| /* |
| * intel_mid_dma.c - Intel Langwell DMA Drivers |
| * |
| * Copyright (C) 2008-10 Intel Corp |
| * Author: Vinod Koul <vinod.koul@intel.com> |
| * The driver design is based on dw_dmac driver |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * |
| */ |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/intel_mid_dma.h> |
| |
| #define MAX_CHAN 4 /*max ch across controllers*/ |
| #include "intel_mid_dma_regs.h" |
| |
| #define INTEL_MID_DMAC1_ID 0x0814 |
| #define INTEL_MID_DMAC2_ID 0x0813 |
| #define INTEL_MID_GP_DMAC2_ID 0x0827 |
| #define INTEL_MFLD_DMAC1_ID 0x0830 |
| #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008 |
| #define LNW_PERIPHRAL_MASK_SIZE 0x10 |
| #define LNW_PERIPHRAL_STATUS 0x0 |
| #define LNW_PERIPHRAL_MASK 0x8 |
| |
| struct intel_mid_dma_probe_info { |
| u8 max_chan; |
| u8 ch_base; |
| u16 block_size; |
| u32 pimr_mask; |
| }; |
| |
| #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \ |
| ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \ |
| .max_chan = (_max_chan), \ |
| .ch_base = (_ch_base), \ |
| .block_size = (_block_size), \ |
| .pimr_mask = (_pimr_mask), \ |
| }) |
| |
| /***************************************************************************** |
| Utility Functions*/ |
| /** |
| * get_ch_index - convert status to channel |
| * @status: status mask |
| * @base: dma ch base value |
| * |
| * Modify the status mask and return the channel index needing |
| * attention (or -1 if neither) |
| */ |
| static int get_ch_index(int *status, unsigned int base) |
| { |
| int i; |
| for (i = 0; i < MAX_CHAN; i++) { |
| if (*status & (1 << (i + base))) { |
| *status = *status & ~(1 << (i + base)); |
| pr_debug("MDMA: index %d New status %x\n", i, *status); |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * get_block_ts - calculates dma transaction length |
| * @len: dma transfer length |
| * @tx_width: dma transfer src width |
| * @block_size: dma controller max block size |
| * |
| * Based on src width calculate the DMA trsaction length in data items |
| * return data items or FFFF if exceeds max length for block |
| */ |
| static int get_block_ts(int len, int tx_width, int block_size) |
| { |
| int byte_width = 0, block_ts = 0; |
| |
| switch (tx_width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| byte_width = 1; |
| break; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| byte_width = 2; |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| default: |
| byte_width = 4; |
| break; |
| } |
| |
| block_ts = len/byte_width; |
| if (block_ts > block_size) |
| block_ts = 0xFFFF; |
| return block_ts; |
| } |
| |
| /***************************************************************************** |
| DMAC1 interrupt Functions*/ |
| |
| /** |
| * dmac1_mask_periphral_intr - mask the periphral interrupt |
| * @midc: dma channel for which masking is required |
| * |
| * Masks the DMA periphral interrupt |
| * this is valid for DMAC1 family controllers only |
| * This controller should have periphral mask registers already mapped |
| */ |
| static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc) |
| { |
| u32 pimr; |
| struct middma_device *mid = to_middma_device(midc->chan.device); |
| |
| if (mid->pimr_mask) { |
| pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK); |
| pimr |= mid->pimr_mask; |
| writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK); |
| } |
| return; |
| } |
| |
| /** |
| * dmac1_unmask_periphral_intr - unmask the periphral interrupt |
| * @midc: dma channel for which masking is required |
| * |
| * UnMasks the DMA periphral interrupt, |
| * this is valid for DMAC1 family controllers only |
| * This controller should have periphral mask registers already mapped |
| */ |
| static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc) |
| { |
| u32 pimr; |
| struct middma_device *mid = to_middma_device(midc->chan.device); |
| |
| if (mid->pimr_mask) { |
| pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK); |
| pimr &= ~mid->pimr_mask; |
| writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK); |
| } |
| return; |
| } |
| |
| /** |
| * enable_dma_interrupt - enable the periphral interrupt |
| * @midc: dma channel for which enable interrupt is required |
| * |
| * Enable the DMA periphral interrupt, |
| * this is valid for DMAC1 family controllers only |
| * This controller should have periphral mask registers already mapped |
| */ |
| static void enable_dma_interrupt(struct intel_mid_dma_chan *midc) |
| { |
| dmac1_unmask_periphral_intr(midc); |
| |
| /*en ch interrupts*/ |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR); |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR); |
| return; |
| } |
| |
| /** |
| * disable_dma_interrupt - disable the periphral interrupt |
| * @midc: dma channel for which disable interrupt is required |
| * |
| * Disable the DMA periphral interrupt, |
| * this is valid for DMAC1 family controllers only |
| * This controller should have periphral mask registers already mapped |
| */ |
| static void disable_dma_interrupt(struct intel_mid_dma_chan *midc) |
| { |
| /*Check LPE PISR, make sure fwd is disabled*/ |
| dmac1_mask_periphral_intr(midc); |
| iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK); |
| iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR); |
| iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR); |
| return; |
| } |
| |
| /***************************************************************************** |
| DMA channel helper Functions*/ |
| /** |
| * mid_desc_get - get a descriptor |
| * @midc: dma channel for which descriptor is required |
| * |
| * Obtain a descriptor for the channel. Returns NULL if none are free. |
| * Once the descriptor is returned it is private until put on another |
| * list or freed |
| */ |
| static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc) |
| { |
| struct intel_mid_dma_desc *desc, *_desc; |
| struct intel_mid_dma_desc *ret = NULL; |
| |
| spin_lock_bh(&midc->lock); |
| list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) { |
| if (async_tx_test_ack(&desc->txd)) { |
| list_del(&desc->desc_node); |
| ret = desc; |
| break; |
| } |
| } |
| spin_unlock_bh(&midc->lock); |
| return ret; |
| } |
| |
| /** |
| * mid_desc_put - put a descriptor |
| * @midc: dma channel for which descriptor is required |
| * @desc: descriptor to put |
| * |
| * Return a descriptor from lwn_desc_get back to the free pool |
| */ |
| static void midc_desc_put(struct intel_mid_dma_chan *midc, |
| struct intel_mid_dma_desc *desc) |
| { |
| if (desc) { |
| spin_lock_bh(&midc->lock); |
| list_add_tail(&desc->desc_node, &midc->free_list); |
| spin_unlock_bh(&midc->lock); |
| } |
| } |
| /** |
| * midc_dostart - begin a DMA transaction |
| * @midc: channel for which txn is to be started |
| * @first: first descriptor of series |
| * |
| * Load a transaction into the engine. This must be called with midc->lock |
| * held and bh disabled. |
| */ |
| static void midc_dostart(struct intel_mid_dma_chan *midc, |
| struct intel_mid_dma_desc *first) |
| { |
| struct middma_device *mid = to_middma_device(midc->chan.device); |
| |
| /* channel is idle */ |
| if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) { |
| /*error*/ |
| pr_err("ERR_MDMA: channel is busy in start\n"); |
| /* The tasklet will hopefully advance the queue... */ |
| return; |
| } |
| midc->busy = true; |
| /*write registers and en*/ |
| iowrite32(first->sar, midc->ch_regs + SAR); |
| iowrite32(first->dar, midc->ch_regs + DAR); |
| iowrite32(first->lli_phys, midc->ch_regs + LLP); |
| iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH); |
| iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW); |
| iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW); |
| iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH); |
| pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n", |
| (int)first->sar, (int)first->dar, first->cfg_hi, |
| first->cfg_lo, first->ctl_hi, first->ctl_lo); |
| first->status = DMA_IN_PROGRESS; |
| |
| iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN); |
| } |
| |
| /** |
| * midc_descriptor_complete - process completed descriptor |
| * @midc: channel owning the descriptor |
| * @desc: the descriptor itself |
| * |
| * Process a completed descriptor and perform any callbacks upon |
| * the completion. The completion handling drops the lock during the |
| * callbacks but must be called with the lock held. |
| */ |
| static void midc_descriptor_complete(struct intel_mid_dma_chan *midc, |
| struct intel_mid_dma_desc *desc) |
| { |
| struct dma_async_tx_descriptor *txd = &desc->txd; |
| dma_async_tx_callback callback_txd = NULL; |
| struct intel_mid_dma_lli *llitem; |
| void *param_txd = NULL; |
| |
| midc->completed = txd->cookie; |
| callback_txd = txd->callback; |
| param_txd = txd->callback_param; |
| |
| if (desc->lli != NULL) { |
| /*clear the DONE bit of completed LLI in memory*/ |
| llitem = desc->lli + desc->current_lli; |
| llitem->ctl_hi &= CLEAR_DONE; |
| if (desc->current_lli < desc->lli_length-1) |
| (desc->current_lli)++; |
| else |
| desc->current_lli = 0; |
| } |
| spin_unlock_bh(&midc->lock); |
| if (callback_txd) { |
| pr_debug("MDMA: TXD callback set ... calling\n"); |
| callback_txd(param_txd); |
| } |
| if (midc->raw_tfr) { |
| desc->status = DMA_SUCCESS; |
| if (desc->lli != NULL) { |
| pci_pool_free(desc->lli_pool, desc->lli, |
| desc->lli_phys); |
| pci_pool_destroy(desc->lli_pool); |
| } |
| list_move(&desc->desc_node, &midc->free_list); |
| midc->busy = false; |
| } |
| spin_lock_bh(&midc->lock); |
| |
| } |
| /** |
| * midc_scan_descriptors - check the descriptors in channel |
| * mark completed when tx is completete |
| * @mid: device |
| * @midc: channel to scan |
| * |
| * Walk the descriptor chain for the device and process any entries |
| * that are complete. |
| */ |
| static void midc_scan_descriptors(struct middma_device *mid, |
| struct intel_mid_dma_chan *midc) |
| { |
| struct intel_mid_dma_desc *desc = NULL, *_desc = NULL; |
| |
| /*tx is complete*/ |
| list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
| if (desc->status == DMA_IN_PROGRESS) |
| midc_descriptor_complete(midc, desc); |
| } |
| return; |
| } |
| /** |
| * midc_lli_fill_sg - Helper function to convert |
| * SG list to Linked List Items. |
| *@midc: Channel |
| *@desc: DMA descriptor |
| *@sglist: Pointer to SG list |
| *@sglen: SG list length |
| *@flags: DMA transaction flags |
| * |
| * Walk through the SG list and convert the SG list into Linked |
| * List Items (LLI). |
| */ |
| static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc, |
| struct intel_mid_dma_desc *desc, |
