blob: 8bb03251f34caac031803c6b7e4155f53bcb4ee0 [file] [log] [blame]
#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
#include <asm-generic/pgtable-nopud.h>
#define PTE_INDEX_SIZE 8
#define PMD_INDEX_SIZE 10
#define PUD_INDEX_SIZE 0
#define PGD_INDEX_SIZE 12
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/* With 4k base page size, hugepage PTEs go at the PMD level */
#define MIN_HUGEPTE_SHIFT PAGE_SHIFT
/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define _PAGE_COMBO 0x00001000 /* this is a combo 4k page */
#define _PAGE_4K_PFN 0x00002000 /* PFN is for a single 4k page */
/*
* Used to track subpage group valid if _PAGE_COMBO is set
* This overloads _PAGE_F_GIX and _PAGE_F_SECOND
*/
#define _PAGE_COMBO_VALID (_PAGE_F_GIX | _PAGE_F_SECOND)
/* PTE flags to conserve for HPTE identification */
#define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_F_SECOND | \
_PAGE_F_GIX | _PAGE_HASHPTE | _PAGE_COMBO)
/* Shift to put page number into pte.
*
* That gives us a max RPN of 41 bits, which means a max of 57 bits
* of addressable physical space, or 53 bits for the special 4k PFNs.
*/
#define PTE_RPN_SHIFT (16)
#define PTE_RPN_SIZE (41)
/*
* we support 16 fragments per PTE page of 64K size.
*/
#define PTE_FRAG_NR 16
/*
* We use a 2K PTE page fragment and another 2K for storing
* real_pte_t hash index
*/
#define PTE_FRAG_SIZE_SHIFT 12
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
/*
* Bits to mask out from a PMD to get to the PTE page
* PMDs point to PTE table fragments which are PTE_FRAG_SIZE aligned.
*/
#define PMD_MASKED_BITS (PTE_FRAG_SIZE - 1)
/* Bits to mask out from a PGD/PUD to get to the PMD page */
#define PUD_MASKED_BITS 0x1ff
#ifndef __ASSEMBLY__
/*
* With 64K pages on hash table, we have a special PTE format that
* uses a second "half" of the page table to encode sub-page information
* in order to deal with 64K made of 4K HW pages. Thus we override the
* generic accessors and iterators here
*/
#define __real_pte __real_pte
static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
{
real_pte_t rpte;
unsigned long *hidxp;
rpte.pte = pte;
rpte.hidx = 0;
if (pte_val(pte) & _PAGE_COMBO) {
/*
* Make sure we order the hidx load against the _PAGE_COMBO
* check. The store side ordering is done in __hash_page_4K
*/
smp_rmb();
hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
rpte.hidx = *hidxp;
}
return rpte;
}
static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
{
if ((pte_val(rpte.pte) & _PAGE_COMBO))
return (rpte.hidx >> (index<<2)) & 0xf;
return (pte_val(rpte.pte) >> _PAGE_F_GIX_SHIFT) & 0xf;
}
#define __rpte_to_pte(r) ((r).pte)
extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
/*
* Trick: we set __end to va + 64k, which happens works for
* a 16M page as well as we want only one iteration
*/
#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
do { \
unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
unsigned __split = (psize == MMU_PAGE_4K || \
psize == MMU_PAGE_64K_AP); \
shift = mmu_psize_defs[psize].shift; \
for (index = 0; vpn < __end; index++, \
vpn += (1L << (shift - VPN_SHIFT))) { \
if (!__split || __rpte_sub_valid(rpte, index)) \
do {
#define pte_iterate_hashed_end() } while(0); } } while(0)
#define pte_pagesize_index(mm, addr, pte) \
(((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
#define remap_4k_pfn(vma, addr, pfn, prot) \
(WARN_ON(((pfn) >= (1UL << PTE_RPN_SIZE))) ? -EINVAL : \
remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \
__pgprot(pgprot_val((prot)) | _PAGE_4K_PFN)))
#define PTE_TABLE_SIZE PTE_FRAG_SIZE
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + (sizeof(unsigned long) << PMD_INDEX_SIZE))
#else
#define PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
#endif
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
#define pgd_pte(pgd) (pud_pte(((pud_t){ pgd })))
#define pte_pgd(pte) ((pgd_t)pte_pud(pte))
#ifdef CONFIG_HUGETLB_PAGE
/*
* We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
* 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
*
* Defined in such a way that we can optimize away code block at build time
* if CONFIG_HUGETLB_PAGE=n.
*/
static inline int pmd_huge(pmd_t pmd)
{
/*
* leaf pte for huge page
*/
return !!(pmd_val(pmd) & _PAGE_PTE);
}
static inline int pud_huge(pud_t pud)
{
/*
* leaf pte for huge page
*/
return !!(pud_val(pud) & _PAGE_PTE);
}
static inline int pgd_huge(pgd_t pgd)
{
/*
* leaf pte for huge page
*/
return !!(pgd_val(pgd) & _PAGE_PTE);
}
#define pgd_huge pgd_huge
#ifdef CONFIG_DEBUG_VM
extern int hugepd_ok(hugepd_t hpd);
#define is_hugepd(hpd) (hugepd_ok(hpd))
#else
/*
* With 64k page size, we have hugepage ptes in the pgd and pmd entries. We don't
* need to setup hugepage directory for them. Our pte and page directory format
* enable us to have this enabled.
*/
static inline int hugepd_ok(hugepd_t hpd)
{
return 0;
}
#define is_hugepd(pdep) 0
#endif /* CONFIG_DEBUG_VM */
#endif /* CONFIG_HUGETLB_PAGE */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp,
unsigned long clr,
unsigned long set);
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
/*
* The hpte hindex is stored in the pgtable whose address is in the
* second half of the PMD
*
* Order this load with the test for pmd_trans_huge in the caller
*/
smp_rmb();
return *(char **)(pmdp + PTRS_PER_PMD);
}
/*
* The linux hugepage PMD now include the pmd entries followed by the address
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
* [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
*
* The top three bits are intentionally left as zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT bit of that is zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
return hpte_slot_array[index] & 0x1;
}
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
int index)
{
return hpte_slot_array[index] >> 1;
}
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
unsigned int index, unsigned int hidx)
{
hpte_slot_array[index] = (hidx << 1) | 0x1;
}
/*
*
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
* page. The hugetlbfs page table walking and mangling paths are totally
* separated form the core VM paths and they're differentiated by
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
*
* pmd_trans_huge() is defined as false at build time if
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
* time in such case.
*
* For ppc64 we need to differntiate from explicit hugepages from THP, because
* for THP we also track the subpage details at the pmd level. We don't do
* that for explicit huge pages.
*
*/
static inline int pmd_trans_huge(pmd_t pmd)
{
return !!((pmd_val(pmd) & (_PAGE_PTE | _PAGE_THP_HUGE)) ==
(_PAGE_PTE | _PAGE_THP_HUGE));
}
static inline int pmd_large(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_PTE);
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
unsigned long old;
if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
return 0;
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
return ((old & _PAGE_ACCESSED) != 0);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
return;
pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */