blob: 7270a293175d064d6f57e2a1f7039a8d4da46067 [file] [log] [blame]
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <asm/kaiser.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/desc.h>
#ifdef CONFIG_KAISER
__visible DEFINE_PER_CPU_USER_MAPPED(unsigned long, unsafe_stack_register_backup);
/*
* At runtime, the only things we map are some things for CPU
* hotplug, and stacks for new processes. No two CPUs will ever
* be populating the same addresses, so we only need to ensure
* that we protect between two CPUs trying to allocate and
* populate the same page table page.
*
* Only take this lock when doing a set_p[4um]d(), but it is not
* needed for doing a set_pte(). We assume that only the *owner*
* of a given allocation will be doing this for _their_
* allocation.
*
* This ensures that once a system has been running for a while
* and there have been stacks all over and these page tables
* are fully populated, there will be no further acquisitions of
* this lock.
*/
static DEFINE_SPINLOCK(shadow_table_allocation_lock);
/*
* Returns -1 on error.
*/
static inline unsigned long get_pa_from_mapping(unsigned long vaddr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset_k(vaddr);
/*
* We made all the kernel PGDs present in kaiser_init().
* We expect them to stay that way.
*/
BUG_ON(pgd_none(*pgd));
/*
* PGDs are either 512GB or 128TB on all x86_64
* configurations. We don't handle these.
*/
BUG_ON(pgd_large(*pgd));
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
WARN_ON_ONCE(1);
return -1;
}
if (pud_large(*pud))
return (pud_pfn(*pud) << PAGE_SHIFT) | (vaddr & ~PUD_PAGE_MASK);
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
WARN_ON_ONCE(1);
return -1;
}
if (pmd_large(*pmd))
return (pmd_pfn(*pmd) << PAGE_SHIFT) | (vaddr & ~PMD_PAGE_MASK);
pte = pte_offset_kernel(pmd, vaddr);
if (pte_none(*pte)) {
WARN_ON_ONCE(1);
return -1;
}
return (pte_pfn(*pte) << PAGE_SHIFT) | (vaddr & ~PAGE_MASK);
}
/*
* This is a relatively normal page table walk, except that it
* also tries to allocate page tables pages along the way.
*
* Returns a pointer to a PTE on success, or NULL on failure.
*/
static pte_t *kaiser_pagetable_walk(unsigned long address, bool is_atomic)
{
pmd_t *pmd;
pud_t *pud;
pgd_t *pgd = native_get_shadow_pgd(pgd_offset_k(address));
gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
might_sleep();
if (is_atomic) {
gfp &= ~GFP_KERNEL;
gfp |= __GFP_HIGH | __GFP_ATOMIC;
}
if (pgd_none(*pgd)) {
WARN_ONCE(1, "All shadow pgds should have been populated");
return NULL;
}
BUILD_BUG_ON(pgd_large(*pgd) != 0);
pud = pud_offset(pgd, address);
/* The shadow page tables do not use large mappings: */
if (pud_large(*pud)) {
WARN_ON(1);
return NULL;
}
if (pud_none(*pud)) {
unsigned long new_pmd_page = __get_free_page(gfp);
if (!new_pmd_page)
return NULL;
spin_lock(&shadow_table_allocation_lock);
if (pud_none(*pud))
set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
else
free_page(new_pmd_page);
spin_unlock(&shadow_table_allocation_lock);
}
pmd = pmd_offset(pud, address);
/* The shadow page tables do not use large mappings: */
if (pmd_large(*pmd)) {
WARN_ON(1);
return NULL;
}
if (pmd_none(*pmd)) {
unsigned long new_pte_page = __get_free_page(gfp);
if (!new_pte_page)
return NULL;
spin_lock(&shadow_table_allocation_lock);
if (pmd_none(*pmd))
set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
else
free_page(new_pte_page);
spin_unlock(&shadow_table_allocation_lock);
}
return pte_offset_kernel(pmd, address);
}
int kaiser_add_user_map(const void *__start_addr, unsigned long size,
unsigned long flags)
{
int ret = 0;
pte_t *pte;
unsigned long start_addr = (unsigned long )__start_addr;
unsigned long address = start_addr & PAGE_MASK;
unsigned long end_addr = PAGE_ALIGN(start_addr + size);
unsigned long target_address;
for (;address < end_addr; address += PAGE_SIZE) {
target_address = get_pa_from_mapping(address);
if (target_address == -1) {
ret = -EIO;
break;
}
pte = kaiser_pagetable_walk(address, false);
if (pte_none(*pte)) {
set_pte(pte, __pte(flags | target_address));
} else {
pte_t tmp;
set_pte(&tmp, __pte(flags | target_address));
WARN_ON_ONCE(!pte_same(*pte, tmp));
}
}
return ret;
}
static int kaiser_add_user_map_ptrs(const void *start, const void *end, unsigned long flags)
{
unsigned long size = end - start;
return kaiser_add_user_map(start, size, flags);
}
/*
* Ensure that the top level of the (shadow) page tables are
* entirely populated. This ensures that all processes that get
* forked have the same entries. This way, we do not have to
* ever go set up new entries in older processes.