| struct scatterlist *sglist, |
| unsigned int sglen, |
| unsigned int flags) |
| { |
| struct intel_mid_dma_slave *mids; |
| struct scatterlist *sg; |
| dma_addr_t lli_next, sg_phy_addr; |
| struct intel_mid_dma_lli *lli_bloc_desc; |
| union intel_mid_dma_ctl_lo ctl_lo; |
| union intel_mid_dma_ctl_hi ctl_hi; |
| int i; |
| |
| pr_debug("MDMA: Entered midc_lli_fill_sg\n"); |
| mids = midc->mid_slave; |
| |
| lli_bloc_desc = desc->lli; |
| lli_next = desc->lli_phys; |
| |
| ctl_lo.ctl_lo = desc->ctl_lo; |
| ctl_hi.ctl_hi = desc->ctl_hi; |
| for_each_sg(sglist, sg, sglen, i) { |
| /*Populate CTL_LOW and LLI values*/ |
| if (i != sglen - 1) { |
| lli_next = lli_next + |
| sizeof(struct intel_mid_dma_lli); |
| } else { |
| /*Check for circular list, otherwise terminate LLI to ZERO*/ |
| if (flags & DMA_PREP_CIRCULAR_LIST) { |
| pr_debug("MDMA: LLI is configured in circular mode\n"); |
| lli_next = desc->lli_phys; |
| } else { |
| lli_next = 0; |
| ctl_lo.ctlx.llp_dst_en = 0; |
| ctl_lo.ctlx.llp_src_en = 0; |
| } |
| } |
| /*Populate CTL_HI values*/ |
| ctl_hi.ctlx.block_ts = get_block_ts(sg->length, |
| desc->width, |
| midc->dma->block_size); |
| /*Populate SAR and DAR values*/ |
| sg_phy_addr = sg_phys(sg); |
| if (desc->dirn == DMA_TO_DEVICE) { |
| lli_bloc_desc->sar = sg_phy_addr; |
| lli_bloc_desc->dar = mids->dma_slave.dst_addr; |
| } else if (desc->dirn == DMA_FROM_DEVICE) { |
| lli_bloc_desc->sar = mids->dma_slave.src_addr; |
| lli_bloc_desc->dar = sg_phy_addr; |
| } |
| /*Copy values into block descriptor in system memroy*/ |
| lli_bloc_desc->llp = lli_next; |
| lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo; |
| lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi; |
| |
| lli_bloc_desc++; |
| } |
| /*Copy very first LLI values to descriptor*/ |
| desc->ctl_lo = desc->lli->ctl_lo; |
| desc->ctl_hi = desc->lli->ctl_hi; |
| desc->sar = desc->lli->sar; |
| desc->dar = desc->lli->dar; |
| |
| return 0; |
| } |
| /***************************************************************************** |
| DMA engine callback Functions*/ |
| /** |
| * intel_mid_dma_tx_submit - callback to submit DMA transaction |
| * @tx: dma engine descriptor |
| * |
| * Submit the DMA trasaction for this descriptor, start if ch idle |
| */ |
| static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx); |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan); |
| dma_cookie_t cookie; |
| |
| spin_lock_bh(&midc->lock); |
| cookie = midc->chan.cookie; |
| |
| if (++cookie < 0) |
| cookie = 1; |
| |
| midc->chan.cookie = cookie; |
| desc->txd.cookie = cookie; |
| |
| |
| if (list_empty(&midc->active_list)) |
| list_add_tail(&desc->desc_node, &midc->active_list); |
| else |
| list_add_tail(&desc->desc_node, &midc->queue); |
| |
| midc_dostart(midc, desc); |
| spin_unlock_bh(&midc->lock); |
| |
| return cookie; |
| } |
| |
| /** |
| * intel_mid_dma_issue_pending - callback to issue pending txn |
| * @chan: chan where pending trascation needs to be checked and submitted |
| * |
| * Call for scan to issue pending descriptors |
| */ |
| static void intel_mid_dma_issue_pending(struct dma_chan *chan) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| |
| spin_lock_bh(&midc->lock); |
| if (!list_empty(&midc->queue)) |
| midc_scan_descriptors(to_middma_device(chan->device), midc); |
| spin_unlock_bh(&midc->lock); |
| } |
| |
| /** |
| * intel_mid_dma_tx_status - Return status of txn |
| * @chan: chan for where status needs to be checked |
| * @cookie: cookie for txn |
| * @txstate: DMA txn state |
| * |
| * Return status of DMA txn |
| */ |
| static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| dma_cookie_t last_used; |
| dma_cookie_t last_complete; |
| int ret; |
| |
| last_complete = midc->completed; |
| last_used = chan->cookie; |
| |
| ret = dma_async_is_complete(cookie, last_complete, last_used); |
| if (ret != DMA_SUCCESS) { |
| midc_scan_descriptors(to_middma_device(chan->device), midc); |
| |
| last_complete = midc->completed; |
| last_used = chan->cookie; |
| |
| ret = dma_async_is_complete(cookie, last_complete, last_used); |
| } |
| |
| if (txstate) { |
| txstate->last = last_complete; |
| txstate->used = last_used; |
| txstate->residue = 0; |
| } |
| return ret; |
| } |
| |
| static int dma_slave_control(struct dma_chan *chan, unsigned long arg) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| struct dma_slave_config *slave = (struct dma_slave_config *)arg; |
| struct intel_mid_dma_slave *mid_slave; |
| |
| BUG_ON(!midc); |
| BUG_ON(!slave); |
| pr_debug("MDMA: slave control called\n"); |
| |
| mid_slave = to_intel_mid_dma_slave(slave); |
| |
| BUG_ON(!mid_slave); |
| |
| midc->mid_slave = mid_slave; |
| return 0; |
| } |
| /** |
| * intel_mid_dma_device_control - DMA device control |
| * @chan: chan for DMA control |
| * @cmd: control cmd |
| * @arg: cmd arg value |
| * |
| * Perform DMA control command |
| */ |
| static int intel_mid_dma_device_control(struct dma_chan *chan, |
| enum dma_ctrl_cmd cmd, unsigned long arg) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| struct middma_device *mid = to_middma_device(chan->device); |
| struct intel_mid_dma_desc *desc, *_desc; |
| union intel_mid_dma_cfg_lo cfg_lo; |
| |
| if (cmd == DMA_SLAVE_CONFIG) |
| return dma_slave_control(chan, arg); |
| |
| if (cmd != DMA_TERMINATE_ALL) |
