| /* |
| * linux/fs/ext4/crypto.c |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * |
| * This contains encryption functions for ext4 |
| * |
| * Written by Michael Halcrow, 2014. |
| * |
| * Filename encryption additions |
| * Uday Savagaonkar, 2014 |
| * Encryption policy handling additions |
| * Ildar Muslukhov, 2014 |
| * |
| * This has not yet undergone a rigorous security audit. |
| * |
| * The usage of AES-XTS should conform to recommendations in NIST |
| * Special Publication 800-38E and IEEE P1619/D16. |
| */ |
| |
| #include <crypto/skcipher.h> |
| #include <keys/user-type.h> |
| #include <keys/encrypted-type.h> |
| #include <linux/ecryptfs.h> |
| #include <linux/gfp.h> |
| #include <linux/kernel.h> |
| #include <linux/key.h> |
| #include <linux/list.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/random.h> |
| #include <linux/scatterlist.h> |
| #include <linux/spinlock_types.h> |
| |
| #include "ext4_extents.h" |
| #include "xattr.h" |
| |
| /* Encryption added and removed here! (L: */ |
| |
| static unsigned int num_prealloc_crypto_pages = 32; |
| static unsigned int num_prealloc_crypto_ctxs = 128; |
| |
| module_param(num_prealloc_crypto_pages, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| "Number of crypto pages to preallocate"); |
| module_param(num_prealloc_crypto_ctxs, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_ctxs, |
| "Number of crypto contexts to preallocate"); |
| |
| static mempool_t *ext4_bounce_page_pool; |
| |
| static LIST_HEAD(ext4_free_crypto_ctxs); |
| static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); |
| |
| static struct kmem_cache *ext4_crypto_ctx_cachep; |
| struct kmem_cache *ext4_crypt_info_cachep; |
| |
| /** |
| * ext4_release_crypto_ctx() - Releases an encryption context |
| * @ctx: The encryption context to release. |
| * |
| * If the encryption context was allocated from the pre-allocated pool, returns |
| * it to that pool. Else, frees it. |
| * |
| * If there's a bounce page in the context, this frees that. |
| */ |
| void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) |
| { |
| unsigned long flags; |
| |
| if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) |
| mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); |
| ctx->w.bounce_page = NULL; |
| ctx->w.control_page = NULL; |
| if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { |
| kmem_cache_free(ext4_crypto_ctx_cachep, ctx); |
| } else { |
| spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); |
| list_add(&ctx->free_list, &ext4_free_crypto_ctxs); |
| spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); |
| } |
| } |
| |
| /** |
| * ext4_get_crypto_ctx() - Gets an encryption context |
| * @inode: The inode for which we are doing the crypto |
| * |
| * Allocates and initializes an encryption context. |
| * |
| * Return: An allocated and initialized encryption context on success; error |
| * value or NULL otherwise. |
| */ |
| struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode, |
| gfp_t gfp_flags) |
| { |
| struct ext4_crypto_ctx *ctx = NULL; |
| int res = 0; |
| unsigned long flags; |
| struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; |
| |
| if (ci == NULL) |
| return ERR_PTR(-ENOKEY); |
| |
| /* |
| * We first try getting the ctx from a free list because in |
| * the common case the ctx will have an allocated and |
| * initialized crypto tfm, so it's probably a worthwhile |
| * optimization. For the bounce page, we first try getting it |
| * from the kernel allocator because that's just about as fast |
| * as getting it from a list and because a cache of free pages |
| * should generally be a "last resort" option for a filesystem |
| * to be able to do its job. |
| */ |
| spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); |
| ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, |
