| #include <linux/bug.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/bug.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/kaiser.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/desc.h> |
| #ifdef CONFIG_KAISER |
| |
| __visible DEFINE_PER_CPU_USER_MAPPED(unsigned long, unsafe_stack_register_backup); |
| /* |
| * At runtime, the only things we map are some things for CPU |
| * hotplug, and stacks for new processes. No two CPUs will ever |
| * be populating the same addresses, so we only need to ensure |
| * that we protect between two CPUs trying to allocate and |
| * populate the same page table page. |
| * |
| * Only take this lock when doing a set_p[4um]d(), but it is not |
| * needed for doing a set_pte(). We assume that only the *owner* |
| * of a given allocation will be doing this for _their_ |
| * allocation. |
| * |
| * This ensures that once a system has been running for a while |
| * and there have been stacks all over and these page tables |
| * are fully populated, there will be no further acquisitions of |
| * this lock. |
| */ |
| static DEFINE_SPINLOCK(shadow_table_allocation_lock); |
| |
| /* |
| * Returns -1 on error. |
| */ |
| static inline unsigned long get_pa_from_mapping(unsigned long vaddr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = pgd_offset_k(vaddr); |
| /* |
| * We made all the kernel PGDs present in kaiser_init(). |
| * We expect them to stay that way. |
| */ |
| BUG_ON(pgd_none(*pgd)); |
| /* |
| * PGDs are either 512GB or 128TB on all x86_64 |
| * configurations. We don't handle these. |
| */ |
| BUG_ON(pgd_large(*pgd)); |
| |
| pud = pud_offset(pgd, vaddr); |
| if (pud_none(*pud)) { |
| WARN_ON_ONCE(1); |
| return -1; |
| } |
| |
| if (pud_large(*pud)) |
| return (pud_pfn(*pud) << PAGE_SHIFT) | (vaddr & ~PUD_PAGE_MASK); |
| |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| WARN_ON_ONCE(1); |
| return -1; |
| } |
| |
| if (pmd_large(*pmd)) |
| return (pmd_pfn(*pmd) << PAGE_SHIFT) | (vaddr & ~PMD_PAGE_MASK); |
| |
| pte = pte_offset_kernel(pmd, vaddr); |
| if (pte_none(*pte)) { |
| WARN_ON_ONCE(1); |
| return -1; |
| } |
| |
| return (pte_pfn(*pte) << PAGE_SHIFT) | (vaddr & ~PAGE_MASK); |
| } |
| |
| /* |
| * This is a relatively normal page table walk, except that it |
| * also tries to allocate page tables pages along the way. |
| * |
| * Returns a pointer to a PTE on success, or NULL on failure. |
| */ |
| static pte_t *kaiser_pagetable_walk(unsigned long address, bool is_atomic) |
| { |
| pmd_t *pmd; |
| pud_t *pud; |
| pgd_t *pgd = native_get_shadow_pgd(pgd_offset_k(address)); |
| gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO); |
| |
| might_sleep(); |
| if (is_atomic) { |
| gfp &= ~GFP_KERNEL; |
| gfp |= __GFP_HIGH | __GFP_ATOMIC; |
| } |
| |
| if (pgd_none(*pgd)) { |
| WARN_ONCE(1, "All shadow pgds should have been populated"); |
| return NULL; |
| } |
| BUILD_BUG_ON(pgd_large(*pgd) != 0); |
| |
| pud = pud_offset(pgd, address); |
| /* The shadow page tables do not use large mappings: */ |
| if (pud_large(*pud)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| if (pud_none(*pud)) { |
| unsigned long new_pmd_page = __get_free_page(gfp); |
| if (!new_pmd_page) |
| return NULL; |
| spin_lock(&shadow_table_allocation_lock); |
| if (pud_none(*pud)) |
| set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page))); |
| else |
| free_page(new_pmd_page); |
| spin_unlock(&shadow_table_allocation_lock); |
| } |
| |
| pmd = pmd_offset(pud, address); |
| /* The shadow page tables do not use large mappings: */ |
| if (pmd_large(*pmd)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| if (pmd_none(*pmd)) { |
| unsigned long new_pte_page = __get_free_page(gfp); |
| if (!new_pte_page) |
| return NULL; |
| spin_lock(&shadow_table_allocation_lock); |
| if (pmd_none(*pmd)) |
| set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page))); |
| else |
| free_page(new_pte_page); |
| spin_unlock(&shadow_table_allocation_lock); |
| } |
| |
| return pte_offset_kernel(pmd, address); |
| } |
| |
| int kaiser_add_user_map(const void *__start_addr, unsigned long size, |
| unsigned long flags) |
| { |
| int ret = 0; |
| pte_t *pte; |
| unsigned long start_addr = (unsigned long )__start_addr; |
| unsigned long address = start_addr & PAGE_MASK; |
| unsigned long end_addr = PAGE_ALIGN(start_addr + size); |
| unsigned long target_address; |
| |