| return -ENXIO; |
| |
| spin_lock_bh(&midc->lock); |
| if (midc->busy == false) { |
| spin_unlock_bh(&midc->lock); |
| return 0; |
| } |
| /*Suspend and disable the channel*/ |
| cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW); |
| cfg_lo.cfgx.ch_susp = 1; |
| iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW); |
| iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN); |
| midc->busy = false; |
| /* Disable interrupts */ |
| disable_dma_interrupt(midc); |
| midc->descs_allocated = 0; |
| |
| spin_unlock_bh(&midc->lock); |
| list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
| if (desc->lli != NULL) { |
| pci_pool_free(desc->lli_pool, desc->lli, |
| desc->lli_phys); |
| pci_pool_destroy(desc->lli_pool); |
| } |
| list_move(&desc->desc_node, &midc->free_list); |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * intel_mid_dma_prep_memcpy - Prep memcpy txn |
| * @chan: chan for DMA transfer |
| * @dest: destn address |
| * @src: src address |
| * @len: DMA transfer len |
| * @flags: DMA flags |
| * |
| * Perform a DMA memcpy. Note we support slave periphral DMA transfers only |
| * The periphral txn details should be filled in slave structure properly |
| * Returns the descriptor for this txn |
| */ |
| static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, |
| dma_addr_t src, size_t len, unsigned long flags) |
| { |
| struct intel_mid_dma_chan *midc; |
| struct intel_mid_dma_desc *desc = NULL; |
| struct intel_mid_dma_slave *mids; |
| union intel_mid_dma_ctl_lo ctl_lo; |
| union intel_mid_dma_ctl_hi ctl_hi; |
| union intel_mid_dma_cfg_lo cfg_lo; |
| union intel_mid_dma_cfg_hi cfg_hi; |
| enum dma_slave_buswidth width; |
| |
| pr_debug("MDMA: Prep for memcpy\n"); |
| BUG_ON(!chan); |
| if (!len) |
| return NULL; |
| |
| midc = to_intel_mid_dma_chan(chan); |
| BUG_ON(!midc); |
| |
| mids = midc->mid_slave; |
| BUG_ON(!mids); |
| |
| pr_debug("MDMA:called for DMA %x CH %d Length %zu\n", |
| midc->dma->pci_id, midc->ch_id, len); |
| pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n", |
| mids->cfg_mode, mids->dma_slave.direction, |
| mids->hs_mode, mids->dma_slave.src_addr_width); |
| |
| /*calculate CFG_LO*/ |
| if (mids->hs_mode == LNW_DMA_SW_HS) { |
| cfg_lo.cfg_lo = 0; |
| cfg_lo.cfgx.hs_sel_dst = 1; |
| cfg_lo.cfgx.hs_sel_src = 1; |
| } else if (mids->hs_mode == LNW_DMA_HW_HS) |
| cfg_lo.cfg_lo = 0x00000; |
| |
| /*calculate CFG_HI*/ |
| if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) { |
| /*SW HS only*/ |
| cfg_hi.cfg_hi = 0; |
| } else { |
| cfg_hi.cfg_hi = 0; |
| if (midc->dma->pimr_mask) { |
| cfg_hi.cfgx.protctl = 0x0; /*default value*/ |
| cfg_hi.cfgx.fifo_mode = 1; |
| if (mids->dma_slave.direction == DMA_TO_DEVICE) { |
| cfg_hi.cfgx.src_per = 0; |
| if (mids->device_instance == 0) |
| cfg_hi.cfgx.dst_per = 3; |
| if (mids->device_instance == 1) |
| cfg_hi.cfgx.dst_per = 1; |
| } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) { |
| if (mids->device_instance == 0) |
| cfg_hi.cfgx.src_per = 2; |
| if (mids->device_instance == 1) |
| cfg_hi.cfgx.src_per = 0; |
| cfg_hi.cfgx.dst_per = 0; |
| } |
| } else { |
| cfg_hi.cfgx.protctl = 0x1; /*default value*/ |
| cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per = |
| midc->ch_id - midc->dma->chan_base; |
| } |
| } |
| |
| /*calculate CTL_HI*/ |
| ctl_hi.ctlx.reser = 0; |
| ctl_hi.ctlx.done = 0; |
| width = mids->dma_slave.src_addr_width; |
| |
| ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size); |
| pr_debug("MDMA:calc len %d for block size %d\n", |
| ctl_hi.ctlx.block_ts, midc->dma->block_size); |
| /*calculate CTL_LO*/ |
| ctl_lo.ctl_lo = 0; |
| ctl_lo.ctlx.int_en = 1; |
| ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst; |
| ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst; |
| |
| /* |
| * Here we need some translation from "enum dma_slave_buswidth" |
| * to the format for our dma controller |
| * standard intel_mid_dmac's format |
| * 1 Byte 0b000 |
| * 2 Bytes 0b001 |
| * 4 Bytes 0b010 |
| */ |
| ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2; |
| ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2; |
| |
| if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) { |
| ctl_lo.ctlx.tt_fc = 0; |
| ctl_lo.ctlx.sinc = 0; |
| ctl_lo.ctlx.dinc = 0; |
| } else { |
| if (mids->dma_slave.direction == DMA_TO_DEVICE) { |
| ctl_lo.ctlx.sinc = 0; |
| ctl_lo.ctlx.dinc = 2; |
| ctl_lo.ctlx.tt_fc = 1; |
| } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) { |
| ctl_lo.ctlx.sinc = 2; |
| ctl_lo.ctlx.dinc = 0; |
| ctl_lo.ctlx.tt_fc = 2; |
| } |
| } |
| |
| pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n", |
| ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi); |
| |
| enable_dma_interrupt(midc); |
| |
| desc = midc_desc_get(midc); |
| if (desc == NULL) |
| goto err_desc_get; |
| desc->sar = src; |
| desc->dar = dest ; |
| desc->len = len; |
| desc->cfg_hi = cfg_hi.cfg_hi; |
| desc->cfg_lo = cfg_lo.cfg_lo; |
| desc->ctl_lo = ctl_lo.ctl_lo; |
| desc->ctl_hi = ctl_hi.ctl_hi; |
| desc->width = width; |
| desc->dirn = mids->dma_slave.direction; |
| desc->lli_phys = 0; |
| desc->lli = NULL; |
| desc->lli_pool = NULL; |
| return &desc->txd; |
| |
| err_desc_get: |
| pr_err("ERR_MDMA: Failed to get desc\n"); |
| midc_desc_put(midc, desc); |
| return NULL; |
| } |
| /** |
