blob: 15bb7b4895b0623b1e36a77a3e820cb5ec397464 [file] [log] [blame]
/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/compat.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/fs.h>
#include <linux/genalloc.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/rbtree.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/qcom_iommu.h>
#include <linux/time.h>
#include <linux/hashtable.h>
#include <linux/hash.h>
#include "ipa_i.h"
#include "../ipa_rm_i.h"
#define CREATE_TRACE_POINTS
#include "ipa_trace.h"
#define IPA_SUMMING_THRESHOLD (0x10)
#define IPA_PIPE_MEM_START_OFST (0x0)
#define IPA_PIPE_MEM_SIZE (0x0)
#define IPA_MOBILE_AP_MODE(x) (x == IPA_MODE_MOBILE_AP_ETH || \
x == IPA_MODE_MOBILE_AP_WAN || \
x == IPA_MODE_MOBILE_AP_WLAN)
#define IPA_CNOC_CLK_RATE (75 * 1000 * 1000UL)
#define IPA_A5_MUX_HEADER_LENGTH (8)
#define IPA_ROUTING_RULE_BYTE_SIZE (4)
#define IPA_BAM_CNFG_BITS_VALv1_1 (0x7FFFE004)
#define IPA_BAM_CNFG_BITS_VALv2_0 (0xFFFFE004)
#define IPA_STATUS_CLEAR_OFST (0x3f28)
#define IPA_STATUS_CLEAR_SIZE (32)
#define IPA_AGGR_MAX_STR_LENGTH (10)
#define CLEANUP_TAG_PROCESS_TIMEOUT 150
#define IPA2_ACTIVE_CLIENTS_TABLE_BUF_SIZE 2048
#define IPA2_ACTIVE_CLIENT_LOG_TYPE_EP 0
#define IPA2_ACTIVE_CLIENT_LOG_TYPE_SIMPLE 1
#define IPA2_ACTIVE_CLIENT_LOG_TYPE_RESOURCE 2
#define IPA2_ACTIVE_CLIENT_LOG_TYPE_SPECIAL 3
#define MAX_POLLING_ITERATION 40
#define MIN_POLLING_ITERATION 1
#define ONE_MSEC 1
#define IPA_AGGR_STR_IN_BYTES(str) \
(strnlen((str), IPA_AGGR_MAX_STR_LENGTH - 1) + 1)
#define IPA_SPS_PROD_TIMEOUT_MSEC 100
#ifdef CONFIG_COMPAT
#define IPA_IOC_ADD_HDR32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_ADD_HDR, \
compat_uptr_t)
#define IPA_IOC_DEL_HDR32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_DEL_HDR, \
compat_uptr_t)
#define IPA_IOC_ADD_RT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_ADD_RT_RULE, \
compat_uptr_t)
#define IPA_IOC_DEL_RT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_DEL_RT_RULE, \
compat_uptr_t)
#define IPA_IOC_ADD_FLT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_ADD_FLT_RULE, \
compat_uptr_t)
#define IPA_IOC_DEL_FLT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_DEL_FLT_RULE, \
compat_uptr_t)
#define IPA_IOC_GET_RT_TBL32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_GET_RT_TBL, \
compat_uptr_t)
#define IPA_IOC_COPY_HDR32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_COPY_HDR, \
compat_uptr_t)
#define IPA_IOC_QUERY_INTF32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_QUERY_INTF, \
compat_uptr_t)
#define IPA_IOC_QUERY_INTF_TX_PROPS32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_QUERY_INTF_TX_PROPS, \
compat_uptr_t)
#define IPA_IOC_QUERY_INTF_RX_PROPS32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_QUERY_INTF_RX_PROPS, \
compat_uptr_t)
#define IPA_IOC_QUERY_INTF_EXT_PROPS32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_QUERY_INTF_EXT_PROPS, \
compat_uptr_t)
#define IPA_IOC_GET_HDR32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_GET_HDR, \
compat_uptr_t)
#define IPA_IOC_ALLOC_NAT_MEM32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_ALLOC_NAT_MEM, \
compat_uptr_t)
#define IPA_IOC_V4_INIT_NAT32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_V4_INIT_NAT, \
compat_uptr_t)
#define IPA_IOC_NAT_DMA32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_NAT_DMA, \
compat_uptr_t)
#define IPA_IOC_V4_DEL_NAT32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_V4_DEL_NAT, \
compat_uptr_t)
#define IPA_IOC_GET_NAT_OFFSET32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_GET_NAT_OFFSET, \
compat_uptr_t)
#define IPA_IOC_PULL_MSG32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_PULL_MSG, \
compat_uptr_t)
#define IPA_IOC_RM_ADD_DEPENDENCY32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_RM_ADD_DEPENDENCY, \
compat_uptr_t)
#define IPA_IOC_RM_DEL_DEPENDENCY32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_RM_DEL_DEPENDENCY, \
compat_uptr_t)
#define IPA_IOC_GENERATE_FLT_EQ32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_GENERATE_FLT_EQ, \
compat_uptr_t)
#define IPA_IOC_QUERY_RT_TBL_INDEX32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_QUERY_RT_TBL_INDEX, \
compat_uptr_t)
#define IPA_IOC_WRITE_QMAPID32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_WRITE_QMAPID, \
compat_uptr_t)
#define IPA_IOC_MDFY_FLT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_MDFY_FLT_RULE, \
compat_uptr_t)
#define IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_ADD32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_NOTIFY_WAN_UPSTREAM_ROUTE_ADD, \
compat_uptr_t)
#define IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_DEL32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_NOTIFY_WAN_UPSTREAM_ROUTE_DEL, \
compat_uptr_t)
#define IPA_IOC_NOTIFY_WAN_EMBMS_CONNECTED32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_NOTIFY_WAN_EMBMS_CONNECTED, \
compat_uptr_t)
#define IPA_IOC_ADD_HDR_PROC_CTX32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_ADD_HDR_PROC_CTX, \
compat_uptr_t)
#define IPA_IOC_DEL_HDR_PROC_CTX32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_DEL_HDR_PROC_CTX, \
compat_uptr_t)
#define IPA_IOC_MDFY_RT_RULE32 _IOWR(IPA_IOC_MAGIC, \
IPA_IOCTL_MDFY_RT_RULE, \
compat_uptr_t)
/**