*
* Note: we never free these, so there are no updates to them
* after this.
*/
static void __init kaiser_init_all_pgds(void)
{
pgd_t *pgd;
int i = 0;
pgd = native_get_shadow_pgd(pgd_offset_k((unsigned long )0));
for (i = PTRS_PER_PGD / 2; i < PTRS_PER_PGD; i++) {
pgd_t new_pgd;
pud_t *pud = pud_alloc_one(&init_mm, PAGE_OFFSET + i * PGDIR_SIZE);
if (!pud) {
WARN_ON(1);
break;
}
new_pgd = __pgd(_KERNPG_TABLE |__pa(pud));
/*
* Make sure not to stomp on some other pgd entry.
*/
if (!pgd_none(pgd[i])) {
WARN_ON(1);
continue;
}
set_pgd(pgd + i, new_pgd);
}
}
#define kaiser_add_user_map_early(start, size, flags) do { \
int __ret = kaiser_add_user_map(start, size, flags); \
WARN_ON(__ret); \
} while (0)
#define kaiser_add_user_map_ptrs_early(start, end, flags) do { \
int __ret = kaiser_add_user_map_ptrs(start, end, flags); \
WARN_ON(__ret); \
} while (0)
extern char __per_cpu_user_mapped_start[], __per_cpu_user_mapped_end[];
/*
* If anything in here fails, we will likely die on one of the
* first kernel->user transitions and init will die. But, we
* will have most of the kernel up by then and should be able to
* get a clean warning out of it. If we BUG_ON() here, we run
* the risk of being before we have good console output.
*/
void __init kaiser_init(void)
{
int cpu;
kaiser_init_all_pgds();
for_each_possible_cpu(cpu) {
void *percpu_vaddr = __per_cpu_user_mapped_start +
per_cpu_offset(cpu);
unsigned long percpu_sz = __per_cpu_user_mapped_end -
__per_cpu_user_mapped_start;
kaiser_add_user_map_early(percpu_vaddr, percpu_sz,
__PAGE_KERNEL);
}
/*
* Map the entry/exit text section, which is needed at
* switches from user to and from kernel.
*/
kaiser_add_user_map_ptrs_early(__entry_text_start, __entry_text_end,
__PAGE_KERNEL_RX);
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
kaiser_add_user_map_ptrs_early(__irqentry_text_start,
__irqentry_text_end,
__PAGE_KERNEL_RX);
#endif
kaiser_add_user_map_early((void *)idt_descr.address,
sizeof(gate_desc) * NR_VECTORS,
__PAGE_KERNEL_RO);
#ifdef CONFIG_TRACING
kaiser_add_user_map_early(&trace_idt_descr,
sizeof(trace_idt_descr),
__PAGE_KERNEL);
kaiser_add_user_map_early(&trace_idt_table,
sizeof(gate_desc) * NR_VECTORS,
__PAGE_KERNEL);
#endif
kaiser_add_user_map_early(&debug_idt_descr, sizeof(debug_idt_descr),
__PAGE_KERNEL);
kaiser_add_user_map_early(&debug_idt_table,
sizeof(gate_desc) * NR_VECTORS,
__PAGE_KERNEL);
}
extern void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end);
// add a mapping to the shadow-mapping, and synchronize the mappings
int kaiser_add_mapping(unsigned long addr, unsigned long size, unsigned long flags)
{
return kaiser_add_user_map((const void *)addr, size, flags);
}
void kaiser_remove_mapping(unsigned long start, unsigned long size)
{
unsigned long end = start + size;
unsigned long addr;
for (addr = start; addr < end; addr += PGDIR_SIZE) {
pgd_t *pgd = native_get_shadow_pgd(pgd_offset_k(addr));
/*
* unmap_p4d_range() handles > P4D_SIZE unmaps,
* so no need to trim 'end'.
*/
unmap_pud_range_nofree(pgd, addr, end);
}
}
#endif /* CONFIG_KAISER */