| for (;address < end_addr; address += PAGE_SIZE) { |
| target_address = get_pa_from_mapping(address); |
| if (target_address == -1) { |
| ret = -EIO; |
| break; |
| } |
| pte = kaiser_pagetable_walk(address, false); |
| if (pte_none(*pte)) { |
| set_pte(pte, __pte(flags | target_address)); |
| } else { |
| pte_t tmp; |
| set_pte(&tmp, __pte(flags | target_address)); |
| WARN_ON_ONCE(!pte_same(*pte, tmp)); |
| } |
| } |
| return ret; |
| } |
| |
| static int kaiser_add_user_map_ptrs(const void *start, const void *end, unsigned long flags) |
| { |
| unsigned long size = end - start; |
| |
| return kaiser_add_user_map(start, size, flags); |
| } |
| |
| /* |
| * Ensure that the top level of the (shadow) page tables are |
| * entirely populated. This ensures that all processes that get |
| * forked have the same entries. This way, we do not have to |
| * ever go set up new entries in older processes. |
| * |
| * Note: we never free these, so there are no updates to them |
| * after this. |
| */ |
| static void __init kaiser_init_all_pgds(void) |
| { |
| pgd_t *pgd; |
| int i = 0; |
| |
| pgd = native_get_shadow_pgd(pgd_offset_k((unsigned long )0)); |
| for (i = PTRS_PER_PGD / 2; i < PTRS_PER_PGD; i++) { |
| pgd_t new_pgd; |
| pud_t *pud = pud_alloc_one(&init_mm, PAGE_OFFSET + i * PGDIR_SIZE); |
| if (!pud) { |
| WARN_ON(1); |
| break; |
| } |
| new_pgd = __pgd(_KERNPG_TABLE |__pa(pud)); |
| /* |
| * Make sure not to stomp on some other pgd entry. |
| */ |
| if (!pgd_none(pgd[i])) { |
| WARN_ON(1); |
| continue; |
| } |
| set_pgd(pgd + i, new_pgd); |
| } |
| } |
| |
| #define kaiser_add_user_map_early(start, size, flags) do { \ |
| int __ret = kaiser_add_user_map(start, size, flags); \ |
| WARN_ON(__ret); \ |
| } while (0) |
| |
| #define kaiser_add_user_map_ptrs_early(start, end, flags) do { \ |
| int __ret = kaiser_add_user_map_ptrs(start, end, flags); \ |
| WARN_ON(__ret); \ |
| } while (0) |
| |
| extern char __per_cpu_user_mapped_start[], __per_cpu_user_mapped_end[]; |
| /* |
| * If anything in here fails, we will likely die on one of the |
| * first kernel->user transitions and init will die. But, we |
| * will have most of the kernel up by then and should be able to |
| * get a clean warning out of it. If we BUG_ON() here, we run |
| * the risk of being before we have good console output. |
| */ |
| void __init kaiser_init(void) |
| { |
| int cpu; |
| |
| kaiser_init_all_pgds(); |
| |
| for_each_possible_cpu(cpu) { |
| void *percpu_vaddr = __per_cpu_user_mapped_start + |
| per_cpu_offset(cpu); |
| unsigned long percpu_sz = __per_cpu_user_mapped_end - |
| __per_cpu_user_mapped_start; |
| kaiser_add_user_map_early(percpu_vaddr, percpu_sz, |
| __PAGE_KERNEL); |
| } |
| |
| /* |
| * Map the entry/exit text section, which is needed at |
| * switches from user to and from kernel. |
| */ |
| kaiser_add_user_map_ptrs_early(__entry_text_start, __entry_text_end, |
| __PAGE_KERNEL_RX); |
| |
| #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN) |
| kaiser_add_user_map_ptrs_early(__irqentry_text_start, |
| __irqentry_text_end, |
| __PAGE_KERNEL_RX); |
| #endif |
| kaiser_add_user_map_early((void *)idt_descr.address, |
| sizeof(gate_desc) * NR_VECTORS, |
| __PAGE_KERNEL_RO); |
| #ifdef CONFIG_TRACING |
| kaiser_add_user_map_early(&trace_idt_descr, |
| sizeof(trace_idt_descr), |
| __PAGE_KERNEL); |
| kaiser_add_user_map_early(&trace_idt_table, |
| sizeof(gate_desc) * NR_VECTORS, |
| __PAGE_KERNEL); |
| #endif |
| kaiser_add_user_map_early(&debug_idt_descr, sizeof(debug_idt_descr), |
| __PAGE_KERNEL); |
| kaiser_add_user_map_early(&debug_idt_table, |
| sizeof(gate_desc) * NR_VECTORS, |
| __PAGE_KERNEL); |
| } |
| |
| extern void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end); |
| // add a mapping to the shadow-mapping, and synchronize the mappings |
| int kaiser_add_mapping(unsigned long addr, unsigned long size, unsigned long flags) |
| { |
| return kaiser_add_user_map((const void *)addr, size, flags); |
| } |
| |
| void kaiser_remove_mapping(unsigned long start, unsigned long size) |
| { |
| unsigned long end = start + size; |
| unsigned long addr; |
| |
| for (addr = start; addr < end; addr += PGDIR_SIZE) { |
| pgd_t *pgd = native_get_shadow_pgd(pgd_offset_k(addr)); |
| /* |
| * unmap_p4d_range() handles > P4D_SIZE unmaps, |
| * so no need to trim 'end'. |
| */ |
| unmap_pud_range_nofree(pgd, addr, end); |
| } |
| } |
| #endif /* CONFIG_KAISER */ |