blob: a18201a8124e5d0443e8231f8600cb3e2976d55c [file] [log] [blame]
/*
* linux/mm/compaction.c
*
* Memory compaction for the reduction of external fragmentation. Note that
* this heavily depends upon page migration to do all the real heavy
* lifting
*
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
*/
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/sysctl.h>
#include <linux/sysfs.h>
#include <linux/balloon_compaction.h>
#include <linux/page-isolation.h>
#include <linux/kasan.h>
#include "internal.h"
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
count_vm_event(item);
}
static inline void count_compact_events(enum vm_event_item item, long delta)
{
count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
"deferred",
"skipped",
"continue",
"partial",
"complete",
"no_suitable_page",
"not_suitable_zone",
};
#endif
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>
static unsigned long release_freepages(struct list_head *freelist)
{
struct page *page, *next;
unsigned long high_pfn = 0;
list_for_each_entry_safe(page, next, freelist, lru) {
unsigned long pfn = page_to_pfn(page);
list_del(&page->lru);
__free_page(page);
if (pfn > high_pfn)
high_pfn = pfn;
}
return high_pfn;
}
static void map_pages(struct list_head *list)
{
struct page *page;
list_for_each_entry(page, list, lru) {
arch_alloc_page(page, 0);
kernel_map_pages(page, 1, 1);
kasan_alloc_pages(page, 0);
}
}
static inline bool migrate_async_suitable(int migratetype)
{
return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}
/*
* Check that the whole (or subset of) a pageblock given by the interval of
* [start_pfn, end_pfn) is valid and within the same zone, before scanning it
* with the migration of free compaction scanner. The scanners then need to
* use only pfn_valid_within() check for arches that allow holes within
* pageblocks.
*
* Return struct page pointer of start_pfn, or NULL if checks were not passed.
*
* It's possible on some configurations to have a setup like node0 node1 node0
* i.e. it's possible that all pages within a zones range of pages do not
* belong to a single zone. We assume that a border between node0 and node1
* can occur within a single pageblock, but not a node0 node1 node0
* interleaving within a single pageblock. It is therefore sufficient to check
* the first and last page of a pageblock and avoid checking each individual
* page in a pageblock.
*/
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
unsigned long end_pfn, struct zone *zone)
{
struct page *start_page;
struct page *end_page;
/* end_pfn is one past the range we are checking */
end_pfn--;
if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
return NULL;
start_page = pfn_to_page(start_pfn);
if (page_zone(start_page) != zone)
return NULL;
end_page = pfn_to_page(end_pfn);
/* This gives a shorter code than deriving page_zone(end_page) */
if (page_zone_id(start_page) != page_zone_id(end_page))
return NULL;
return start_page;
}
#ifdef CONFIG_COMPACTION
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6
/*
* Compaction is deferred when compaction fails to result in a page
* allocation success. 1 << compact_defer_limit compactions are skipped up
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
*/
void defer_compaction(struct zone *zone, int order)
{
zone->compact_considered = 0;
zone->compact_defer_shift++;
if (order < zone->compact_order_failed)
zone->compact_order_failed = order;
if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
trace_mm_compaction_defer_compaction(zone, order);
}
/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
unsigned long defer_limit = 1UL << zone->compact_defer_shift;
if (order < zone->compact_order_failed)
return false;
/* Avoid possible overflow */
if (++zone->compact_considered > defer_limit)
zone->compact_considered = defer_limit;
if (zone->compact_considered >= defer_limit)
return false;
trace_mm_compaction_deferred(zone, order);
return true;
}
/*
* Update defer tracking counters after successful compaction of given order,
* which means an allocation either succeeded (alloc_success == true) or is
* expected to succeed.
*/
void compaction_defer_reset(struct zone *zone, int order,
bool alloc_success)
{
if (alloc_success) {
zone->compact_considered = 0;
zone->compact_defer_shift = 0;
}
if (order >= zone->compact_order_failed)
zone->compact_order_failed = order + 1;
trace_mm_compaction_defer_reset(zone, order);
}
/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
if (order < zone->compact_order_failed)
return false;
return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
zone->compact_considered >= 1UL << zone->compact_defer_shift;
}
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
struct page *page)
{
if (cc->ignore_skip_hint)
return true;
return !get_pageblock_skip(page);
}
/*
* This function is called to clear all cached information on pageblocks that
* should be skipped for page isolation when the migrate and free page scanner
* meet.
*/
static void __reset_isolation_suitable(struct zone *zone)
{
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone_end_pfn(zone);
unsigned long pfn;
zone->compact_cached_migrate_pfn[0] = start_pfn;
zone->compact_cached_migrate_pfn[1] = start_pfn;
zone->compact_cached_free_pfn = end_pfn;
zone->compact_blockskip_flush = false;
/* Walk the zone and mark every pageblock as suitable for isolation */
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
struct page *page;
cond_resched();
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (zone != page_zone(page))
continue;
clear_pageblock_skip(page);
}
}
void reset_isolation_suitable(pg_data_t *pgdat)
{
int zoneid;
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
struct zone *zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
/* Only flush if a full compaction finished recently */
if (zone->compact_blockskip_flush)
__reset_isolation_suitable(zone);
}
}
/*
* If no pages were isolated then mark this pageblock to be skipped in the
* future. The information is later cleared by __reset_isolation_suitable().