* struct ipa_ioc_nat_alloc_mem32 - nat table memory allocation
* properties
* @dev_name: input parameter, the name of table
* @size: input parameter, size of table in bytes
* @offset: output parameter, offset into page in case of system memory
*/
struct ipa_ioc_nat_alloc_mem32 {
char dev_name[IPA_RESOURCE_NAME_MAX];
compat_size_t size;
compat_off_t offset;
};
#endif
static void ipa_start_tag_process(struct work_struct *work);
static DECLARE_WORK(ipa_tag_work, ipa_start_tag_process);
static void ipa_sps_release_resource(struct work_struct *work);
static DECLARE_DELAYED_WORK(ipa_sps_release_resource_work,
ipa_sps_release_resource);
static struct ipa_plat_drv_res ipa_res = {0, };
struct msm_bus_scale_pdata *bus_scale_table;
static struct clk *ipa_clk_src;
static struct clk *ipa_clk;
static struct clk *smmu_clk;
static struct clk *sys_noc_ipa_axi_clk;
static struct clk *ipa_cnoc_clk;
static struct clk *ipa_inactivity_clk;
struct ipa_context *ipa_ctx;
static struct device *master_dev;
struct platform_device *ipa_pdev;
static struct {
bool present;
bool arm_smmu;
bool fast_map;
bool s1_bypass;
u32 ipa_base;
u32 ipa_size;
} smmu_info;
static char *active_clients_table_buf;
int ipa2_active_clients_log_print_buffer(char *buf, int size)
{
int i;
int nbytes;
int cnt = 0;
int start_idx;
int end_idx;
start_idx = (ipa_ctx->ipa2_active_clients_logging.log_tail + 1) %
IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES;
end_idx = ipa_ctx->ipa2_active_clients_logging.log_head;
for (i = start_idx; i != end_idx;
i = (i + 1) % IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES) {
nbytes = scnprintf(buf + cnt, size - cnt, "%s\n",
ipa_ctx->ipa2_active_clients_logging
.log_buffer[i]);
cnt += nbytes;
}
return cnt;
}
int ipa2_active_clients_log_print_table(char *buf, int size)
{
int i;
struct ipa2_active_client_htable_entry *iterator;
int cnt = 0;
cnt = scnprintf(buf, size, "\n---- Active Clients Table ----\n");
hash_for_each(ipa_ctx->ipa2_active_clients_logging.htable, i,
iterator, list) {
switch (iterator->type) {
case IPA2_ACTIVE_CLIENT_LOG_TYPE_EP:
cnt += scnprintf(buf + cnt, size - cnt,
"%-40s %-3d ENDPOINT\n",
iterator->id_string, iterator->count);
break;
case IPA2_ACTIVE_CLIENT_LOG_TYPE_SIMPLE:
cnt += scnprintf(buf + cnt, size - cnt,
"%-40s %-3d SIMPLE\n",
iterator->id_string, iterator->count);
break;
case IPA2_ACTIVE_CLIENT_LOG_TYPE_RESOURCE:
cnt += scnprintf(buf + cnt, size - cnt,
"%-40s %-3d RESOURCE\n",
iterator->id_string, iterator->count);
break;
case IPA2_ACTIVE_CLIENT_LOG_TYPE_SPECIAL:
cnt += scnprintf(buf + cnt, size - cnt,
"%-40s %-3d SPECIAL\n",
iterator->id_string, iterator->count);
break;
default:
IPAERR("Trying to print illegal active_clients type");
break;
}
}
cnt += scnprintf(buf + cnt, size - cnt,
"\nTotal active clients count: %d\n",
ipa_ctx->ipa_active_clients.cnt);
return cnt;
}
static int ipa2_active_clients_panic_notifier(struct notifier_block *this,
unsigned long event, void *ptr)
{
ipa_active_clients_lock();
ipa2_active_clients_log_print_table(active_clients_table_buf,
IPA2_ACTIVE_CLIENTS_TABLE_BUF_SIZE);
IPAERR("%s", active_clients_table_buf);
ipa_active_clients_unlock();
return NOTIFY_DONE;
}
static struct notifier_block ipa2_active_clients_panic_blk = {
.notifier_call = ipa2_active_clients_panic_notifier,
};
static int ipa2_active_clients_log_insert(const char *string)
{
int head;
int tail;
head = ipa_ctx->ipa2_active_clients_logging.log_head;
tail = ipa_ctx->ipa2_active_clients_logging.log_tail;
if (!ipa_ctx->ipa2_active_clients_logging.log_rdy)
return -EPERM;
memset(ipa_ctx->ipa2_active_clients_logging.log_buffer[head], '_',
IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN);
strlcpy(ipa_ctx->ipa2_active_clients_logging.log_buffer[head], string,
(size_t)IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN);
head = (head + 1) % IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES;
if (tail == head)
tail = (tail + 1) % IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES;
ipa_ctx->ipa2_active_clients_logging.log_tail = tail;
ipa_ctx->ipa2_active_clients_logging.log_head = head;
return 0;
}
static int ipa2_active_clients_log_init(void)
{
int i;
ipa_ctx->ipa2_active_clients_logging.log_buffer[0] = kzalloc(
IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES *
sizeof(char[IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN]),
GFP_KERNEL);
active_clients_table_buf = kzalloc(sizeof(
char[IPA2_ACTIVE_CLIENTS_TABLE_BUF_SIZE]), GFP_KERNEL);
if (ipa_ctx->ipa2_active_clients_logging.log_buffer == NULL) {
IPAERR("Active Clients Logging memory allocation failed");
goto bail;
}
for (i = 0; i < IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES; i++) {
ipa_ctx->ipa2_active_clients_logging.log_buffer[i] =
ipa_ctx->ipa2_active_clients_logging.log_buffer[0] +
(IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN * i);
}
ipa_ctx->ipa2_active_clients_logging.log_head = 0;
ipa_ctx->ipa2_active_clients_logging.log_tail =
IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES - 1;
hash_init(ipa_ctx->ipa2_active_clients_logging.htable);
atomic_notifier_chain_register(&panic_notifier_list,
&ipa2_active_clients_panic_blk);
ipa_ctx->ipa2_active_clients_logging.log_rdy = 1;
return 0;
bail:
return -ENOMEM;
}
void ipa2_active_clients_log_clear(void)
{
ipa_active_clients_lock();
