blob: fc1d589dc675042d44f187ae289ec217b39ef3dd [file] [log] [blame]
/*
* Sonics Silicon Backplane
* Subsystem core
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "ssb_private.h"
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
MODULE_LICENSE("GPL");
/* Temporary list of yet-to-be-attached buses */
static LIST_HEAD(attach_queue);
/* List if running buses */
static LIST_HEAD(buses);
/* Software ID counter */
static unsigned int next_busnumber;
/* buses_mutes locks the two buslists and the next_busnumber.
* Don't lock this directly, but use ssb_buses_[un]lock() below. */
static DEFINE_MUTEX(buses_mutex);
/* There are differences in the codeflow, if the bus is
* initialized from early boot, as various needed services
* are not available early. This is a mechanism to delay
* these initializations to after early boot has finished.
* It's also used to avoid mutex locking, as that's not
* available and needed early. */
static bool ssb_is_early_boot = 1;
static void ssb_buses_lock(void);
static void ssb_buses_unlock(void);
#ifdef CONFIG_SSB_PCIHOST
struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_PCI &&
bus->host_pci == pdev)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_PCIHOST */
static struct ssb_device *ssb_device_get(struct ssb_device *dev)
{
if (dev)
get_device(dev->dev);
return dev;
}
static void ssb_device_put(struct ssb_device *dev)
{
if (dev)
put_device(dev->dev);
}
static int ssb_bus_resume(struct ssb_bus *bus)
{
int err;
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
err = ssb_pcmcia_init(bus);
if (err) {
/* No need to disable XTAL, as we don't have one on PCMCIA. */
return err;
}
ssb_chipco_resume(&bus->chipco);
return 0;
}
static int ssb_device_resume(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
struct ssb_bus *bus;
int err = 0;
bus = ssb_dev->bus;
if (bus->suspend_cnt == bus->nr_devices) {
err = ssb_bus_resume(bus);
if (err)
return err;
}
bus->suspend_cnt--;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->resume)
err = ssb_drv->resume(ssb_dev);
if (err)
goto out;
}
out:
return err;
}
static void ssb_bus_suspend(struct ssb_bus *bus, pm_message_t state)
{
ssb_chipco_suspend(&bus->chipco, state);
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
/* Reset HW state information in memory, so that HW is
* completely reinitialized on resume. */
bus->mapped_device = NULL;
#ifdef CONFIG_SSB_DRIVER_PCICORE
bus->pcicore.setup_done = 0;
#endif
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 0;
#endif
}
static int ssb_device_suspend(struct device *dev, pm_message_t state)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
struct ssb_bus *bus;
int err = 0;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->suspend)
err = ssb_drv->suspend(ssb_dev, state);
if (err)
goto out;
}
bus = ssb_dev->bus;
bus->suspend_cnt++;
if (bus->suspend_cnt == bus->nr_devices) {
/* All devices suspended. Shutdown the bus. */
ssb_bus_suspend(bus, state);
}
out:
return err;
}
#ifdef CONFIG_SSB_PCIHOST
int ssb_devices_freeze(struct ssb_bus *bus)
{
struct ssb_device *dev;
struct ssb_driver *drv;
int err = 0;
int i;
pm_message_t state = PMSG_FREEZE;
/* First check that we are capable to freeze all devices. */
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (!drv->suspend) {
/* Nope, can't suspend this one. */
return -EOPNOTSUPP;
}
}
/* Now suspend all devices */
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
err = drv->suspend(dev, state);
if (err) {
ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
dev->dev->bus_id);
goto err_unwind;
}
}
return 0;
err_unwind:
for (i--; i >= 0; i--) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (drv->resume)
drv->resume(dev);
}
return err;
}
int ssb_devices_thaw(struct ssb_bus *bus)
{
struct ssb_device *dev;
struct ssb_driver *drv;
int err;
int i;
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
if (!dev->dev ||
!dev->dev->driver ||
!device_is_registered(dev->dev))
continue;
drv = drv_to_ssb_drv(dev->dev->driver);
if (!drv)
continue;
if (SSB_WARN_ON(!drv->resume))
continue;
err = drv->resume(dev);
if (err) {
ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
dev->dev->bus_id);
}
}
return 0;
}
#endif /* CONFIG_SSB_PCIHOST */
static void ssb_device_shutdown(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
if (!dev->driver)
return;
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->shutdown)