*/
static void update_pageblock_skip(struct compact_control *cc,
struct page *page, unsigned long nr_isolated,
bool migrate_scanner)
{
struct zone *zone = cc->zone;
unsigned long pfn;
if (cc->ignore_skip_hint)
return;
if (!page)
return;
if (nr_isolated)
return;
set_pageblock_skip(page);
pfn = page_to_pfn(page);
/* Update where async and sync compaction should restart */
if (migrate_scanner) {
if (pfn > zone->compact_cached_migrate_pfn[0])
zone->compact_cached_migrate_pfn[0] = pfn;
if (cc->mode != MIGRATE_ASYNC &&
pfn > zone->compact_cached_migrate_pfn[1])
zone->compact_cached_migrate_pfn[1] = pfn;
} else {
if (pfn < zone->compact_cached_free_pfn)
zone->compact_cached_free_pfn = pfn;
}
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
struct page *page)
{
return true;
}
static void update_pageblock_skip(struct compact_control *cc,
struct page *page, unsigned long nr_isolated,
bool migrate_scanner)
{
}
#endif /* CONFIG_COMPACTION */
/*
* Compaction requires the taking of some coarse locks that are potentially
* very heavily contended. For async compaction, back out if the lock cannot
* be taken immediately. For sync compaction, spin on the lock if needed.
*
* Returns true if the lock is held
* Returns false if the lock is not held and compaction should abort
*/
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
struct compact_control *cc)
{
if (cc->mode == MIGRATE_ASYNC) {
if (!spin_trylock_irqsave(lock, *flags)) {
cc->contended = COMPACT_CONTENDED_LOCK;
return false;
}
} else {
spin_lock_irqsave(lock, *flags);
}
return true;
}
/*
* Compaction requires the taking of some coarse locks that are potentially
* very heavily contended. The lock should be periodically unlocked to avoid
* having disabled IRQs for a long time, even when there is nobody waiting on
* the lock. It might also be that allowing the IRQs will result in
* need_resched() becoming true. If scheduling is needed, async compaction
* aborts. Sync compaction schedules.
* Either compaction type will also abort if a fatal signal is pending.
* In either case if the lock was locked, it is dropped and not regained.
*
* Returns true if compaction should abort due to fatal signal pending, or
* async compaction due to need_resched()
* Returns false when compaction can continue (sync compaction might have
* scheduled)
*/
static bool compact_unlock_should_abort(spinlock_t *lock,
unsigned long flags, bool *locked, struct compact_control *cc)
{
if (*locked) {
spin_unlock_irqrestore(lock, flags);
*locked = false;
}
if (fatal_signal_pending(current)) {
cc->contended = COMPACT_CONTENDED_SCHED;
return true;
}
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
cc->contended = COMPACT_CONTENDED_SCHED;
return true;
}
cond_resched();
}
return false;
}
/*
* Aside from avoiding lock contention, compaction also periodically checks
* need_resched() and either schedules in sync compaction or aborts async
* compaction. This is similar to what compact_unlock_should_abort() does, but
* is used where no lock is concerned.
*
* Returns false when no scheduling was needed, or sync compaction scheduled.
* Returns true when async compaction should abort.
*/
static inline bool compact_should_abort(struct compact_control *cc)
{
/* async compaction aborts if contended */
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
cc->contended = COMPACT_CONTENDED_SCHED;
return true;
}
cond_resched();
}
return false;
}
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
/* If the page is a large free page, then disallow migration */
if (PageBuddy(page)) {
/*
* We are checking page_order without zone->lock taken. But
* the only small danger is that we skip a potentially suitable
* pageblock, so it's not worth to check order for valid range.
*/
if (page_order_unsafe(page) >= pageblock_order)
return false;
}
/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
if (migrate_async_suitable(get_pageblock_migratetype(page)))
return true;
/* Otherwise skip the block */
return false;
}
/*
* Isolate free pages onto a private freelist. If @strict is true, will abort
* returning 0 on any invalid PFNs or non-free pages inside of the pageblock
* (even though it may still end up isolating some pages).
*/
static unsigned long isolate_freepages_block(struct compact_control *cc,
unsigned long *start_pfn,
unsigned long end_pfn,
struct list_head *freelist,
bool strict)
{
int nr_scanned = 0, total_isolated = 0;
struct page *cursor, *valid_page = NULL;
unsigned long flags = 0;
bool locked = false;
unsigned long blockpfn = *start_pfn;
cursor = pfn_to_page(blockpfn);
/* Isolate free pages. */
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
int isolated, i;
struct page *page = cursor;
/*
* Periodically drop the lock (if held) regardless of its
* contention, to give chance to IRQs. Abort if fatal signal
* pending or async compaction detects need_resched()
*/
if (!(blockpfn % SWAP_CLUSTER_MAX)
&& compact_unlock_should_abort(&cc->zone->lock, flags,
&locked, cc))
break;
nr_scanned++;
if (!pfn_valid_within(blockpfn))
goto isolate_fail;
if (!valid_page)
valid_page = page;
if (!PageBuddy(page))
goto isolate_fail;
/*
* If we already hold the lock, we can skip some rechecking.
* Note that if we hold the lock now, checked_pageblock was
* already set in some previous iteration (or strict is true),
* so it is correct to skip the suitable migration target
* recheck as well.
*/
if (!locked) {
/*
* The zone lock must be held to isolate freepages.
* Unfortunately this is a very coarse lock and can be
* heavily contended if there are parallel allocations
* or parallel compactions. For async compaction do not
* spin on the lock and we acquire the lock as late as
* possible.
*/
locked = compact_trylock_irqsave(&cc->zone->lock,
&flags, cc);
if (!locked)
break;
/* Recheck this is a buddy page under lock */
if (!PageBuddy(page))
goto isolate_fail;
}
/* Found a free page, break it into order-0 pages */
isolated = split_free_page(page);
total_isolated += isolated;
for (i = 0; i < isolated; i++) {
list_add(&page->lru, freelist);
page++;
}
/* If a page was split, advance to the end of it */
if (isolated) {
cc->nr_freepages += isolated;
if (!strict &&
cc->nr_migratepages <= cc->nr_freepages) {
blockpfn += isolated;
break;
}
blockpfn += isolated - 1;
cursor += isolated - 1;
continue;
}
isolate_fail:
if (strict)
break;
else
continue;
}
trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
nr_scanned, total_isolated);
/* Record how far we have got within the block */
*start_pfn = blockpfn;
/*
* If strict isolation is requested by CMA then check that all the
* pages requested were isolated. If there were any failures, 0 is
* returned and CMA will fail.
*/
if (strict && blockpfn < end_pfn)
total_isolated = 0;
if (locked)
spin_unlock_irqrestore(&cc->zone->lock, flags);
/* Update the pageblock-skip if the whole pageblock was scanned */
if (blockpfn == end_pfn)
update_pageblock_skip(cc, valid_page, total_isolated, false);
count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
if (total_isolated)
count_compact_events(COMPACTISOLATED, total_isolated);
return total_isolated;
}
/**
* isolate_freepages_range() - isolate free pages.
* @start_pfn: The first PFN to start isolating.
* @end_pfn: The one-past-last PFN.
*
* Non-free pages, invalid PFNs, or zone boundaries within the
* [start_pfn, end_pfn) range are considered errors, cause function to
* undo its actions and return zero.
*
* Otherwise, function returns one-past-the-last PFN of isolated page
* (which may be greater then end_pfn if end fell in a middle of
* a free page).
*/
unsigned long
isolate_freepages_range(struct compact_control *cc,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long isolated, pfn, block_end_pfn;
LIST_HEAD(freelist);
pfn = start_pfn;
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
for (; pfn < end_pfn; pfn += isolated,
block_end_pfn += pageblock_nr_pages) {
/* Protect pfn from changing by isolate_freepages_block */
unsigned long isolate_start_pfn = pfn;
block_end_pfn = min(block_end_pfn, end_pfn);
/*
* pfn could pass the block_end_pfn if isolated freepage
* is more than pageblock order. In this case, we adjust
* scanning range to right one.
*/
if (pfn >= block_end_pfn) {
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
block_end_pfn = min(block_end_pfn, end_pfn);
}
if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
break;
isolated = isolate_freepages_block(cc, &isolate_start_pfn,
block_end_pfn, &freelist, true);
/*
* In strict mode, isolate_freepages_block() returns 0 if
* there are any holes in the block (ie. invalid PFNs or
* non-free pages).
*/
if (!isolated)
break;
/*
* If we managed to isolate pages, it is always (1 << n) *
* pageblock_nr_pages for some non-negative n. (Max order
* page may span two pageblocks).
*/
}
/* split_free_page does not map the pages */
map_pages(&freelist);
if (pfn < end_pfn) {
/* Loop terminated early, cleanup. */
release_freepages(&freelist);
return 0;
}
/* We don't use freelists for anything. */
return pfn;
}
/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
struct page *page;
unsigned int count[2] = { 0, };
if (list_empty(&cc->migratepages))
return;
list_for_each_entry(page, &cc->migratepages, lru)
count[!!page_is_file_cache(page)]++;
mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
}
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
unsigned long active, inactive, isolated;
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
zone_page_state(zone, NR_INACTIVE_ANON);
active = zone_page_state(zone, NR_ACTIVE_FILE) +
zone_page_state(zone, NR_ACTIVE_ANON);
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
zone_page_state(zone, NR_ISOLATED_ANON);
return isolated > (inactive + active) / 2;
}
/**
* isolate_migratepages_block() - isolate all migrate-able pages within
* a single pageblock
* @cc: Compaction control structure.
* @low_pfn: The first PFN to isolate
* @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
* @isolate_mode: Isolation mode to be used.
*
* Isolate all pages that can be migrated from the range specified by
* [low_pfn, end_pfn). The range is expected to be within same pageblock.
* Returns zero if there is a fatal signal pending, otherwise PFN of the
* first page that was not scanned (which may be both less, equal to or more
* than end_pfn).
*
* The pages are isolated on cc->migratepages list (not required to be empty),
* and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
* is neither read nor updated.