ipa_ctx->ipa2_active_clients_logging.log_head = 0;
ipa_ctx->ipa2_active_clients_logging.log_tail =
IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES - 1;
ipa_active_clients_unlock();
}
static void ipa2_active_clients_log_destroy(void)
{
ipa_ctx->ipa2_active_clients_logging.log_rdy = 0;
kfree(ipa_ctx->ipa2_active_clients_logging.log_buffer[0]);
ipa_ctx->ipa2_active_clients_logging.log_head = 0;
ipa_ctx->ipa2_active_clients_logging.log_tail =
IPA2_ACTIVE_CLIENTS_LOG_BUFFER_SIZE_LINES - 1;
}
enum ipa_smmu_cb_type {
IPA_SMMU_CB_AP,
IPA_SMMU_CB_WLAN,
IPA_SMMU_CB_UC,
IPA_SMMU_CB_MAX
};
static struct ipa_smmu_cb_ctx smmu_cb[IPA_SMMU_CB_MAX];
struct iommu_domain *ipa2_get_smmu_domain(void)
{
if (smmu_cb[IPA_SMMU_CB_AP].valid)
return smmu_cb[IPA_SMMU_CB_AP].mapping->domain;
IPAERR("CB not valid\n");
return NULL;
}
struct iommu_domain *ipa2_get_uc_smmu_domain(void)
{
if (smmu_cb[IPA_SMMU_CB_UC].valid)
return smmu_cb[IPA_SMMU_CB_UC].mapping->domain;
IPAERR("CB not valid\n");
return NULL;
}
struct iommu_domain *ipa2_get_wlan_smmu_domain(void)
{
if (smmu_cb[IPA_SMMU_CB_WLAN].valid)
return smmu_cb[IPA_SMMU_CB_WLAN].iommu;
IPAERR("CB not valid\n");
return NULL;
}
struct device *ipa2_get_dma_dev(void)
{
return ipa_ctx->pdev;
}
/**
* ipa2_get_smmu_ctx()- Return the smmu context
*
* Return value: pointer to smmu context address
*/
struct ipa_smmu_cb_ctx *ipa2_get_smmu_ctx(void)
{
return &smmu_cb[IPA_SMMU_CB_AP];
}
/**
* ipa2_get_wlan_smmu_ctx()- Return the wlan smmu context
*
* Return value: pointer to smmu context address
*/
struct ipa_smmu_cb_ctx *ipa2_get_wlan_smmu_ctx(void)
{
return &smmu_cb[IPA_SMMU_CB_WLAN];
}
/**
* ipa2_get_uc_smmu_ctx()- Return the uc smmu context
*
* Return value: pointer to smmu context address
*/
struct ipa_smmu_cb_ctx *ipa2_get_uc_smmu_ctx(void)
{
return &smmu_cb[IPA_SMMU_CB_UC];
}
static int ipa_open(struct inode *inode, struct file *filp)
{
struct ipa_context *ctx = NULL;
IPADBG("ENTER\n");
ctx = container_of(inode->i_cdev, struct ipa_context, cdev);
filp->private_data = ctx;
return 0;
}
/**
* ipa_flow_control() - Enable/Disable flow control on a particular client.
* Return codes:
* None
*/
void ipa_flow_control(enum ipa_client_type ipa_client,
bool enable, uint32_t qmap_id)
{
struct ipa_ep_cfg_ctrl ep_ctrl = {0};
int ep_idx;
struct ipa_ep_context *ep;
/* Check if tethered flow control is needed or not.*/
if (!ipa_ctx->tethered_flow_control) {
IPADBG("Apps flow control is not needed\n");
return;
}
/* Check if ep is valid. */
ep_idx = ipa2_get_ep_mapping(ipa_client);
if (ep_idx == -1) {
IPADBG("Invalid IPA client\n");
return;
}
ep = &ipa_ctx->ep[ep_idx];
if (!ep->valid || (ep->client != IPA_CLIENT_USB_PROD)) {
IPADBG("EP not valid/Not applicable for client.\n");
return;
}
spin_lock(&ipa_ctx->disconnect_lock);
/* Check if the QMAP_ID matches. */
if (ep->cfg.meta.qmap_id != qmap_id) {
IPADBG("Flow control ind not for same flow: %u %u\n",
ep->cfg.meta.qmap_id, qmap_id);
spin_unlock(&ipa_ctx->disconnect_lock);
return;
}
if (!ep->disconnect_in_progress) {
if (enable) {
IPADBG("Enabling Flow\n");
ep_ctrl.ipa_ep_delay = false;
IPA_STATS_INC_CNT(ipa_ctx->stats.flow_enable);
} else {
IPADBG("Disabling Flow\n");
ep_ctrl.ipa_ep_delay = true;
IPA_STATS_INC_CNT(ipa_ctx->stats.flow_disable);
}
ep_ctrl.ipa_ep_suspend = false;
ipa2_cfg_ep_ctrl(ep_idx, &ep_ctrl);
} else {
IPADBG("EP disconnect is in progress\n");
}
spin_unlock(&ipa_ctx->disconnect_lock);
}
static void ipa_wan_msg_free_cb(void *buff, u32 len, u32 type)
{
if (!buff) {
IPAERR("Null buffer\n");
return;
}
if (type != WAN_UPSTREAM_ROUTE_ADD &&
type != WAN_UPSTREAM_ROUTE_DEL &&
type != WAN_EMBMS_CONNECT) {
IPAERR("Wrong type given. buff %p type %d\n", buff, type);
return;
}
kfree(buff);
}
static int ipa_send_wan_msg(unsigned long usr_param, uint8_t msg_type)
{
int retval;
struct ipa_wan_msg *wan_msg;
struct ipa_msg_meta msg_meta;
wan_msg = kzalloc(sizeof(struct ipa_wan_msg), GFP_KERNEL);
if (!wan_msg) {
IPAERR("no memory\n");
return -ENOMEM;
}
if (copy_from_user((u8 *)wan_msg, (u8 *)usr_param,
sizeof(struct ipa_wan_msg))) {
kfree(wan_msg);
return -EFAULT;
}
memset(&msg_meta, 0, sizeof(struct ipa_msg_meta));
msg_meta.msg_type = msg_type;
msg_meta.msg_len = sizeof(struct ipa_wan_msg);
retval = ipa2_send_msg(&msg_meta, wan_msg, ipa_wan_msg_free_cb);
if (retval) {
IPAERR("ipa2_send_msg failed: %d\n", retval);
kfree(wan_msg);
return retval;
}
return 0;
}
static long ipa_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int retval = 0;
u32 pyld_sz;
u8 header[128] = { 0 };
u8 *param = NULL;
struct ipa_ioc_nat_alloc_mem nat_mem;
struct ipa_ioc_v4_nat_init nat_init;
struct ipa_ioc_v4_nat_del nat_del;
struct ipa_ioc_rm_dependency rm_depend;
size_t sz;
int pre_entry;
IPADBG("cmd=%x nr=%d\n", cmd, _IOC_NR(cmd));
if (_IOC_TYPE(cmd) != IPA_IOC_MAGIC)
return -ENOTTY;
if (_IOC_NR(cmd) >= IPA_IOCTL_MAX)
return -ENOTTY;
IPA_ACTIVE_CLIENTS_INC_SIMPLE();
switch (cmd) {
case IPA_IOC_ALLOC_NAT_MEM:
if (copy_from_user((u8 *)&nat_mem, (u8 *)arg,
sizeof(struct ipa_ioc_nat_alloc_mem))) {
retval = -EFAULT;
break;
}
/* null terminate the string */
nat_mem.dev_name[IPA_RESOURCE_NAME_MAX - 1] = '\0';
if (ipa2_allocate_nat_device(&nat_mem)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, (u8 *)&nat_mem,