ssb_drv->shutdown(ssb_dev);
}
static int ssb_device_remove(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->remove)
ssb_drv->remove(ssb_dev);
ssb_device_put(ssb_dev);
return 0;
}
static int ssb_device_probe(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
int err = 0;
ssb_device_get(ssb_dev);
if (ssb_drv && ssb_drv->probe)
err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
if (err)
ssb_device_put(ssb_dev);
return err;
}
static int ssb_match_devid(const struct ssb_device_id *tabid,
const struct ssb_device_id *devid)
{
if ((tabid->vendor != devid->vendor) &&
tabid->vendor != SSB_ANY_VENDOR)
return 0;
if ((tabid->coreid != devid->coreid) &&
tabid->coreid != SSB_ANY_ID)
return 0;
if ((tabid->revision != devid->revision) &&
tabid->revision != SSB_ANY_REV)
return 0;
return 1;
}
static int ssb_bus_match(struct device *dev, struct device_driver *drv)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
const struct ssb_device_id *id;
for (id = ssb_drv->id_table;
id->vendor || id->coreid || id->revision;
id++) {
if (ssb_match_devid(id, &ssb_dev->id))
return 1; /* found */
}
return 0;
}
static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
if (!dev)
return -ENODEV;
return add_uevent_var(env,
"MODALIAS=ssb:v%04Xid%04Xrev%02X",
ssb_dev->id.vendor, ssb_dev->id.coreid,
ssb_dev->id.revision);
}
static struct bus_type ssb_bustype = {
.name = "ssb",
.match = ssb_bus_match,
.probe = ssb_device_probe,
.remove = ssb_device_remove,
.shutdown = ssb_device_shutdown,
.suspend = ssb_device_suspend,
.resume = ssb_device_resume,
.uevent = ssb_device_uevent,
};
static void ssb_buses_lock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_lock(&buses_mutex);
}
static void ssb_buses_unlock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_unlock(&buses_mutex);
}
static void ssb_devices_unregister(struct ssb_bus *bus)
{
struct ssb_device *sdev;
int i;
for (i = bus->nr_devices - 1; i >= 0; i--) {
sdev = &(bus->devices[i]);
if (sdev->dev)
device_unregister(sdev->dev);
}
}
void ssb_bus_unregister(struct ssb_bus *bus)
{
ssb_buses_lock();
ssb_devices_unregister(bus);
list_del(&bus->list);
ssb_buses_unlock();
/* ssb_pcmcia_exit(bus); */
ssb_pci_exit(bus);
ssb_iounmap(bus);
}
EXPORT_SYMBOL(ssb_bus_unregister);
static void ssb_release_dev(struct device *dev)
{
struct __ssb_dev_wrapper *devwrap;
devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
kfree(devwrap);
}
static int ssb_devices_register(struct ssb_bus *bus)
{
struct ssb_device *sdev;
struct device *dev;
struct __ssb_dev_wrapper *devwrap;
int i, err = 0;
int dev_idx = 0;
for (i = 0; i < bus->nr_devices; i++) {
sdev = &(bus->devices[i]);
/* We don't register SSB-system devices to the kernel,
* as the drivers for them are built into SSB. */
switch (sdev->id.coreid) {
case SSB_DEV_CHIPCOMMON:
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
case SSB_DEV_PCMCIA:
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
case SSB_DEV_EXTIF:
continue;
}
devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
if (!devwrap) {
ssb_printk(KERN_ERR PFX
"Could not allocate device\n");
err = -ENOMEM;
goto error;
}
dev = &devwrap->dev;
devwrap->sdev = sdev;
dev->release = ssb_release_dev;
dev->bus = &ssb_bustype;
snprintf(dev->bus_id, sizeof(dev->bus_id),
"ssb%u:%d", bus->busnumber, dev_idx);
switch (bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
sdev->irq = bus->host_pci->irq;
dev->parent = &bus->host_pci->dev;
#endif
break;
case SSB_BUSTYPE_PCMCIA:
#ifdef CONFIG_SSB_PCMCIAHOST
dev->parent = &bus->host_pcmcia->dev;
#endif
break;
case SSB_BUSTYPE_SSB:
break;
}
sdev->dev = dev;
err = device_register(dev);
if (err) {
ssb_printk(KERN_ERR PFX
"Could not register %s\n",
dev->bus_id);
/* Set dev to NULL to not unregister
* dev on error unwinding. */
sdev->dev = NULL;
kfree(devwrap);
goto error;
}
dev_idx++;
}
return 0;
error:
/* Unwind the already registered devices. */
ssb_devices_unregister(bus);
return err;
}
/* Needs ssb_buses_lock() */
static int ssb_attach_queued_buses(void)
{
struct ssb_bus *bus, *n;
int err = 0;
int drop_them_all = 0;
list_for_each_entry_safe(bus, n, &attach_queue, list) {
if (drop_them_all) {
list_del(&bus->list);
continue;
}
/* Can't init the PCIcore in ssb_bus_register(), as that
* is too early in boot for embedded systems
* (no udelay() available). So do it here in attach stage.