*/
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
unsigned long end_pfn, isolate_mode_t isolate_mode)
{
struct zone *zone = cc->zone;
unsigned long nr_scanned = 0, nr_isolated = 0;
struct list_head *migratelist = &cc->migratepages;
struct lruvec *lruvec;
unsigned long flags = 0;
bool locked = false;
struct page *page = NULL, *valid_page = NULL;
unsigned long start_pfn = low_pfn;
/*
* Ensure that there are not too many pages isolated from the LRU
* list by either parallel reclaimers or compaction. If there are,
* delay for some time until fewer pages are isolated
*/
while (unlikely(too_many_isolated(zone))) {
/* async migration should just abort */
if (cc->mode == MIGRATE_ASYNC)
return 0;
congestion_wait(BLK_RW_ASYNC, HZ/10);
if (fatal_signal_pending(current))
return 0;
}
if (compact_should_abort(cc))
return 0;
/* Time to isolate some pages for migration */
for (; low_pfn < end_pfn; low_pfn++) {
/*
* Periodically drop the lock (if held) regardless of its
* contention, to give chance to IRQs. Abort async compaction
* if contended.
*/
if (!(low_pfn % SWAP_CLUSTER_MAX)
&& compact_unlock_should_abort(&zone->lru_lock, flags,
&locked, cc))
break;
if (!pfn_valid_within(low_pfn))
continue;
nr_scanned++;
page = pfn_to_page(low_pfn);
if (!valid_page)
valid_page = page;
/*
* Skip if free. We read page order here without zone lock
* which is generally unsafe, but the race window is small and
* the worst thing that can happen is that we skip some
* potential isolation targets.
*/
if (PageBuddy(page)) {
unsigned long freepage_order = page_order_unsafe(page);
/*
* Without lock, we cannot be sure that what we got is
* a valid page order. Consider only values in the
* valid order range to prevent low_pfn overflow.
*/
if (freepage_order > 0 && freepage_order < MAX_ORDER)
low_pfn += (1UL << freepage_order) - 1;
continue;
}
/*
* Check may be lockless but that's ok as we recheck later.
* It's possible to migrate LRU pages and balloon pages
* Skip any other type of page
*/
if (!PageLRU(page)) {
if (unlikely(balloon_page_movable(page))) {
if (balloon_page_isolate(page)) {
/* Successfully isolated */
goto isolate_success;
}
}
continue;
}
/*
* PageLRU is set. lru_lock normally excludes isolation
* splitting and collapsing (collapsing has already happened
* if PageLRU is set) but the lock is not necessarily taken
* here and it is wasteful to take it just to check transhuge.
* Check TransHuge without lock and skip the whole pageblock if
* it's either a transhuge or hugetlbfs page, as calling
* compound_order() without preventing THP from splitting the
* page underneath us may return surprising results.
*/
if (PageTransHuge(page)) {
if (!locked)
low_pfn = ALIGN(low_pfn + 1,
pageblock_nr_pages) - 1;
else
low_pfn += (1 << compound_order(page)) - 1;
continue;
}
/*
* Migration will fail if an anonymous page is pinned in memory,
* so avoid taking lru_lock and isolating it unnecessarily in an
* admittedly racy check.
*/
if (!page_mapping(page) &&
page_count(page) > page_mapcount(page))
continue;
/* If we already hold the lock, we can skip some rechecking */
if (!locked) {
locked = compact_trylock_irqsave(&zone->lru_lock,
&flags, cc);
if (!locked)
break;
/* Recheck PageLRU and PageTransHuge under lock */
if (!PageLRU(page))
continue;
if (PageTransHuge(page)) {
low_pfn += (1 << compound_order(page)) - 1;
continue;
}
}
lruvec = mem_cgroup_page_lruvec(page, zone);
/* Try isolate the page */
if (__isolate_lru_page(page, isolate_mode) != 0)
continue;
VM_BUG_ON_PAGE(PageTransCompound(page), page);
/* Successfully isolated */
del_page_from_lru_list(page, lruvec, page_lru(page));
isolate_success:
list_add(&page->lru, migratelist);
cc->nr_migratepages++;
nr_isolated++;
/* Avoid isolating too much */
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
++low_pfn;
break;
}
}
/*
* The PageBuddy() check could have potentially brought us outside
* the range to be scanned.
*/
if (unlikely(low_pfn > end_pfn))
low_pfn = end_pfn;
if (locked)
spin_unlock_irqrestore(&zone->lru_lock, flags);
/*
* Update the pageblock-skip information and cached scanner pfn,
* if the whole pageblock was scanned without isolating any page.
*/
if (low_pfn == end_pfn)
update_pageblock_skip(cc, valid_page, nr_isolated, true);
trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
nr_scanned, nr_isolated);
count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
if (nr_isolated)
count_compact_events(COMPACTISOLATED, nr_isolated);
return low_pfn;
}
/**
* isolate_migratepages_range() - isolate migrate-able pages in a PFN range
* @cc: Compaction control structure.
* @start_pfn: The first PFN to start isolating.
* @end_pfn: The one-past-last PFN.
*
* Returns zero if isolation fails fatally due to e.g. pending signal.
* Otherwise, function returns one-past-the-last PFN of isolated page
* (which may be greater than end_pfn if end fell in a middle of a THP page).