sizeof(struct ipa_ioc_nat_alloc_mem))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_V4_INIT_NAT:
if (copy_from_user((u8 *)&nat_init, (u8 *)arg,
sizeof(struct ipa_ioc_v4_nat_init))) {
retval = -EFAULT;
break;
}
if (ipa2_nat_init_cmd(&nat_init)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_NAT_DMA:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_nat_dma_cmd))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_nat_dma_cmd *)header)->entries;
pyld_sz =
sizeof(struct ipa_ioc_nat_dma_cmd) +
pre_entry * sizeof(struct ipa_ioc_nat_dma_one);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_nat_dma_cmd *)param)->entries
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_nat_dma_cmd *)param)->entries,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_nat_dma_cmd((struct ipa_ioc_nat_dma_cmd *)param)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_V4_DEL_NAT:
if (copy_from_user((u8 *)&nat_del, (u8 *)arg,
sizeof(struct ipa_ioc_v4_nat_del))) {
retval = -EFAULT;
break;
}
if (ipa2_nat_del_cmd(&nat_del)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_ADD_HDR:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_add_hdr))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_add_hdr *)header)->num_hdrs;
pyld_sz =
sizeof(struct ipa_ioc_add_hdr) +
pre_entry * sizeof(struct ipa_hdr_add);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_add_hdr *)param)->num_hdrs
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_add_hdr *)param)->num_hdrs,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_add_hdr((struct ipa_ioc_add_hdr *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_DEL_HDR:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_del_hdr))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_del_hdr *)header)->num_hdls;
pyld_sz =
sizeof(struct ipa_ioc_del_hdr) +
pre_entry * sizeof(struct ipa_hdr_del);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_del_hdr *)param)->num_hdls
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_del_hdr *)param)->num_hdls,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_del_hdr_by_user((struct ipa_ioc_del_hdr *)param,
true)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_ADD_RT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_add_rt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_add_rt_rule *)header)->num_rules;
pyld_sz =
sizeof(struct ipa_ioc_add_rt_rule) +
pre_entry * sizeof(struct ipa_rt_rule_add);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_add_rt_rule *)param)->num_rules
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_add_rt_rule *)param)->
num_rules,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_add_rt_rule((struct ipa_ioc_add_rt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_MDFY_RT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_mdfy_rt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_mdfy_rt_rule *)header)->num_rules;
pyld_sz =
sizeof(struct ipa_ioc_mdfy_rt_rule) +
pre_entry * sizeof(struct ipa_rt_rule_mdfy);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_mdfy_rt_rule *)param)->num_rules
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_mdfy_rt_rule *)param)->
num_rules,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_mdfy_rt_rule((struct ipa_ioc_mdfy_rt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_DEL_RT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_del_rt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_del_rt_rule *)header)->num_hdls;
pyld_sz =
sizeof(struct ipa_ioc_del_rt_rule) +
pre_entry * sizeof(struct ipa_rt_rule_del);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_del_rt_rule *)param)->num_hdls
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_del_rt_rule *)param)->num_hdls,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_del_rt_rule((struct ipa_ioc_del_rt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_ADD_FLT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_add_flt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_add_flt_rule *)header)->num_rules;
pyld_sz =
sizeof(struct ipa_ioc_add_flt_rule) +
pre_entry * sizeof(struct ipa_flt_rule_add);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_add_flt_rule *)param)->num_rules
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_add_flt_rule *)param)->
num_rules,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_add_flt_rule((struct ipa_ioc_add_flt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_DEL_FLT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_del_flt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_del_flt_rule *)header)->num_hdls;
pyld_sz =
sizeof(struct ipa_ioc_del_flt_rule) +
pre_entry * sizeof(struct ipa_flt_rule_del);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_del_flt_rule *)param)->num_hdls
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_del_flt_rule *)param)->
num_hdls,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_del_flt_rule((struct ipa_ioc_del_flt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_MDFY_FLT_RULE:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_mdfy_flt_rule))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_mdfy_flt_rule *)header)->num_rules;
pyld_sz =
sizeof(struct ipa_ioc_mdfy_flt_rule) +
pre_entry * sizeof(struct ipa_flt_rule_mdfy);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_mdfy_flt_rule *)param)->num_rules