*/
err = ssb_bus_powerup(bus, 0);
if (err)
goto error;
ssb_pcicore_init(&bus->pcicore);
ssb_bus_may_powerdown(bus);
err = ssb_devices_register(bus);
error:
if (err) {
drop_them_all = 1;
list_del(&bus->list);
continue;
}
list_move_tail(&bus->list, &buses);
}
return err;
}
static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readw(bus->mmio + offset);
}
static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readl(bus->mmio + offset);
}
static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writew(value, bus->mmio + offset);
}
static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writel(value, bus->mmio + offset);
}
/* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
static const struct ssb_bus_ops ssb_ssb_ops = {
.read16 = ssb_ssb_read16,
.read32 = ssb_ssb_read32,
.write16 = ssb_ssb_write16,
.write32 = ssb_ssb_write32,
};
static int ssb_fetch_invariants(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants)
{
struct ssb_init_invariants iv;
int err;
memset(&iv, 0, sizeof(iv));
err = get_invariants(bus, &iv);
if (err)
goto out;
memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
out:
return err;
}
static int ssb_bus_register(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants,
unsigned long baseaddr)
{
int err;
spin_lock_init(&bus->bar_lock);
INIT_LIST_HEAD(&bus->list);
/* Powerup the bus */
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto out;
ssb_buses_lock();
bus->busnumber = next_busnumber;
/* Scan for devices (cores) */
err = ssb_bus_scan(bus, baseaddr);
if (err)
goto err_disable_xtal;
/* Init PCI-host device (if any) */
err = ssb_pci_init(bus);
if (err)
goto err_unmap;
/* Init PCMCIA-host device (if any) */
err = ssb_pcmcia_init(bus);
if (err)
goto err_pci_exit;
/* Initialize basic system devices (if available) */
err = ssb_bus_powerup(bus, 0);
if (err)
goto err_pcmcia_exit;
ssb_chipcommon_init(&bus->chipco);
ssb_mipscore_init(&bus->mipscore);
err = ssb_fetch_invariants(bus, get_invariants);
if (err) {
ssb_bus_may_powerdown(bus);
goto err_pcmcia_exit;
}
ssb_bus_may_powerdown(bus);
/* Queue it for attach.
* See the comment at the ssb_is_early_boot definition. */
list_add_tail(&bus->list, &attach_queue);
if (!ssb_is_early_boot) {
/* This is not early boot, so we must attach the bus now */
err = ssb_attach_queued_buses();
if (err)
goto err_dequeue;
}
next_busnumber++;
ssb_buses_unlock();
out:
return err;
err_dequeue:
list_del(&bus->list);
err_pcmcia_exit:
/* ssb_pcmcia_exit(bus); */
err_pci_exit:
ssb_pci_exit(bus);
err_unmap:
ssb_iounmap(bus);
err_disable_xtal:
ssb_buses_unlock();
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
return err;
}
#ifdef CONFIG_SSB_PCIHOST
int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci)
{
int err;
bus->bustype = SSB_BUSTYPE_PCI;
bus->host_pci = host_pci;
bus->ops = &ssb_pci_ops;
err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
"PCI device %s\n", host_pci->dev.bus_id);
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcibus_register);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr)
{
int err;
bus->bustype = SSB_BUSTYPE_PCMCIA;
bus->host_pcmcia = pcmcia_dev;
bus->ops = &ssb_pcmcia_ops;
err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
"PCMCIA device %s\n", pcmcia_dev->devname);
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */
int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
ssb_invariants_func_t get_invariants)
{
int err;
bus->bustype = SSB_BUSTYPE_SSB;
bus->ops = &ssb_ssb_ops;
err = ssb_bus_register(bus, get_invariants, baseaddr);
if (!err) {
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
"address 0x%08lX\n", baseaddr);
}
return err;
}
int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
{
drv->drv.name = drv->name;
drv->drv.bus = &ssb_bustype;
drv->drv.owner = owner;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(__ssb_driver_register);
void ssb_driver_unregister(struct ssb_driver *drv)
{
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(ssb_driver_unregister);