*/
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, block_end_pfn;
/* Scan block by block. First and last block may be incomplete */
pfn = start_pfn;
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
for (; pfn < end_pfn; pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
block_end_pfn = min(block_end_pfn, end_pfn);
if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
continue;
pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
ISOLATE_UNEVICTABLE);
/*
* In case of fatal failure, release everything that might
* have been isolated in the previous iteration, and signal
* the failure back to caller.
*/
if (!pfn) {
putback_movable_pages(&cc->migratepages);
cc->nr_migratepages = 0;
break;
}
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
break;
}
acct_isolated(cc->zone, cc);
return pfn;
}
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
/*
* Based on information in the current compact_control, find blocks
* suitable for isolating free pages from and then isolate them.
*/
static void isolate_freepages(struct compact_control *cc)
{
struct zone *zone = cc->zone;
struct page *page;
unsigned long block_start_pfn; /* start of current pageblock */
unsigned long isolate_start_pfn; /* exact pfn we start at */
unsigned long block_end_pfn; /* end of current pageblock */
unsigned long low_pfn; /* lowest pfn scanner is able to scan */
struct list_head *freelist = &cc->freepages;
/*
* Initialise the free scanner. The starting point is where we last
* successfully isolated from, zone-cached value, or the end of the
* zone when isolating for the first time. For looping we also need
* this pfn aligned down to the pageblock boundary, because we do
* block_start_pfn -= pageblock_nr_pages in the for loop.
* For ending point, take care when isolating in last pageblock of a
* a zone which ends in the middle of a pageblock.
* The low boundary is the end of the pageblock the migration scanner
* is using.
*/
isolate_start_pfn = cc->free_pfn;
block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
zone_end_pfn(zone));
low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
/*
* Isolate free pages until enough are available to migrate the
* pages on cc->migratepages. We stop searching if the migrate
* and free page scanners meet or enough free pages are isolated.
*/
for (; block_start_pfn >= low_pfn &&
cc->nr_migratepages > cc->nr_freepages;
block_end_pfn = block_start_pfn,
block_start_pfn -= pageblock_nr_pages,
isolate_start_pfn = block_start_pfn) {
/*
* This can iterate a massively long zone without finding any
* suitable migration targets, so periodically check if we need
* to schedule, or even abort async compaction.
*/
if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
&& compact_should_abort(cc))
break;
page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
zone);
if (!page)
continue;
/* Check the block is suitable for migration */
if (!suitable_migration_target(page))
continue;
/* If isolation recently failed, do not retry */
if (!isolation_suitable(cc, page))
continue;
/* Found a block suitable for isolating free pages from. */
isolate_freepages_block(cc, &isolate_start_pfn,
block_end_pfn, freelist, false);
/*
* Remember where the free scanner should restart next time,
* which is where isolate_freepages_block() left off.
* But if it scanned the whole pageblock, isolate_start_pfn
* now points at block_end_pfn, which is the start of the next
* pageblock.
* In that case we will however want to restart at the start
* of the previous pageblock.
*/
cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
isolate_start_pfn :
block_start_pfn - pageblock_nr_pages;
/*
* isolate_freepages_block() might have aborted due to async
* compaction being contended
*/
if (cc->contended)
break;
}
/* split_free_page does not map the pages */
map_pages(freelist);
/*
* If we crossed the migrate scanner, we want to keep it that way
* so that compact_finished() may detect this
*/
if (block_start_pfn < low_pfn)
cc->free_pfn = cc->migrate_pfn;
}
/*
* This is a migrate-callback that "allocates" freepages by taking pages
* from the isolated freelists in the block we are migrating to.
*/
static struct page *compaction_alloc(struct page *migratepage,
unsigned long data,
int **result)
{
struct compact_control *cc = (struct compact_control *)data;
struct page *freepage;
/*
* Isolate free pages if necessary, and if we are not aborting due to
* contention.
*/
if (list_empty(&cc->freepages)) {
if (!cc->contended)
isolate_freepages(cc);
if (list_empty(&cc->freepages))
return NULL;
}
freepage = list_entry(cc->freepages.next, struct page, lru);
list_del(&freepage->lru);
cc->nr_freepages--;
return freepage;
}
/*
* This is a migrate-callback that "frees" freepages back to the isolated
* freelist. All pages on the freelist are from the same zone, so there is no
* special handling needed for NUMA.
*/
static void compaction_free(struct page *page, unsigned long data)
{
struct compact_control *cc = (struct compact_control *)data;
list_add(&page->lru, &cc->freepages);
cc->nr_freepages++;
}
/* possible outcome of isolate_migratepages */
typedef enum {
ISOLATE_ABORT, /* Abort compaction now */
ISOLATE_NONE, /* No pages isolated, continue scanning */
ISOLATE_SUCCESS, /* Pages isolated, migrate */
} isolate_migrate_t;
/*
* Isolate all pages that can be migrated from the first suitable block,
* starting at the block pointed to by the migrate scanner pfn within
* compact_control.