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_mdfy_flt_rule *)param)->
num_rules,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_mdfy_flt_rule((struct ipa_ioc_mdfy_flt_rule *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_COMMIT_HDR:
retval = ipa2_commit_hdr();
break;
case IPA_IOC_RESET_HDR:
retval = ipa2_reset_hdr();
break;
case IPA_IOC_COMMIT_RT:
retval = ipa2_commit_rt(arg);
break;
case IPA_IOC_RESET_RT:
retval = ipa2_reset_rt(arg);
break;
case IPA_IOC_COMMIT_FLT:
retval = ipa2_commit_flt(arg);
break;
case IPA_IOC_RESET_FLT:
retval = ipa2_reset_flt(arg);
break;
case IPA_IOC_GET_RT_TBL:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_get_rt_tbl))) {
retval = -EFAULT;
break;
}
if (ipa2_get_rt_tbl((struct ipa_ioc_get_rt_tbl *)header)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_get_rt_tbl))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_PUT_RT_TBL:
retval = ipa2_put_rt_tbl(arg);
break;
case IPA_IOC_GET_HDR:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_get_hdr))) {
retval = -EFAULT;
break;
}
if (ipa2_get_hdr((struct ipa_ioc_get_hdr *)header)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_get_hdr))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_PUT_HDR:
retval = ipa2_put_hdr(arg);
break;
case IPA_IOC_SET_FLT:
retval = ipa_cfg_filter(arg);
break;
case IPA_IOC_COPY_HDR:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_copy_hdr))) {
retval = -EFAULT;
break;
}
if (ipa2_copy_hdr((struct ipa_ioc_copy_hdr *)header)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_copy_hdr))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_QUERY_INTF:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_query_intf))) {
retval = -EFAULT;
break;
}
if (ipa_query_intf((struct ipa_ioc_query_intf *)header)) {
retval = -1;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_query_intf))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_QUERY_INTF_TX_PROPS:
sz = sizeof(struct ipa_ioc_query_intf_tx_props);
if (copy_from_user(header, (u8 *)arg, sz)) {
retval = -EFAULT;
break;
}
if (((struct ipa_ioc_query_intf_tx_props *)header)->num_tx_props
> IPA_NUM_PROPS_MAX) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_query_intf_tx_props *)
header)->num_tx_props;
pyld_sz = sz + pre_entry *
sizeof(struct ipa_ioc_tx_intf_prop);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_query_intf_tx_props *)
param)->num_tx_props
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_query_intf_tx_props *)
param)->num_tx_props, pre_entry);
retval = -EFAULT;
break;
}
if (ipa_query_intf_tx_props(
(struct ipa_ioc_query_intf_tx_props *)param)) {
retval = -1;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_QUERY_INTF_RX_PROPS:
sz = sizeof(struct ipa_ioc_query_intf_rx_props);
if (copy_from_user(header, (u8 *)arg, sz)) {
retval = -EFAULT;
break;
}
if (((struct ipa_ioc_query_intf_rx_props *)header)->num_rx_props
> IPA_NUM_PROPS_MAX) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_query_intf_rx_props *)
header)->num_rx_props;
pyld_sz = sz + pre_entry *
sizeof(struct ipa_ioc_rx_intf_prop);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_query_intf_rx_props *)
param)->num_rx_props != pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_query_intf_rx_props *)
param)->num_rx_props, pre_entry);
retval = -EFAULT;
break;
}
if (ipa_query_intf_rx_props(
(struct ipa_ioc_query_intf_rx_props *)param)) {
retval = -1;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_QUERY_INTF_EXT_PROPS:
sz = sizeof(struct ipa_ioc_query_intf_ext_props);
if (copy_from_user(header, (u8 *)arg, sz)) {
retval = -EFAULT;
break;
}
if (((struct ipa_ioc_query_intf_ext_props *)
header)->num_ext_props > IPA_NUM_PROPS_MAX) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_query_intf_ext_props *)
header)->num_ext_props;
pyld_sz = sz + pre_entry *
sizeof(struct ipa_ioc_ext_intf_prop);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_query_intf_ext_props *)
param)->num_ext_props != pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_query_intf_ext_props *)
param)->num_ext_props, pre_entry);
retval = -EFAULT;
break;
}
if (ipa_query_intf_ext_props(
(struct ipa_ioc_query_intf_ext_props *)param)) {
retval = -1;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_PULL_MSG:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_msg_meta))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_msg_meta *)header)->msg_len;
pyld_sz = sizeof(struct ipa_msg_meta) +
pre_entry;
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_msg_meta *)param)->msg_len
!= pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_msg_meta *)param)->msg_len,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa_pull_msg((struct ipa_msg_meta *)param,
(char *)param + sizeof(struct ipa_msg_meta),
((struct ipa_msg_meta *)param)->msg_len) !=
((struct ipa_msg_meta *)param)->msg_len) {
retval = -1;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_RM_ADD_DEPENDENCY:
if (copy_from_user((u8 *)&rm_depend, (u8 *)arg,
sizeof(struct ipa_ioc_rm_dependency))) {
retval = -EFAULT;
break;
}
retval = ipa_rm_add_dependency_from_ioctl(
rm_depend.resource_name, rm_depend.depends_on_name);
break;
case IPA_IOC_RM_DEL_DEPENDENCY:
if (copy_from_user((u8 *)&rm_depend, (u8 *)arg,
sizeof(struct ipa_ioc_rm_dependency))) {