| * intel_mid_dma_prep_slave_sg - Prep slave sg txn |
| * @chan: chan for DMA transfer |
| * @sgl: scatter gather list |
| * @sg_len: length of sg txn |
| * @direction: DMA transfer dirtn |
| * @flags: DMA flags |
| * |
| * Prepares LLI based periphral transfer |
| */ |
| static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_data_direction direction, |
| unsigned long flags) |
| { |
| struct intel_mid_dma_chan *midc = NULL; |
| struct intel_mid_dma_slave *mids = NULL; |
| struct intel_mid_dma_desc *desc = NULL; |
| struct dma_async_tx_descriptor *txd = NULL; |
| union intel_mid_dma_ctl_lo ctl_lo; |
| |
| pr_debug("MDMA: Prep for slave SG\n"); |
| |
| if (!sg_len) { |
| pr_err("MDMA: Invalid SG length\n"); |
| return NULL; |
| } |
| midc = to_intel_mid_dma_chan(chan); |
| BUG_ON(!midc); |
| |
| mids = midc->mid_slave; |
| BUG_ON(!mids); |
| |
| if (!midc->dma->pimr_mask) { |
| /* We can still handle sg list with only one item */ |
| if (sg_len == 1) { |
| txd = intel_mid_dma_prep_memcpy(chan, |
| mids->dma_slave.dst_addr, |
| mids->dma_slave.src_addr, |
| sgl->length, |
| flags); |
| return txd; |
| } else { |
| pr_warn("MDMA: SG list is not supported by this controller\n"); |
| return NULL; |
| } |
| } |
| |
| pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n", |
| sg_len, direction, flags); |
| |
| txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags); |
| if (NULL == txd) { |
| pr_err("MDMA: Prep memcpy failed\n"); |
| return NULL; |
| } |
| |
| desc = to_intel_mid_dma_desc(txd); |
| desc->dirn = direction; |
| ctl_lo.ctl_lo = desc->ctl_lo; |
| ctl_lo.ctlx.llp_dst_en = 1; |
| ctl_lo.ctlx.llp_src_en = 1; |
| desc->ctl_lo = ctl_lo.ctl_lo; |
| desc->lli_length = sg_len; |
| desc->current_lli = 0; |
| /* DMA coherent memory pool for LLI descriptors*/ |
| desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool", |
| midc->dma->pdev, |
| (sizeof(struct intel_mid_dma_lli)*sg_len), |
| 32, 0); |
| if (NULL == desc->lli_pool) { |
| pr_err("MID_DMA:LLI pool create failed\n"); |
| return NULL; |
| } |
| |
| desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys); |
| if (!desc->lli) { |
| pr_err("MID_DMA: LLI alloc failed\n"); |
| pci_pool_destroy(desc->lli_pool); |
| return NULL; |
| } |
| |
| midc_lli_fill_sg(midc, desc, sgl, sg_len, flags); |
| if (flags & DMA_PREP_INTERRUPT) { |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), |
| midc->dma_base + MASK_BLOCK); |
| pr_debug("MDMA:Enabled Block interrupt\n"); |
| } |
| return &desc->txd; |
| } |
| |
| /** |
| * intel_mid_dma_free_chan_resources - Frees dma resources |
| * @chan: chan requiring attention |
| * |
| * Frees the allocated resources on this DMA chan |
| */ |
| static void intel_mid_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| struct middma_device *mid = to_middma_device(chan->device); |
| struct intel_mid_dma_desc *desc, *_desc; |
| |
| if (true == midc->busy) { |
| /*trying to free ch in use!!!!!*/ |
| pr_err("ERR_MDMA: trying to free ch in use\n"); |
| } |
| pm_runtime_put(&mid->pdev->dev); |
| spin_lock_bh(&midc->lock); |
| midc->descs_allocated = 0; |
| list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) { |
| list_del(&desc->desc_node); |
| pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
| } |
| list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) { |
| list_del(&desc->desc_node); |
| pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
| } |
| list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) { |
| list_del(&desc->desc_node); |
| pci_pool_free(mid->dma_pool, desc, desc->txd.phys); |
| } |
| spin_unlock_bh(&midc->lock); |
| midc->in_use = false; |
| midc->busy = false; |
| /* Disable CH interrupts */ |
| iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK); |
| iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR); |
| } |
| |
| /** |
| * intel_mid_dma_alloc_chan_resources - Allocate dma resources |
| * @chan: chan requiring attention |
| * |
| * Allocates DMA resources on this chan |
| * Return the descriptors allocated |
| */ |
| static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan); |
| struct middma_device *mid = to_middma_device(chan->device); |
| struct intel_mid_dma_desc *desc; |
| dma_addr_t phys; |
| int i = 0; |
| |
| pm_runtime_get_sync(&mid->pdev->dev); |
| |
| if (mid->state == SUSPENDED) { |
| if (dma_resume(mid->pdev)) { |
| pr_err("ERR_MDMA: resume failed"); |
| return -EFAULT; |
| } |
| } |
| |
| /* ASSERT: channel is idle */ |
| if (test_ch_en(mid->dma_base, midc->ch_id)) { |
| /*ch is not idle*/ |
| pr_err("ERR_MDMA: ch not idle\n"); |
| pm_runtime_put(&mid->pdev->dev); |
| return -EIO; |
| } |
| midc->completed = chan->cookie = 1; |
| |
| spin_lock_bh(&midc->lock); |
| while (midc->descs_allocated < DESCS_PER_CHANNEL) { |
| spin_unlock_bh(&midc->lock); |
| desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys); |
| if (!desc) { |
| pr_err("ERR_MDMA: desc failed\n"); |
| pm_runtime_put(&mid->pdev->dev); |
| return -ENOMEM; |
| /*check*/ |
| } |
| dma_async_tx_descriptor_init(&desc->txd, chan); |
| desc->txd.tx_submit = intel_mid_dma_tx_submit; |
| desc->txd.flags = DMA_CTRL_ACK; |
| desc->txd.phys = phys; |
| spin_lock_bh(&midc->lock); |
| i = ++midc->descs_allocated; |
| list_add_tail(&desc->desc_node, &midc->free_list); |
| } |
| spin_unlock_bh(&midc->lock); |