void ssb_set_devtypedata(struct ssb_device *dev, void *data)
{
struct ssb_bus *bus = dev->bus;
struct ssb_device *ent;
int i;
for (i = 0; i < bus->nr_devices; i++) {
ent = &(bus->devices[i]);
if (ent->id.vendor != dev->id.vendor)
continue;
if (ent->id.coreid != dev->id.coreid)
continue;
ent->devtypedata = data;
}
}
EXPORT_SYMBOL(ssb_set_devtypedata);
static u32 clkfactor_f6_resolve(u32 v)
{
/* map the magic values */
switch (v) {
case SSB_CHIPCO_CLK_F6_2:
return 2;
case SSB_CHIPCO_CLK_F6_3:
return 3;
case SSB_CHIPCO_CLK_F6_4:
return 4;
case SSB_CHIPCO_CLK_F6_5:
return 5;
case SSB_CHIPCO_CLK_F6_6:
return 6;
case SSB_CHIPCO_CLK_F6_7:
return 7;
}
return 0;
}
/* Calculate the speed the backplane would run at a given set of clockcontrol values */
u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
{
u32 n1, n2, clock, m1, m2, m3, mc;
n1 = (n & SSB_CHIPCO_CLK_N1);
n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
if (m & SSB_CHIPCO_CLK_T6_MMASK)
return SSB_CHIPCO_CLK_T6_M0;
return SSB_CHIPCO_CLK_T6_M1;
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
n1 = clkfactor_f6_resolve(n1);
n2 += SSB_CHIPCO_CLK_F5_BIAS;
break;
case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
n1 += SSB_CHIPCO_CLK_T2_BIAS;
n2 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
break;
case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
return 100000000;
default:
SSB_WARN_ON(1);
}
switch (plltype) {
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
break;
default:
clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
}
if (!clock)
return 0;
m1 = (m & SSB_CHIPCO_CLK_M1);
m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
m1 = clkfactor_f6_resolve(m1);
if ((plltype == SSB_PLLTYPE_1) ||
(plltype == SSB_PLLTYPE_3))
m2 += SSB_CHIPCO_CLK_F5_BIAS;
else
m2 = clkfactor_f6_resolve(m2);
m3 = clkfactor_f6_resolve(m3);
switch (mc) {
case SSB_CHIPCO_CLK_MC_BYPASS:
return clock;
case SSB_CHIPCO_CLK_MC_M1:
return (clock / m1);
case SSB_CHIPCO_CLK_MC_M1M2:
return (clock / (m1 * m2));
case SSB_CHIPCO_CLK_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case SSB_CHIPCO_CLK_MC_M1M3:
return (clock / (m1 * m3));
}
return 0;
case SSB_PLLTYPE_2:
m1 += SSB_CHIPCO_CLK_T2_BIAS;
m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
m3 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
clock /= m1;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
clock /= m2;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
clock /= m3;
return clock;
default:
SSB_WARN_ON(1);
}
return 0;
}
/* Get the current speed the backplane is running at */
u32 ssb_clockspeed(struct ssb_bus *bus)
{
u32 rate;
u32 plltype;
u32 clkctl_n, clkctl_m;
if (ssb_extif_available(&bus->extif))
ssb_extif_get_clockcontrol(&bus->extif, &plltype,
&clkctl_n, &clkctl_m);
else if (bus->chipco.dev)
ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
&clkctl_n, &clkctl_m);
else
return 0;
if (bus->chip_id == 0x5365) {
rate = 100000000;
} else {
rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
rate /= 2;
}
return rate;
}
EXPORT_SYMBOL(ssb_clockspeed);
static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
{
/* The REJECT bit changed position in TMSLOW between
* Backplane revisions. */
switch (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV) {
case SSB_IDLOW_SSBREV_22:
return SSB_TMSLOW_REJECT_22;
case SSB_IDLOW_SSBREV_23:
return SSB_TMSLOW_REJECT_23;
default:
WARN_ON(1);
}
return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
}
int ssb_device_is_enabled(struct ssb_device *dev)
{
u32 val;
u32 reject;
reject = ssb_tmslow_reject_bitmask(dev);
val = ssb_read32(dev, SSB_TMSLOW);
val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
return (val == SSB_TMSLOW_CLOCK);
}
EXPORT_SYMBOL(ssb_device_is_enabled);
static void ssb_flush_tmslow(struct ssb_device *dev)
{
/* Make _really_ sure the device has finished the TMSLOW
* register write transaction, as we risk running into
* a machine check exception otherwise.