retval = -EFAULT;
break;
}
retval = ipa_rm_delete_dependency_from_ioctl(
rm_depend.resource_name, rm_depend.depends_on_name);
break;
case IPA_IOC_GENERATE_FLT_EQ:
{
struct ipa_ioc_generate_flt_eq flt_eq;
if (copy_from_user(&flt_eq, (u8 *)arg,
sizeof(struct ipa_ioc_generate_flt_eq))) {
retval = -EFAULT;
break;
}
if (ipa_generate_flt_eq(flt_eq.ip, &flt_eq.attrib,
&flt_eq.eq_attrib)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, &flt_eq,
sizeof(struct ipa_ioc_generate_flt_eq))) {
retval = -EFAULT;
break;
}
break;
}
case IPA_IOC_QUERY_EP_MAPPING:
{
retval = ipa2_get_ep_mapping(arg);
break;
}
case IPA_IOC_QUERY_RT_TBL_INDEX:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_get_rt_tbl_indx))) {
retval = -EFAULT;
break;
}
if (ipa2_query_rt_index(
(struct ipa_ioc_get_rt_tbl_indx *)header)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_get_rt_tbl_indx))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_WRITE_QMAPID:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_write_qmapid))) {
retval = -EFAULT;
break;
}
if (ipa2_write_qmap_id((struct ipa_ioc_write_qmapid *)header)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, header,
sizeof(struct ipa_ioc_write_qmapid))) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_ADD:
retval = ipa_send_wan_msg(arg, WAN_UPSTREAM_ROUTE_ADD);
if (retval) {
IPAERR("ipa_send_wan_msg failed: %d\n", retval);
break;
}
break;
case IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_DEL:
retval = ipa_send_wan_msg(arg, WAN_UPSTREAM_ROUTE_DEL);
if (retval) {
IPAERR("ipa_send_wan_msg failed: %d\n", retval);
break;
}
break;
case IPA_IOC_NOTIFY_WAN_EMBMS_CONNECTED:
retval = ipa_send_wan_msg(arg, WAN_EMBMS_CONNECT);
if (retval) {
IPAERR("ipa_send_wan_msg failed: %d\n", retval);
break;
}
break;
case IPA_IOC_ADD_HDR_PROC_CTX:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_add_hdr_proc_ctx))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_add_hdr_proc_ctx *)
header)->num_proc_ctxs;
pyld_sz =
sizeof(struct ipa_ioc_add_hdr_proc_ctx) +
pre_entry * sizeof(struct ipa_hdr_proc_ctx_add);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_add_hdr_proc_ctx *)
param)->num_proc_ctxs != pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_add_hdr_proc_ctx *)
param)->num_proc_ctxs, pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_add_hdr_proc_ctx(
(struct ipa_ioc_add_hdr_proc_ctx *)param)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_DEL_HDR_PROC_CTX:
if (copy_from_user(header, (u8 *)arg,
sizeof(struct ipa_ioc_del_hdr_proc_ctx))) {
retval = -EFAULT;
break;
}
pre_entry =
((struct ipa_ioc_del_hdr_proc_ctx *)header)->num_hdls;
pyld_sz =
sizeof(struct ipa_ioc_del_hdr_proc_ctx) +
pre_entry * sizeof(struct ipa_hdr_proc_ctx_del);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
if (copy_from_user(param, (u8 *)arg, pyld_sz)) {
retval = -EFAULT;
break;
}
/* add check in case user-space module compromised */
if (unlikely(((struct ipa_ioc_del_hdr_proc_ctx *)
param)->num_hdls != pre_entry)) {
IPAERR("current %d pre %d\n",
((struct ipa_ioc_del_hdr_proc_ctx *)param)->
num_hdls,
pre_entry);
retval = -EFAULT;
break;
}
if (ipa2_del_hdr_proc_ctx_by_user(
(struct ipa_ioc_del_hdr_proc_ctx *)param, true)) {
retval = -EFAULT;
break;
}
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
case IPA_IOC_GET_HW_VERSION:
pyld_sz = sizeof(enum ipa_hw_type);
param = kzalloc(pyld_sz, GFP_KERNEL);
if (!param) {
retval = -ENOMEM;
break;
}
memcpy(param, &ipa_ctx->ipa_hw_type, pyld_sz);
if (copy_to_user((u8 *)arg, param, pyld_sz)) {
retval = -EFAULT;
break;
}
break;
default: /* redundant, as cmd was checked against MAXNR */
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return -ENOTTY;
}
kfree(param);
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return retval;
}
/**
* ipa_setup_dflt_rt_tables() - Setup default routing tables
*
* Return codes:
* 0: success
* -ENOMEM: failed to allocate memory
* -EPERM: failed to add the tables
*/
int ipa_setup_dflt_rt_tables(void)
{
struct ipa_ioc_add_rt_rule *rt_rule;
struct ipa_rt_rule_add *rt_rule_entry;
rt_rule =
kzalloc(sizeof(struct ipa_ioc_add_rt_rule) + 1 *
sizeof(struct ipa_rt_rule_add), GFP_KERNEL);
if (!rt_rule) {
IPAERR("fail to alloc mem\n");
return -ENOMEM;
}
/* setup a default v4 route to point to Apps */
rt_rule->num_rules = 1;
rt_rule->commit = 1;
rt_rule->ip = IPA_IP_v4;
strlcpy(rt_rule->rt_tbl_name, IPA_DFLT_RT_TBL_NAME,
IPA_RESOURCE_NAME_MAX);
rt_rule_entry = &rt_rule->rules[0];
rt_rule_entry->at_rear = 1;
rt_rule_entry->rule.dst = IPA_CLIENT_APPS_LAN_CONS;
rt_rule_entry->rule.hdr_hdl = ipa_ctx->excp_hdr_hdl;
if (ipa2_add_rt_rule(rt_rule)) {
IPAERR("fail to add dflt v4 rule\n");
kfree(rt_rule);
return -EPERM;
}
IPADBG("dflt v4 rt rule hdl=%x\n", rt_rule_entry->rt_rule_hdl);
ipa_ctx->dflt_v4_rt_rule_hdl = rt_rule_entry->rt_rule_hdl;
/* setup a default v6 route to point to A5 */
rt_rule->ip = IPA_IP_v6;
if (ipa2_add_rt_rule(rt_rule)) {
IPAERR("fail to add dflt v6 rule\n");
kfree(rt_rule);
return -EPERM;
}
IPADBG("dflt v6 rt rule hdl=%x\n", rt_rule_entry->rt_rule_hdl);
ipa_ctx->dflt_v6_rt_rule_hdl = rt_rule_entry->rt_rule_hdl;
/*
* because these tables are the very first to be added, they will both
* have the same index (0) which is essential for programming the
* "route" end-point config