| midc->in_use = true; |
| midc->busy = false; |
| pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i); |
| return i; |
| } |
| |
| /** |
| * midc_handle_error - Handle DMA txn error |
| * @mid: controller where error occurred |
| * @midc: chan where error occurred |
| * |
| * Scan the descriptor for error |
| */ |
| static void midc_handle_error(struct middma_device *mid, |
| struct intel_mid_dma_chan *midc) |
| { |
| midc_scan_descriptors(mid, midc); |
| } |
| |
| /** |
| * dma_tasklet - DMA interrupt tasklet |
| * @data: tasklet arg (the controller structure) |
| * |
| * Scan the controller for interrupts for completion/error |
| * Clear the interrupt and call for handling completion/error |
| */ |
| static void dma_tasklet(unsigned long data) |
| { |
| struct middma_device *mid = NULL; |
| struct intel_mid_dma_chan *midc = NULL; |
| u32 status, raw_tfr, raw_block; |
| int i; |
| |
| mid = (struct middma_device *)data; |
| if (mid == NULL) { |
| pr_err("ERR_MDMA: tasklet Null param\n"); |
| return; |
| } |
| pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id); |
| raw_tfr = ioread32(mid->dma_base + RAW_TFR); |
| raw_block = ioread32(mid->dma_base + RAW_BLOCK); |
| status = raw_tfr | raw_block; |
| status &= mid->intr_mask; |
| while (status) { |
| /*txn interrupt*/ |
| i = get_ch_index(&status, mid->chan_base); |
| if (i < 0) { |
| pr_err("ERR_MDMA:Invalid ch index %x\n", i); |
| return; |
| } |
| midc = &mid->ch[i]; |
| if (midc == NULL) { |
| pr_err("ERR_MDMA:Null param midc\n"); |
| return; |
| } |
| pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n", |
| status, midc->ch_id, i); |
| midc->raw_tfr = raw_tfr; |
| midc->raw_block = raw_block; |
| spin_lock_bh(&midc->lock); |
| /*clearing this interrupts first*/ |
| iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR); |
| if (raw_block) { |
| iowrite32((1 << midc->ch_id), |
| mid->dma_base + CLEAR_BLOCK); |
| } |
| midc_scan_descriptors(mid, midc); |
| pr_debug("MDMA:Scan of desc... complete, unmasking\n"); |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), |
| mid->dma_base + MASK_TFR); |
| if (raw_block) { |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), |
| mid->dma_base + MASK_BLOCK); |
| } |
| spin_unlock_bh(&midc->lock); |
| } |
| |
| status = ioread32(mid->dma_base + RAW_ERR); |
| status &= mid->intr_mask; |
| while (status) { |
| /*err interrupt*/ |
| i = get_ch_index(&status, mid->chan_base); |
| if (i < 0) { |
| pr_err("ERR_MDMA:Invalid ch index %x\n", i); |
| return; |
| } |
| midc = &mid->ch[i]; |
| if (midc == NULL) { |
| pr_err("ERR_MDMA:Null param midc\n"); |
| return; |
| } |
| pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n", |
| status, midc->ch_id, i); |
| |
| iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR); |
| spin_lock_bh(&midc->lock); |
| midc_handle_error(mid, midc); |
| iowrite32(UNMASK_INTR_REG(midc->ch_id), |
| mid->dma_base + MASK_ERR); |
| spin_unlock_bh(&midc->lock); |
| } |
| pr_debug("MDMA:Exiting takslet...\n"); |
| return; |
| } |
| |
| static void dma_tasklet1(unsigned long data) |
| { |
| pr_debug("MDMA:in takslet1...\n"); |
| return dma_tasklet(data); |
| } |
| |
| static void dma_tasklet2(unsigned long data) |
| { |
| pr_debug("MDMA:in takslet2...\n"); |
| return dma_tasklet(data); |
| } |
| |
| /** |
| * intel_mid_dma_interrupt - DMA ISR |
| * @irq: IRQ where interrupt occurred |
| * @data: ISR cllback data (the controller structure) |
| * |
| * See if this is our interrupt if so then schedule the tasklet |
| * otherwise ignore |
| */ |
| static irqreturn_t intel_mid_dma_interrupt(int irq, void *data) |
| { |
| struct middma_device *mid = data; |
| u32 tfr_status, err_status; |
| int call_tasklet = 0; |
| |
| tfr_status = ioread32(mid->dma_base + RAW_TFR); |
| err_status = ioread32(mid->dma_base + RAW_ERR); |
| if (!tfr_status && !err_status) |
| return IRQ_NONE; |
| |
| /*DMA Interrupt*/ |
| pr_debug("MDMA:Got an interrupt on irq %d\n", irq); |
| pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask); |
| tfr_status &= mid->intr_mask; |
| if (tfr_status) { |
| /*need to disable intr*/ |
| iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR); |
| iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK); |
| pr_debug("MDMA: Calling tasklet %x\n", tfr_status); |
| call_tasklet = 1; |
| } |
| err_status &= mid->intr_mask; |
| if (err_status) { |
| iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR); |
| call_tasklet = 1; |
| } |
| if (call_tasklet) |
| tasklet_schedule(&mid->tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data) |
| { |
| return intel_mid_dma_interrupt(irq, data); |
| } |
| |
| static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data) |
| { |
| return intel_mid_dma_interrupt(irq, data); |
| } |
| |
| /** |
| * mid_setup_dma - Setup the DMA controller |
| * @pdev: Controller PCI device structure |
| * |
| * Initialize the DMA controller, channels, registers with DMA engine, |
| * ISR. Initialize DMA controller channels. |
| */ |
| static int mid_setup_dma(struct pci_dev *pdev) |
| { |
| struct middma_device *dma = pci_get_drvdata(pdev); |
| int err, i; |
| |
| /* DMA coherent memory pool for DMA descriptor allocations */ |
| dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev, |
| sizeof(struct intel_mid_dma_desc), |
| 32, 0); |
| if (NULL == dma->dma_pool) { |