*/
static isolate_migrate_t isolate_migratepages(struct zone *zone,
struct compact_control *cc)
{
unsigned long low_pfn, end_pfn;
struct page *page;
const isolate_mode_t isolate_mode =
(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
/*
* Start at where we last stopped, or beginning of the zone as
* initialized by compact_zone()
*/
low_pfn = cc->migrate_pfn;
/* Only scan within a pageblock boundary */
end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
/*
* Iterate over whole pageblocks until we find the first suitable.
* Do not cross the free scanner.
*/
for (; end_pfn <= cc->free_pfn;
low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
/*
* This can potentially iterate a massively long zone with
* many pageblocks unsuitable, so periodically check if we
* need to schedule, or even abort async compaction.
*/
if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
&& compact_should_abort(cc))
break;
page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
if (!page)
continue;
/* If isolation recently failed, do not retry */
if (!isolation_suitable(cc, page))
continue;
/*
* For async compaction, also only scan in MOVABLE blocks.
* Async compaction is optimistic to see if the minimum amount
* of work satisfies the allocation.
*/
if (cc->mode == MIGRATE_ASYNC &&
!migrate_async_suitable(get_pageblock_migratetype(page)))
continue;
/* Perform the isolation */
low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
isolate_mode);
if (!low_pfn || cc->contended) {
acct_isolated(zone, cc);
return ISOLATE_ABORT;
}
/*
* Either we isolated something and proceed with migration. Or
* we failed and compact_zone should decide if we should
* continue or not.
*/
break;
}
acct_isolated(zone, cc);
/*
* Record where migration scanner will be restarted. If we end up in
* the same pageblock as the free scanner, make the scanners fully
* meet so that compact_finished() terminates compaction.
*/
cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
}
static int __compact_finished(struct zone *zone, struct compact_control *cc,
const int migratetype)
{
unsigned int order;
unsigned long watermark;
if (cc->contended || fatal_signal_pending(current))
return COMPACT_PARTIAL;
/* Compaction run completes if the migrate and free scanner meet */
if (cc->free_pfn <= cc->migrate_pfn) {
/* Let the next compaction start anew. */
zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
zone->compact_cached_free_pfn = zone_end_pfn(zone);
/*
* Mark that the PG_migrate_skip information should be cleared
* by kswapd when it goes to sleep. kswapd does not set the
* flag itself as the decision to be clear should be directly
* based on an allocation request.
*/
if (!current_is_kswapd())
zone->compact_blockskip_flush = true;
return COMPACT_COMPLETE;
}
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (cc->order == -1)
return COMPACT_CONTINUE;
/* Compaction run is not finished if the watermark is not met */
watermark = low_wmark_pages(zone);
if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
cc->alloc_flags))
return COMPACT_CONTINUE;
/* Direct compactor: Is a suitable page free? */
for (order = cc->order; order < MAX_ORDER; order++) {
struct free_area *area = &zone->free_area[order];
bool can_steal;
/* Job done if page is free of the right migratetype */
if (!list_empty(&area->free_list[migratetype]))
return COMPACT_PARTIAL;
#ifdef CONFIG_CMA
/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
if (migratetype == MIGRATE_MOVABLE &&
!list_empty(&area->free_list[MIGRATE_CMA]))
return COMPACT_PARTIAL;
#endif
/*
* Job done if allocation would steal freepages from
* other migratetype buddy lists.
*/
if (find_suitable_fallback(area, order, migratetype,
true, &can_steal) != -1)
return COMPACT_PARTIAL;
}
return COMPACT_NO_SUITABLE_PAGE;
}
static int compact_finished(struct zone *zone, struct compact_control *cc,
const int migratetype)
{
int ret;
ret = __compact_finished(zone, cc, migratetype);
trace_mm_compaction_finished(zone, cc->order, ret);
if (ret == COMPACT_NO_SUITABLE_PAGE)
ret = COMPACT_CONTINUE;
return ret;
}
/*
* compaction_suitable: Is this suitable to run compaction on this zone now?
* Returns
* COMPACT_SKIPPED - If there are too few free pages for compaction
* COMPACT_PARTIAL - If the allocation would succeed without compaction
* COMPACT_CONTINUE - If compaction should run now
*/
static unsigned long __compaction_suitable(struct zone *zone, int order,
int alloc_flags, int classzone_idx)
{
int fragindex;
unsigned long watermark;
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (order == -1)
return COMPACT_CONTINUE;
watermark = low_wmark_pages(zone);
/*
* If watermarks for high-order allocation are already met, there
* should be no need for compaction at all.
*/
if (zone_watermark_ok(zone, order, watermark, classzone_idx,
alloc_flags))
return COMPACT_PARTIAL;
/*
* Watermarks for order-0 must be met for compaction. Note the 2UL.
* This is because during migration, copies of pages need to be
* allocated and for a short time, the footprint is higher
*/
watermark += (2UL << order);
if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
return COMPACT_SKIPPED;
/*
* fragmentation index determines if allocation failures are due to
* low memory or external fragmentation
*
* index of -1000 would imply allocations might succeed depending on
* watermarks, but we already failed the high-order watermark check
* index towards 0 implies failure is due to lack of memory
* index towards 1000 implies failure is due to fragmentation
*
* Only compact if a failure would be due to fragmentation.
