rnd2(+144(%ebp), crypto_il_tab) // last round uses a different table |
| |
| // move final values to the output array. CAUTION: the |
| // order of these assigns rely on the register mappings |
| |
| add $8,%esp |
| mov out_blk+12(%esp),%ebp |
| mov %r5,12(%ebp) |
| pop %edi |
| mov %r4,8(%ebp) |
| pop %esi |
| mov %r1,4(%ebp) |
| pop %ebx |
| mov %r0,(%ebp) |
| pop %ebp |
| mov $1,%eax |
| ret |
| |