* Do this by reading the register back to commit the
* PCI write and delay an additional usec for the device
* to react to the change. */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
}
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 val;
ssb_device_disable(dev, core_specific_flags);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_FGC | core_specific_flags);
ssb_flush_tmslow(dev);
/* Clear SERR if set. This is a hw bug workaround. */
if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
ssb_write32(dev, SSB_TMSHIGH, 0);
val = ssb_read32(dev, SSB_IMSTATE);
if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
ssb_write32(dev, SSB_IMSTATE, val);
}
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
core_specific_flags);
ssb_flush_tmslow(dev);
ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_enable);
/* Wait for a bit in a register to get set or unset.
* timeout is in units of ten-microseconds */
static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
int timeout, int set)
{
int i;
u32 val;
for (i = 0; i < timeout; i++) {
val = ssb_read32(dev, reg);
if (set) {
if (val & bitmask)
return 0;
} else {
if (!(val & bitmask))
return 0;
}
udelay(10);
}
printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
"register %04X to %s.\n",
bitmask, reg, (set ? "set" : "clear"));
return -ETIMEDOUT;
}
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 reject;
if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
return;
reject = ssb_tmslow_reject_bitmask(dev);
ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
ssb_write32(dev, SSB_TMSLOW,
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_disable);
u32 ssb_dma_translation(struct ssb_device *dev)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_SSB:
return 0;
case SSB_BUSTYPE_PCI:
case SSB_BUSTYPE_PCMCIA:
return SSB_PCI_DMA;
}
return 0;
}
EXPORT_SYMBOL(ssb_dma_translation);
int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask)
{
struct device *dev = ssb_dev->dev;
#ifdef CONFIG_SSB_PCIHOST
if (ssb_dev->bus->bustype == SSB_BUSTYPE_PCI &&
!dma_supported(dev, mask))
return -EIO;
#endif
dev->coherent_dma_mask = mask;
dev->dma_mask = &dev->coherent_dma_mask;
return 0;
}
EXPORT_SYMBOL(ssb_dma_set_mask);
int ssb_bus_may_powerdown(struct ssb_bus *bus)
{
struct ssb_chipcommon *cc;
int err = 0;
/* On buses where more than one core may be working
* at a time, we must not powerdown stuff if there are
* still cores that may want to run. */
if (bus->bustype == SSB_BUSTYPE_SSB)
goto out;
cc = &bus->chipco;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
if (err)
goto error;
out:
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 0;
#endif
return err;
error:
ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
goto out;
}
EXPORT_SYMBOL(ssb_bus_may_powerdown);
int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
{
struct ssb_chipcommon *cc;
int err;
enum ssb_clkmode mode;
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto error;
cc = &bus->chipco;
mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
ssb_chipco_set_clockmode(cc, mode);
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 1;
#endif
return 0;
error:
ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
return err;
}
EXPORT_SYMBOL(ssb_bus_powerup);
u32 ssb_admatch_base(u32 adm)
{
u32 base = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
base = (adm & SSB_ADM_BASE0);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE1);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE2);
break;
default:
SSB_WARN_ON(1);
}
return base;
}
EXPORT_SYMBOL(ssb_admatch_base);
u32 ssb_admatch_size(u32 adm)
{
u32 size = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
break;
default:
SSB_WARN_ON(1);
}
size = (1 << (size + 1));
return size;
}
EXPORT_SYMBOL(ssb_admatch_size);
static int __init ssb_modinit(void)
{
int err;
/* See the comment at the ssb_is_early_boot definition */
ssb_is_early_boot = 0;
err = bus_register(&ssb_bustype);
if (err)
return err;
/* Maybe we already registered some buses at early boot.
* Check for this and attach them
*/
ssb_buses_lock();
err = ssb_attach_queued_buses();
ssb_buses_unlock();
if (err)
bus_unregister(&ssb_bustype);
err = b43_pci_ssb_bridge_init();
if (err) {
ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
"initialization failed");
/* don't fail SSB init because of this */
err = 0;
}
return err;
}
/* ssb must be initialized after PCI but before the ssb drivers.
* That means we must use some initcall between subsys_initcall
* and device_initcall. */
fs_initcall(ssb_modinit);
static void __exit ssb_modexit(void)
{
b43_pci_ssb_bridge_exit();
bus_unregister(&ssb_bustype);
}
module_exit(ssb_modexit)