| struct ext4_crypto_ctx, free_list); |
| if (ctx) |
| list_del(&ctx->free_list); |
| spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); |
| if (!ctx) { |
| ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags); |
| if (!ctx) { |
| res = -ENOMEM; |
| goto out; |
| } |
| ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } else { |
| ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| } |
| ctx->flags &= ~EXT4_WRITE_PATH_FL; |
| |
| out: |
| if (res) { |
| if (!IS_ERR_OR_NULL(ctx)) |
| ext4_release_crypto_ctx(ctx); |
| ctx = ERR_PTR(res); |
| } |
| return ctx; |
| } |
| |
| struct workqueue_struct *ext4_read_workqueue; |
| static DEFINE_MUTEX(crypto_init); |
| |
| /** |
| * ext4_exit_crypto() - Shutdown the ext4 encryption system |
| */ |
| void ext4_exit_crypto(void) |
| { |
| struct ext4_crypto_ctx *pos, *n; |
| |
| list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) |
| kmem_cache_free(ext4_crypto_ctx_cachep, pos); |
| INIT_LIST_HEAD(&ext4_free_crypto_ctxs); |
| if (ext4_bounce_page_pool) |
| mempool_destroy(ext4_bounce_page_pool); |
| ext4_bounce_page_pool = NULL; |
| if (ext4_read_workqueue) |
| destroy_workqueue(ext4_read_workqueue); |
| ext4_read_workqueue = NULL; |
| if (ext4_crypto_ctx_cachep) |
| kmem_cache_destroy(ext4_crypto_ctx_cachep); |
| ext4_crypto_ctx_cachep = NULL; |
| if (ext4_crypt_info_cachep) |
| kmem_cache_destroy(ext4_crypt_info_cachep); |
| ext4_crypt_info_cachep = NULL; |
| } |
| |
| /** |
| * ext4_init_crypto() - Set up for ext4 encryption. |
| * |
| * We only call this when we start accessing encrypted files, since it |
| * results in memory getting allocated that wouldn't otherwise be used. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int ext4_init_crypto(void) |
| { |
| int i, res = -ENOMEM; |
| |
| mutex_lock(&crypto_init); |
| if (ext4_read_workqueue) |
| goto already_initialized; |
| ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); |
| if (!ext4_read_workqueue) |
| goto fail; |
| |
| ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, |
| SLAB_RECLAIM_ACCOUNT); |
| if (!ext4_crypto_ctx_cachep) |
| goto fail; |
| |
| ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, |
| SLAB_RECLAIM_ACCOUNT); |
| if (!ext4_crypt_info_cachep) |
| goto fail; |
| |
| for (i = 0; i < num_prealloc_crypto_ctxs; i++) { |
| struct ext4_crypto_ctx *ctx; |
| |
| ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); |
| if (!ctx) { |
| res = -ENOMEM; |
| goto fail; |
| } |
| list_add(&ctx->free_list, &ext4_free_crypto_ctxs); |
| } |
| |
| ext4_bounce_page_pool = |
| mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| if (!ext4_bounce_page_pool) { |
| res = -ENOMEM; |
| goto fail; |
| } |
| already_initialized: |
| mutex_unlock(&crypto_init); |
| return 0; |
| fail: |
| ext4_exit_crypto(); |
| mutex_unlock(&crypto_init); |
| return res; |
| } |
| |
| void ext4_restore_control_page(struct page *data_page) |
| { |
| struct ext4_crypto_ctx *ctx = |
| (struct ext4_crypto_ctx *)page_private(data_page); |
| |
| set_page_private(data_page, (unsigned long)NULL); |
| ClearPagePrivate(data_page); |
| unlock_page(data_page); |
| ext4_release_crypto_ctx(ctx); |
| } |
| |
| /** |
| * ext4_crypt_complete() - The completion callback for page encryption |
| * @req: The asynchronous encryption request context |
| * @res: The result of the encryption operation |
| */ |
| static void ext4_crypt_complete(struct crypto_async_request *req, int res) |
| { |
| struct ext4_completion_result *ecr = req->data; |
| |
| if (res == -EINPROGRESS) |
| return; |
| ecr->res = res; |
| complete(&ecr->completion); |
| } |
| |
| typedef enum { |
| EXT4_DECRYPT = 0, |
| EXT4_ENCRYPT, |
| } ext4_direction_t; |
| |
| static int ext4_page_crypto(struct inode *inode, |
| ext4_direction_t rw, |
| pgoff_t index, |
| struct page *src_page, |
| struct page *dest_page, |
| gfp_t gfp_flags) |
| |
| { |