*/
fragindex = fragmentation_index(zone, order);
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
return COMPACT_NOT_SUITABLE_ZONE;
return COMPACT_CONTINUE;
}
unsigned long compaction_suitable(struct zone *zone, int order,
int alloc_flags, int classzone_idx)
{
unsigned long ret;
ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
trace_mm_compaction_suitable(zone, order, ret);
if (ret == COMPACT_NOT_SUITABLE_ZONE)
ret = COMPACT_SKIPPED;
return ret;
}
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
int ret;
unsigned long start_pfn = zone->zone_start_pfn;
unsigned long end_pfn = zone_end_pfn(zone);
const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
const bool sync = cc->mode != MIGRATE_ASYNC;
unsigned long last_migrated_pfn = 0;
ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
cc->classzone_idx);
switch (ret) {
case COMPACT_PARTIAL:
case COMPACT_SKIPPED:
/* Compaction is likely to fail */
return ret;
case COMPACT_CONTINUE:
/* Fall through to compaction */
;
}
/*
* Clear pageblock skip if there were failures recently and compaction
* is about to be retried after being deferred. kswapd does not do
* this reset as it'll reset the cached information when going to sleep.
*/
if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
__reset_isolation_suitable(zone);
/*
* Setup to move all movable pages to the end of the zone. Used cached
* information on where the scanners should start but check that it
* is initialised by ensuring the values are within zone boundaries.
*/
cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
cc->free_pfn = zone->compact_cached_free_pfn;
if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
zone->compact_cached_free_pfn = cc->free_pfn;
}
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
cc->migrate_pfn = start_pfn;
zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
}
trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
cc->free_pfn, end_pfn, sync);
migrate_prep_local();
while ((ret = compact_finished(zone, cc, migratetype)) ==
COMPACT_CONTINUE) {
int err;
unsigned long isolate_start_pfn = cc->migrate_pfn;
switch (isolate_migratepages(zone, cc)) {
case ISOLATE_ABORT:
ret = COMPACT_PARTIAL;
putback_movable_pages(&cc->migratepages);
cc->nr_migratepages = 0;
goto out;
case ISOLATE_NONE:
/*
* We haven't isolated and migrated anything, but
* there might still be unflushed migrations from
* previous cc->order aligned block.
*/
goto check_drain;
case ISOLATE_SUCCESS:
;
}
err = migrate_pages(&cc->migratepages, compaction_alloc,
compaction_free, (unsigned long)cc, cc->mode,
MR_COMPACTION);
trace_mm_compaction_migratepages(cc->nr_migratepages, err,
&cc->migratepages);
/* All pages were either migrated or will be released */
cc->nr_migratepages = 0;
if (err) {
putback_movable_pages(&cc->migratepages);
/*
* migrate_pages() may return -ENOMEM when scanners meet
* and we want compact_finished() to detect it
*/
if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
ret = COMPACT_PARTIAL;
goto out;
}
}
/*
* Record where we could have freed pages by migration and not
* yet flushed them to buddy allocator. We use the pfn that
* isolate_migratepages() started from in this loop iteration
* - this is the lowest page that could have been isolated and
* then freed by migration.
*/
if (!last_migrated_pfn)
last_migrated_pfn = isolate_start_pfn;
check_drain:
/*
* Has the migration scanner moved away from the previous
* cc->order aligned block where we migrated from? If yes,
* flush the pages that were freed, so that they can merge and
* compact_finished() can detect immediately if allocation
* would succeed.
*/
if (cc->order > 0 && last_migrated_pfn) {
int cpu;
unsigned long current_block_start =
cc->migrate_pfn & ~((1UL << cc->order) - 1);
if (last_migrated_pfn < current_block_start) {
cpu = get_cpu();
lru_add_drain_cpu(cpu);
drain_local_pages(zone);
put_cpu();
/* No more flushing until we migrate again */
last_migrated_pfn = 0;
}
}
}
out:
/*
* Release free pages and update where the free scanner should restart,
* so we don't leave any returned pages behind in the next attempt.
*/
if (cc->nr_freepages > 0) {
unsigned long free_pfn = release_freepages(&cc->freepages);
cc->nr_freepages = 0;
VM_BUG_ON(free_pfn == 0);
/* The cached pfn is always the first in a pageblock */
free_pfn &= ~(pageblock_nr_pages-1);
/*
* Only go back, not forward. The cached pfn might have been
* already reset to zone end in compact_finished()
*/
if (free_pfn > zone->compact_cached_free_pfn)
zone->compact_cached_free_pfn = free_pfn;
}
trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
cc->free_pfn, end_pfn, sync, ret);
return ret;
}
static unsigned long compact_zone_order(struct zone *zone, int order,
gfp_t gfp_mask, enum migrate_mode mode, int *contended,
int alloc_flags, int classzone_idx)
{
unsigned long ret;
struct compact_control cc = {
.nr_freepages = 0,
.nr_migratepages = 0,
.order = order,
.gfp_mask = gfp_mask,
.zone = zone,
.mode = mode,
.alloc_flags = alloc_flags,
.classzone_idx = classzone_idx,
};
INIT_LIST_HEAD(&cc.freepages);
INIT_LIST_HEAD(&cc.migratepages);
ret = compact_zone(zone, &cc);
VM_BUG_ON(!list_empty(&cc.freepages));
VM_BUG_ON(!list_empty(&cc.migratepages));
*contended = cc.contended;
return ret;
}
int sysctl_extfrag_threshold = 500;
/**
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
* @gfp_mask: The GFP mask of the current allocation
* @order: The order of the current allocation
* @alloc_flags: The allocation flags of the current allocation
* @ac: The context of current allocation
* @mode: The migration mode for async, sync light, or sync migration
* @contended: Return value that determines if compaction was aborted due to
* need_resched() or lock contention
*
* This is the main entry point for direct page compaction.