| pr_err("ERR_MDMA:pci_pool_create failed\n"); |
| err = -ENOMEM; |
| goto err_dma_pool; |
| } |
| |
| INIT_LIST_HEAD(&dma->common.channels); |
| dma->pci_id = pdev->device; |
| if (dma->pimr_mask) { |
| dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE, |
| LNW_PERIPHRAL_MASK_SIZE); |
| if (dma->mask_reg == NULL) { |
| pr_err("ERR_MDMA:Can't map periphral intr space !!\n"); |
| return -ENOMEM; |
| } |
| } else |
| dma->mask_reg = NULL; |
| |
| pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan); |
| /*init CH structures*/ |
| dma->intr_mask = 0; |
| dma->state = RUNNING; |
| for (i = 0; i < dma->max_chan; i++) { |
| struct intel_mid_dma_chan *midch = &dma->ch[i]; |
| |
| midch->chan.device = &dma->common; |
| midch->chan.cookie = 1; |
| midch->chan.chan_id = i; |
| midch->ch_id = dma->chan_base + i; |
| pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id); |
| |
| midch->dma_base = dma->dma_base; |
| midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id; |
| midch->dma = dma; |
| dma->intr_mask |= 1 << (dma->chan_base + i); |
| spin_lock_init(&midch->lock); |
| |
| INIT_LIST_HEAD(&midch->active_list); |
| INIT_LIST_HEAD(&midch->queue); |
| INIT_LIST_HEAD(&midch->free_list); |
| /*mask interrupts*/ |
| iowrite32(MASK_INTR_REG(midch->ch_id), |
| dma->dma_base + MASK_BLOCK); |
| iowrite32(MASK_INTR_REG(midch->ch_id), |
| dma->dma_base + MASK_SRC_TRAN); |
| iowrite32(MASK_INTR_REG(midch->ch_id), |
| dma->dma_base + MASK_DST_TRAN); |
| iowrite32(MASK_INTR_REG(midch->ch_id), |
| dma->dma_base + MASK_ERR); |
| iowrite32(MASK_INTR_REG(midch->ch_id), |
| dma->dma_base + MASK_TFR); |
| |
| disable_dma_interrupt(midch); |
| list_add_tail(&midch->chan.device_node, &dma->common.channels); |
| } |
| pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask); |
| |
| /*init dma structure*/ |
| dma_cap_zero(dma->common.cap_mask); |
| dma_cap_set(DMA_MEMCPY, dma->common.cap_mask); |
| dma_cap_set(DMA_SLAVE, dma->common.cap_mask); |
| dma_cap_set(DMA_PRIVATE, dma->common.cap_mask); |
| dma->common.dev = &pdev->dev; |
| dma->common.chancnt = dma->max_chan; |
| |
| dma->common.device_alloc_chan_resources = |
| intel_mid_dma_alloc_chan_resources; |
| dma->common.device_free_chan_resources = |
| intel_mid_dma_free_chan_resources; |
| |
| dma->common.device_tx_status = intel_mid_dma_tx_status; |
| dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy; |
| dma->common.device_issue_pending = intel_mid_dma_issue_pending; |
| dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg; |
| dma->common.device_control = intel_mid_dma_device_control; |
| |
| /*enable dma cntrl*/ |
| iowrite32(REG_BIT0, dma->dma_base + DMA_CFG); |
| |
| /*register irq */ |
| if (dma->pimr_mask) { |
| pr_debug("MDMA:Requesting irq shared for DMAC1\n"); |
| err = request_irq(pdev->irq, intel_mid_dma_interrupt1, |
| IRQF_SHARED, "INTEL_MID_DMAC1", dma); |
| if (0 != err) |
| goto err_irq; |
| } else { |
| dma->intr_mask = 0x03; |
| pr_debug("MDMA:Requesting irq for DMAC2\n"); |
| err = request_irq(pdev->irq, intel_mid_dma_interrupt2, |
| IRQF_SHARED, "INTEL_MID_DMAC2", dma); |
| if (0 != err) |
| goto err_irq; |
| } |
| /*register device w/ engine*/ |
| err = dma_async_device_register(&dma->common); |
| if (0 != err) { |
| pr_err("ERR_MDMA:device_register failed: %d\n", err); |
| goto err_engine; |
| } |
| if (dma->pimr_mask) { |
| pr_debug("setting up tasklet1 for DMAC1\n"); |
| tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma); |
| } else { |
| pr_debug("setting up tasklet2 for DMAC2\n"); |
| tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma); |
| } |
| return 0; |
| |
| err_engine: |
| free_irq(pdev->irq, dma); |
| err_irq: |
| pci_pool_destroy(dma->dma_pool); |
| err_dma_pool: |
| pr_err("ERR_MDMA:setup_dma failed: %d\n", err); |
| return err; |
| |
| } |
| |
| /** |
| * middma_shutdown - Shutdown the DMA controller |
| * @pdev: Controller PCI device structure |
| * |
| * Called by remove |
| * Unregister DMa controller, clear all structures and free interrupt |
| */ |
| static void middma_shutdown(struct pci_dev *pdev) |
| { |
| struct middma_device *device = pci_get_drvdata(pdev); |
| |
| dma_async_device_unregister(&device->common); |
| pci_pool_destroy(device->dma_pool); |
| if (device->mask_reg) |
| iounmap(device->mask_reg); |
| if (device->dma_base) |
| iounmap(device->dma_base); |
| free_irq(pdev->irq, device); |
| return; |
| } |
| |
| /** |
| * intel_mid_dma_probe - PCI Probe |
| * @pdev: Controller PCI device structure |
| * @id: pci device id structure |
| * |
| * Initialize the PCI device, map BARs, query driver data. |
| * Call setup_dma to complete contoller and chan initilzation |
| */ |
| static int __devinit intel_mid_dma_probe(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| struct middma_device *device; |
| u32 base_addr, bar_size; |
| struct intel_mid_dma_probe_info *info; |
| int err; |
| |
| pr_debug("MDMA: probe for %x\n", pdev->device); |
| info = (void *)id->driver_data; |
| pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n", |
| info->max_chan, info->ch_base, |
| info->block_size, info->pimr_mask); |
| |
| err = pci_enable_device(pdev); |
| if (err) |
| goto err_enable_device; |
| |
| err = pci_request_regions(pdev, "intel_mid_dmac"); |
| if (err) |
| goto err_request_regions; |