| u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; |
| struct skcipher_request *req = NULL; |
| DECLARE_EXT4_COMPLETION_RESULT(ecr); |
| struct scatterlist dst, src; |
| struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| int res = 0; |
| |
| req = skcipher_request_alloc(tfm, gfp_flags); |
| if (!req) { |
| printk_ratelimited(KERN_ERR |
| "%s: crypto_request_alloc() failed\n", |
| __func__); |
| return -ENOMEM; |
| } |
| skcipher_request_set_callback( |
| req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| ext4_crypt_complete, &ecr); |
| |
| BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); |
| memcpy(xts_tweak, &index, sizeof(index)); |
| memset(&xts_tweak[sizeof(index)], 0, |
| EXT4_XTS_TWEAK_SIZE - sizeof(index)); |
| |
| sg_init_table(&dst, 1); |
| sg_set_page(&dst, dest_page, PAGE_SIZE, 0); |
| sg_init_table(&src, 1); |
| sg_set_page(&src, src_page, PAGE_SIZE, 0); |
| skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, |
| xts_tweak); |
| if (rw == EXT4_DECRYPT) |
| res = crypto_skcipher_decrypt(req); |
| else |
| res = crypto_skcipher_encrypt(req); |
| if (res == -EINPROGRESS || res == -EBUSY) { |
| wait_for_completion(&ecr.completion); |
| res = ecr.res; |
| } |
| skcipher_request_free(req); |
| if (res) { |
| printk_ratelimited( |
| KERN_ERR |
| "%s: crypto_skcipher_encrypt() returned %d\n", |
| __func__, res); |
| return res; |
| } |
| return 0; |
| } |
| |
| static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx, |
| gfp_t gfp_flags) |
| { |
| ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags); |
| if (ctx->w.bounce_page == NULL) |
| return ERR_PTR(-ENOMEM); |
| ctx->flags |= EXT4_WRITE_PATH_FL; |
| return ctx->w.bounce_page; |
| } |
| |
| /** |
| * ext4_encrypt() - Encrypts a page |
| * @inode: The inode for which the encryption should take place |
| * @plaintext_page: The page to encrypt. Must be locked. |
| * |
| * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx |
| * encryption context. |
| * |
| * Called on the page write path. The caller must call |
| * ext4_restore_control_page() on the returned ciphertext page to |
| * release the bounce buffer and the encryption context. |
| * |
| * Return: An allocated page with the encrypted content on success. Else, an |
| * error value or NULL. |
| */ |
| struct page *ext4_encrypt(struct inode *inode, |
| struct page *plaintext_page, |
| gfp_t gfp_flags) |
| { |
| struct ext4_crypto_ctx *ctx; |
| struct page *ciphertext_page = NULL; |
| int err; |
| |
| BUG_ON(!PageLocked(plaintext_page)); |
| |
| ctx = ext4_get_crypto_ctx(inode, gfp_flags); |
| if (IS_ERR(ctx)) |
| return (struct page *) ctx; |
| |
| /* The encryption operation will require a bounce page. */ |
| ciphertext_page = alloc_bounce_page(ctx, gfp_flags); |
| if (IS_ERR(ciphertext_page)) |
| goto errout; |
| ctx->w.control_page = plaintext_page; |
| err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index, |
| plaintext_page, ciphertext_page, gfp_flags); |
| if (err) { |
| ciphertext_page = ERR_PTR(err); |
| errout: |
| ext4_release_crypto_ctx(ctx); |
| return ciphertext_page; |
| } |
| SetPagePrivate(ciphertext_page); |
| set_page_private(ciphertext_page, (unsigned long)ctx); |
| lock_page(ciphertext_page); |
| return ciphertext_page; |
| } |
| |
| /** |
| * ext4_decrypt() - Decrypts a page in-place |
| * @ctx: The encryption context. |
| * @page: The page to decrypt. Must be locked. |
| * |
| * Decrypts page in-place using the ctx encryption context. |
| * |
| * Called from the read completion callback. |
| * |
| * Return: Zero on success, non-zero otherwise. |
| */ |
| int ext4_decrypt(struct page *page) |
| { |
| BUG_ON(!PageLocked(page)); |
| |
| return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT, |
| page->index, page, page, GFP_NOFS); |
| } |
| |
| int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk, |