*/
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
int alloc_flags, const struct alloc_context *ac,
enum migrate_mode mode, int *contended)
{
int may_enter_fs = gfp_mask & __GFP_FS;
int may_perform_io = gfp_mask & __GFP_IO;
struct zoneref *z;
struct zone *zone;
int rc = COMPACT_DEFERRED;
int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
*contended = COMPACT_CONTENDED_NONE;
/* Check if the GFP flags allow compaction */
if (!order || !may_enter_fs || !may_perform_io)
return COMPACT_SKIPPED;
trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
/* Compact each zone in the list */
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
ac->nodemask) {
int status;
int zone_contended;
if (compaction_deferred(zone, order))
continue;
status = compact_zone_order(zone, order, gfp_mask, mode,
&zone_contended, alloc_flags,
ac->classzone_idx);
rc = max(status, rc);
/*
* It takes at least one zone that wasn't lock contended
* to clear all_zones_contended.
*/
all_zones_contended &= zone_contended;
/* If a normal allocation would succeed, stop compacting */
if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
ac->classzone_idx, alloc_flags)) {
/*
* We think the allocation will succeed in this zone,
* but it is not certain, hence the false. The caller
* will repeat this with true if allocation indeed
* succeeds in this zone.
*/
compaction_defer_reset(zone, order, false);
/*
* It is possible that async compaction aborted due to
* need_resched() and the watermarks were ok thanks to
* somebody else freeing memory. The allocation can
* however still fail so we better signal the
* need_resched() contention anyway (this will not
* prevent the allocation attempt).
*/
if (zone_contended == COMPACT_CONTENDED_SCHED)
*contended = COMPACT_CONTENDED_SCHED;
goto break_loop;
}
if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
/*
* We think that allocation won't succeed in this zone
* so we defer compaction there. If it ends up
* succeeding after all, it will be reset.
*/
defer_compaction(zone, order);
}
/*
* We might have stopped compacting due to need_resched() in
* async compaction, or due to a fatal signal detected. In that
* case do not try further zones and signal need_resched()
* contention.
*/
if ((zone_contended == COMPACT_CONTENDED_SCHED)
|| fatal_signal_pending(current)) {
*contended = COMPACT_CONTENDED_SCHED;
goto break_loop;
}
continue;
break_loop:
/*
* We might not have tried all the zones, so be conservative
* and assume they are not all lock contended.
*/
all_zones_contended = 0;
break;
}
/*
* If at least one zone wasn't deferred or skipped, we report if all
* zones that were tried were lock contended.
*/
if (rc > COMPACT_SKIPPED && all_zones_contended)
*contended = COMPACT_CONTENDED_LOCK;
return rc;
}
/* Compact all zones within a node */
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
{
int zoneid;
struct zone *zone;
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
cc->nr_freepages = 0;
cc->nr_migratepages = 0;
cc->zone = zone;
INIT_LIST_HEAD(&cc->freepages);
INIT_LIST_HEAD(&cc->migratepages);
if (cc->order == -1 || !compaction_deferred(zone, cc->order))
compact_zone(zone, cc);
if (cc->order > 0) {
if (zone_watermark_ok(zone, cc->order,
low_wmark_pages(zone), 0, 0))
compaction_defer_reset(zone, cc->order, false);
}
VM_BUG_ON(!list_empty(&cc->freepages));
VM_BUG_ON(!list_empty(&cc->migratepages));
}
}
void compact_pgdat(pg_data_t *pgdat, int order)
{
struct compact_control cc = {
.order = order,
.mode = MIGRATE_ASYNC,
};
if (!order)
return;
__compact_pgdat(pgdat, &cc);
}
static void compact_node(int nid)
{
struct compact_control cc = {
.order = -1,
.mode = MIGRATE_SYNC,
.ignore_skip_hint = true,
};
__compact_pgdat(NODE_DATA(nid), &cc);
}
/* Compact all nodes in the system */
static void compact_nodes(void)
{
int nid;
/* Flush pending updates to the LRU lists */
lru_add_drain_all();
for_each_online_node(nid)
compact_node(nid);
}
/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;
/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
if (write)
compact_nodes();
return 0;
}
int sysctl_extfrag_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, buffer, length, ppos);
return 0;
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
static ssize_t sysfs_compact_node(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nid = dev->id;
if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
/* Flush pending updates to the LRU lists */
lru_add_drain_all();
compact_node(nid);
}
return count;
}
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
int compaction_register_node(struct node *node)
{
return device_create_file(&node->dev, &dev_attr_compact);
}
void compaction_unregister_node(struct node *node)
{
return device_remove_file(&node->dev, &dev_attr_compact);
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
#endif /* CONFIG_COMPACTION */