| |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) |
| goto err_set_dma_mask; |
| |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) |
| goto err_set_dma_mask; |
| |
| device = kzalloc(sizeof(*device), GFP_KERNEL); |
| if (!device) { |
| pr_err("ERR_MDMA:kzalloc failed probe\n"); |
| err = -ENOMEM; |
| goto err_kzalloc; |
| } |
| device->pdev = pci_dev_get(pdev); |
| |
| base_addr = pci_resource_start(pdev, 0); |
| bar_size = pci_resource_len(pdev, 0); |
| device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE); |
| if (!device->dma_base) { |
| pr_err("ERR_MDMA:ioremap failed\n"); |
| err = -ENOMEM; |
| goto err_ioremap; |
| } |
| pci_set_drvdata(pdev, device); |
| pci_set_master(pdev); |
| device->max_chan = info->max_chan; |
| device->chan_base = info->ch_base; |
| device->block_size = info->block_size; |
| device->pimr_mask = info->pimr_mask; |
| |
| err = mid_setup_dma(pdev); |
| if (err) |
| goto err_dma; |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_allow(&pdev->dev); |
| return 0; |
| |
| err_dma: |
| iounmap(device->dma_base); |
| err_ioremap: |
| pci_dev_put(pdev); |
| kfree(device); |
| err_kzalloc: |
| err_set_dma_mask: |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| err_request_regions: |
| err_enable_device: |
| pr_err("ERR_MDMA:Probe failed %d\n", err); |
| return err; |
| } |
| |
| /** |
| * intel_mid_dma_remove - PCI remove |
| * @pdev: Controller PCI device structure |
| * |
| * Free up all resources and data |
| * Call shutdown_dma to complete contoller and chan cleanup |
| */ |
| static void __devexit intel_mid_dma_remove(struct pci_dev *pdev) |
| { |
| struct middma_device *device = pci_get_drvdata(pdev); |
| middma_shutdown(pdev); |
| pci_dev_put(pdev); |
| kfree(device); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| } |
| |
| /* Power Management */ |
| /* |
| * dma_suspend - PCI suspend function |
| * |
| * @pci: PCI device structure |
| * @state: PM message |
| * |
| * This function is called by OS when a power event occurs |
| */ |
| int dma_suspend(struct pci_dev *pci, pm_message_t state) |
| { |
| int i; |
| struct middma_device *device = pci_get_drvdata(pci); |
| pr_debug("MDMA: dma_suspend called\n"); |
| |
| for (i = 0; i < device->max_chan; i++) { |
| if (device->ch[i].in_use) |
| return -EAGAIN; |
| } |
| device->state = SUSPENDED; |
| pci_set_drvdata(pci, device); |
| pci_save_state(pci); |
| pci_disable_device(pci); |
| pci_set_power_state(pci, PCI_D3hot); |
| return 0; |
| } |
| |
| /** |
| * dma_resume - PCI resume function |
| * |
| * @pci: PCI device structure |
| * |
| * This function is called by OS when a power event occurs |
| */ |
| int dma_resume(struct pci_dev *pci) |
| { |
| int ret; |
| struct middma_device *device = pci_get_drvdata(pci); |
| |
| pr_debug("MDMA: dma_resume called\n"); |
| pci_set_power_state(pci, PCI_D0); |
| pci_restore_state(pci); |
| ret = pci_enable_device(pci); |
| if (ret) { |
| pr_err("MDMA: device can't be enabled for %x\n", pci->device); |
| return ret; |
| } |
| device->state = RUNNING; |
| iowrite32(REG_BIT0, device->dma_base + DMA_CFG); |
| pci_set_drvdata(pci, device); |
| return 0; |
| } |
| |
| static int dma_runtime_suspend(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| return dma_suspend(pci_dev, PMSG_SUSPEND); |
| } |
| |
| static int dma_runtime_resume(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| return dma_resume(pci_dev); |
| } |
| |
| static int dma_runtime_idle(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct middma_device *device = pci_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < device->max_chan; i++) { |
| if (device->ch[i].in_use) |
| return -EAGAIN; |
| } |
| |
| return pm_schedule_suspend(dev, 0); |
| } |
| |
| /****************************************************************************** |
| * PCI stuff |
| */ |
| static struct pci_device_id intel_mid_dma_ids[] = { |
| { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)}, |
| { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)}, |
| { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)}, |
| { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)}, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids); |
| |
| static const struct dev_pm_ops intel_mid_dma_pm = { |
| .runtime_suspend = dma_runtime_suspend, |
| .runtime_resume = dma_runtime_resume, |
| .runtime_idle = dma_runtime_idle, |
| }; |
| |
| static struct pci_driver intel_mid_dma_pci_driver = { |
| .name = "Intel MID DMA", |
| .id_table = intel_mid_dma_ids, |
| .probe = intel_mid_dma_probe, |
| .remove = __devexit_p(intel_mid_dma_remove), |
| #ifdef CONFIG_PM |
| .suspend = dma_suspend, |
| .resume = dma_resume, |
| .driver = { |
| .pm = &intel_mid_dma_pm, |
| }, |
| #endif |
| }; |
| |
| static int __init intel_mid_dma_init(void) |
| { |
| pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n", |
| INTEL_MID_DMA_DRIVER_VERSION); |
| return pci_register_driver(&intel_mid_dma_pci_driver); |
| } |
| fs_initcall(intel_mid_dma_init); |
| |
| static void __exit intel_mid_dma_exit(void) |
| { |
| pci_unregister_driver(&intel_mid_dma_pci_driver); |
| } |
| module_exit(intel_mid_dma_exit); |
| |
| MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>"); |
| MODULE_DESCRIPTION("Intel (R) MID DMAC Driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION); |