*/
kfree(rt_rule);
return 0;
}
static int ipa_setup_exception_path(void)
{
struct ipa_ioc_add_hdr *hdr;
struct ipa_hdr_add *hdr_entry;
struct ipa_route route = { 0 };
int ret;
/* install the basic exception header */
hdr = kzalloc(sizeof(struct ipa_ioc_add_hdr) + 1 *
sizeof(struct ipa_hdr_add), GFP_KERNEL);
if (!hdr) {
IPAERR("fail to alloc exception hdr\n");
return -ENOMEM;
}
hdr->num_hdrs = 1;
hdr->commit = 1;
hdr_entry = &hdr->hdr[0];
if (ipa_ctx->ipa_hw_type == IPA_HW_v1_1) {
strlcpy(hdr_entry->name, IPA_A5_MUX_HDR_NAME,
IPA_RESOURCE_NAME_MAX);
/* set template for the A5_MUX hdr in header addition block */
hdr_entry->hdr_len = IPA_A5_MUX_HEADER_LENGTH;
} else if (ipa_ctx->ipa_hw_type >= IPA_HW_v2_0) {
strlcpy(hdr_entry->name, IPA_LAN_RX_HDR_NAME,
IPA_RESOURCE_NAME_MAX);
hdr_entry->hdr_len = IPA_LAN_RX_HEADER_LENGTH;
} else {
WARN_ON(1);
}
if (ipa2_add_hdr(hdr)) {
IPAERR("fail to add exception hdr\n");
ret = -EPERM;
goto bail;
}
if (hdr_entry->status) {
IPAERR("fail to add exception hdr\n");
ret = -EPERM;
goto bail;
}
ipa_ctx->excp_hdr_hdl = hdr_entry->hdr_hdl;
/* set the route register to pass exception packets to Apps */
route.route_def_pipe = ipa2_get_ep_mapping(IPA_CLIENT_APPS_LAN_CONS);
route.route_frag_def_pipe = ipa2_get_ep_mapping(
IPA_CLIENT_APPS_LAN_CONS);
route.route_def_hdr_table = !ipa_ctx->hdr_tbl_lcl;
if (ipa_cfg_route(&route)) {
IPAERR("fail to add exception hdr\n");
ret = -EPERM;
goto bail;
}
ret = 0;
bail:
kfree(hdr);
return ret;
}
static int ipa_init_smem_region(int memory_region_size,
int memory_region_offset)
{
struct ipa_hw_imm_cmd_dma_shared_mem *cmd = NULL;
struct ipa_desc desc;
struct ipa_mem_buffer mem;
int rc;
if (memory_region_size == 0)
return 0;
memset(&desc, 0, sizeof(desc));
memset(&mem, 0, sizeof(mem));
mem.size = memory_region_size;
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size,
&mem.phys_base, GFP_KERNEL);
if (!mem.base) {
IPAERR("failed to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
memset(mem.base, 0, mem.size);
cmd = kzalloc(sizeof(*cmd),
GFP_KERNEL);
if (cmd == NULL) {
IPAERR("Failed to alloc immediate command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
cmd->size = mem.size;
cmd->system_addr = mem.phys_base;
cmd->local_addr = ipa_ctx->smem_restricted_bytes +
memory_region_offset;
desc.opcode = IPA_DMA_SHARED_MEM;
desc.pyld = cmd;
desc.len = sizeof(*cmd);
desc.type = IPA_IMM_CMD_DESC;
rc = ipa_send_cmd(1, &desc);
if (rc) {
IPAERR("failed to send immediate command (error %d)\n", rc);
rc = -EFAULT;
}
kfree(cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base,
mem.phys_base);
return rc;
}
/**
* ipa_init_q6_smem() - Initialize Q6 general memory and
* header memory regions in IPA.
*
* Return codes:
* 0: success
* -ENOMEM: failed to allocate dma memory
* -EFAULT: failed to send IPA command to initialize the memory
*/
int ipa_init_q6_smem(void)
{
int rc;
IPA_ACTIVE_CLIENTS_INC_SIMPLE();
if (ipa_ctx->ipa_hw_type == IPA_HW_v2_0)
rc = ipa_init_smem_region(IPA_MEM_PART(modem_size) -
IPA_MEM_RAM_MODEM_NETWORK_STATS_SIZE,
IPA_MEM_PART(modem_ofst));
else
rc = ipa_init_smem_region(IPA_MEM_PART(modem_size),
IPA_MEM_PART(modem_ofst));
if (rc) {
IPAERR("failed to initialize Modem RAM memory\n");
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return rc;
}
rc = ipa_init_smem_region(IPA_MEM_PART(modem_hdr_size),
IPA_MEM_PART(modem_hdr_ofst));
if (rc) {
IPAERR("failed to initialize Modem HDRs RAM memory\n");
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return rc;
}
rc = ipa_init_smem_region(IPA_MEM_PART(modem_hdr_proc_ctx_size),
IPA_MEM_PART(modem_hdr_proc_ctx_ofst));
if (rc) {
IPAERR("failed to initialize Modem proc ctx RAM memory\n");
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return rc;
}
rc = ipa_init_smem_region(IPA_MEM_PART(modem_comp_decomp_size),
IPA_MEM_PART(modem_comp_decomp_ofst));
if (rc) {
IPAERR("failed to initialize Modem Comp/Decomp RAM memory\n");
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return rc;
}
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return rc;
}
static void ipa_free_buffer(void *user1, int user2)
{
kfree(user1);
}
int ipa_q6_pipe_delay(bool zip_pipes)
{
u32 reg_val = 0;
int client_idx;
int ep_idx;
/* For ZIP pipes, processing is done in AFTER_SHUTDOWN callback. */
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++) {
/* Skip the processing for non Q6 pipes. */
if (!IPA_CLIENT_IS_Q6_PROD(client_idx))
continue;
/* Skip the processing for NON-ZIP pipes. */
else if (zip_pipes && IPA_CLIENT_IS_Q6_NON_ZIP_PROD(client_idx))
continue;
/* Skip the processing for ZIP pipes. */
else if (!zip_pipes && IPA_CLIENT_IS_Q6_ZIP_PROD(client_idx))
continue;
ep_idx = ipa2_get_ep_mapping(client_idx);
if (ep_idx == -1)
continue;
IPA_SETFIELD_IN_REG(reg_val, 1,
IPA_ENDP_INIT_CTRL_N_ENDP_DELAY_SHFT,
IPA_ENDP_INIT_CTRL_N_ENDP_DELAY_BMSK);
ipa_write_reg(ipa_ctx->mmio,
IPA_ENDP_INIT_CTRL_N_OFST(ep_idx), reg_val);
}
return 0;
}
int ipa_q6_monitor_holb_mitigation(bool enable)
{
int ep_idx;
int client_idx;
IPA_ACTIVE_CLIENTS_INC_SIMPLE();
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++) {
if (IPA_CLIENT_IS_Q6_NON_ZIP_CONS(client_idx)) {
ep_idx = ipa2_get_ep_mapping(client_idx);
if (ep_idx == -1)
continue;
/* Send a command to Uc to enable/disable
* holb monitoring.