| ext4_fsblk_t pblk, ext4_lblk_t len) |
| { |
| struct ext4_crypto_ctx *ctx; |
| struct page *ciphertext_page = NULL; |
| struct bio *bio; |
| int ret, err = 0; |
| |
| #if 0 |
| ext4_msg(inode->i_sb, KERN_CRIT, |
| "ext4_encrypted_zeroout ino %lu lblk %u len %u", |
| (unsigned long) inode->i_ino, lblk, len); |
| #endif |
| |
| BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE); |
| |
| ctx = ext4_get_crypto_ctx(inode, GFP_NOFS); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT); |
| if (IS_ERR(ciphertext_page)) { |
| err = PTR_ERR(ciphertext_page); |
| goto errout; |
| } |
| |
| while (len--) { |
| err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk, |
| ZERO_PAGE(0), ciphertext_page, |
| GFP_NOFS); |
| if (err) |
| goto errout; |
| |
| bio = bio_alloc(GFP_NOWAIT, 1); |
| if (!bio) { |
| err = -ENOMEM; |
| goto errout; |
| } |
| bio->bi_bdev = inode->i_sb->s_bdev; |
| bio->bi_iter.bi_sector = |
| pblk << (inode->i_sb->s_blocksize_bits - 9); |
| ret = bio_add_page(bio, ciphertext_page, |
| inode->i_sb->s_blocksize, 0); |
| if (ret != inode->i_sb->s_blocksize) { |
| /* should never happen! */ |
| ext4_msg(inode->i_sb, KERN_ERR, |
| "bio_add_page failed: %d", ret); |
| WARN_ON(1); |
| bio_put(bio); |
| err = -EIO; |
| goto errout; |
| } |
| err = submit_bio_wait(WRITE, bio); |
| if ((err == 0) && bio->bi_error) |
| err = -EIO; |
| bio_put(bio); |
| if (err) |
| goto errout; |
| lblk++; pblk++; |
| } |
| err = 0; |
| errout: |
| ext4_release_crypto_ctx(ctx); |
| return err; |
| } |
| |
| bool ext4_valid_contents_enc_mode(uint32_t mode) |
| { |
| return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); |
| } |
| |
| /** |
| * ext4_validate_encryption_key_size() - Validate the encryption key size |
| * @mode: The key mode. |
| * @size: The key size to validate. |
| * |
| * Return: The validated key size for @mode. Zero if invalid. |
| */ |
| uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) |
| { |
| if (size == ext4_encryption_key_size(mode)) |
| return size; |
| return 0; |
| } |
| |
| /* |
| * Validate dentries for encrypted directories to make sure we aren't |
| * potentially caching stale data after a key has been added or |
| * removed. |
| */ |
| static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| struct dentry *dir; |
| struct ext4_crypt_info *ci; |
| int dir_has_key, cached_with_key; |
| |
| dir = dget_parent(dentry); |
| if (!ext4_encrypted_inode(d_inode(dir))) { |
| dput(dir); |
| return 0; |
| } |
| ci = EXT4_I(d_inode(dir))->i_crypt_info; |
| if (ci && ci->ci_keyring_key && |
| (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | |
| (1 << KEY_FLAG_REVOKED) | |
| (1 << KEY_FLAG_DEAD)))) |
| ci = NULL; |
| |
| /* this should eventually be an flag in d_flags */ |
| cached_with_key = dentry->d_fsdata != NULL; |
| dir_has_key = (ci != NULL); |
| dput(dir); |
| |
| /* |
| * If the dentry was cached without the key, and it is a |
| * negative dentry, it might be a valid name. We can't check |
| * if the key has since been made available due to locking |
| * reasons, so we fail the validation so ext4_lookup() can do |
| * this check. |
| * |
| * We also fail the validation if the dentry was created with |
| * the key present, but we no longer have the key, or vice versa. |
| */ |
| if ((!cached_with_key && d_is_negative(dentry)) || |
| (!cached_with_key && dir_has_key) || |
| (cached_with_key && !dir_has_key)) { |
| #if 0 /* Revalidation debug */ |
| char buf[80]; |
| char *cp = simple_dname(dentry, buf, sizeof(buf)); |
| |
| if (IS_ERR(cp)) |
| cp = (char *) "???"; |
| pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata, |
| cached_with_key, d_is_negative(dentry), |
| dir_has_key); |
| #endif |
| return 0; |
| } |
| return 1; |
| } |
| |
| const struct dentry_operations ext4_encrypted_d_ops = { |
| .d_revalidate = ext4_d_revalidate, |
| }; |