*/
ipa_uc_monitor_holb(client_idx, enable);
}
}
IPA_ACTIVE_CLIENTS_DEC_SIMPLE();
return 0;
}
static int ipa_q6_avoid_holb(bool zip_pipes)
{
u32 reg_val;
int ep_idx;
int client_idx;
struct ipa_ep_cfg_ctrl avoid_holb;
memset(&avoid_holb, 0, sizeof(avoid_holb));
avoid_holb.ipa_ep_suspend = true;
/* For ZIP pipes, processing is done in AFTER_SHUTDOWN callback. */
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++) {
/* Skip the processing for non Q6 pipes. */
if (!IPA_CLIENT_IS_Q6_CONS(client_idx))
continue;
/* Skip the processing for NON-ZIP pipes. */
else if (zip_pipes && IPA_CLIENT_IS_Q6_NON_ZIP_CONS(client_idx))
continue;
/* Skip the processing for ZIP pipes. */
else if (!zip_pipes && IPA_CLIENT_IS_Q6_ZIP_CONS(client_idx))
continue;
ep_idx = ipa2_get_ep_mapping(client_idx);
if (ep_idx == -1)
continue;
/*
* ipa2_cfg_ep_holb is not used here because we are
* setting HOLB on Q6 pipes, and from APPS perspective
* they are not valid, therefore, the above function
* will fail.
*/
reg_val = 0;
IPA_SETFIELD_IN_REG(reg_val, 0,
IPA_ENDP_INIT_HOL_BLOCK_TIMER_N_TIMER_SHFT,
IPA_ENDP_INIT_HOL_BLOCK_TIMER_N_TIMER_BMSK);
ipa_write_reg(ipa_ctx->mmio,
IPA_ENDP_INIT_HOL_BLOCK_TIMER_N_OFST_v2_0(ep_idx),
reg_val);
reg_val = 0;
IPA_SETFIELD_IN_REG(reg_val, 1,
IPA_ENDP_INIT_HOL_BLOCK_EN_N_EN_SHFT,
IPA_ENDP_INIT_HOL_BLOCK_EN_N_EN_BMSK);
ipa_write_reg(ipa_ctx->mmio,
IPA_ENDP_INIT_HOL_BLOCK_EN_N_OFST_v2_0(ep_idx),
reg_val);
ipa2_cfg_ep_ctrl(ep_idx, &avoid_holb);
}
return 0;
}
static u32 ipa_get_max_flt_rt_cmds(u32 num_pipes)
{
u32 max_cmds = 0;
/* As many filter tables as there are pipes, x2 for IPv4 and IPv6 */
max_cmds += num_pipes * 2;
/* For each of the Modem routing tables */
max_cmds += (IPA_MEM_PART(v4_modem_rt_index_hi) -
IPA_MEM_PART(v4_modem_rt_index_lo) + 1);
max_cmds += (IPA_MEM_PART(v6_modem_rt_index_hi) -
IPA_MEM_PART(v6_modem_rt_index_lo) + 1);
return max_cmds;
}
static int ipa_q6_clean_q6_tables(void)
{
struct ipa_desc *desc;
struct ipa_hw_imm_cmd_dma_shared_mem *cmd = NULL;
int pipe_idx;
int num_cmds = 0;
int index;
int retval;
struct ipa_mem_buffer mem = { 0 };
u32 *entry;
u32 max_cmds = ipa_get_max_flt_rt_cmds(ipa_ctx->ipa_num_pipes);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, 4, &mem.phys_base,
GFP_ATOMIC);
if (!mem.base) {
IPAERR("failed to alloc DMA buff of size 4\n");
return -ENOMEM;
}
mem.size = 4;
entry = mem.base;
*entry = ipa_ctx->empty_rt_tbl_mem.phys_base;
desc = kcalloc(max_cmds, sizeof(struct ipa_desc), GFP_KERNEL);
if (!desc) {
IPAERR("failed to allocate memory\n");
retval = -ENOMEM;
goto bail_dma;
}
cmd = kcalloc(max_cmds, sizeof(struct ipa_hw_imm_cmd_dma_shared_mem),
GFP_KERNEL);
if (!cmd) {
IPAERR("failed to allocate memory\n");
retval = -ENOMEM;
goto bail_desc;
}
/*
* Iterating over all the pipes which are either invalid but connected
* or connected but not configured by AP.
*/
for (pipe_idx = 0; pipe_idx < ipa_ctx->ipa_num_pipes; pipe_idx++) {
if (!ipa_ctx->ep[pipe_idx].valid ||
ipa_ctx->ep[pipe_idx].skip_ep_cfg) {
/*
* Need to point v4 and v6 fltr tables to an empty
* table
*/
cmd[num_cmds].size = mem.size;
cmd[num_cmds].system_addr = mem.phys_base;
cmd[num_cmds].local_addr =
ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v4_flt_ofst) + 8 + pipe_idx * 4;
desc[num_cmds].opcode = IPA_DMA_SHARED_MEM;
desc[num_cmds].pyld = &cmd[num_cmds];
desc[num_cmds].len = sizeof(*cmd);
desc[num_cmds].type = IPA_IMM_CMD_DESC;
num_cmds++;
cmd[num_cmds].size = mem.size;
cmd[num_cmds].system_addr = mem.phys_base;
cmd[num_cmds].local_addr =
ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v6_flt_ofst) + 8 + pipe_idx * 4;
desc[num_cmds].opcode = IPA_DMA_SHARED_MEM;
desc[num_cmds].pyld = &cmd[num_cmds];
desc[num_cmds].len = sizeof(*cmd);
desc[num_cmds].type = IPA_IMM_CMD_DESC;
num_cmds++;
}
}
/* Need to point v4/v6 modem routing tables to an empty table */
for (index = IPA_MEM_PART(v4_modem_rt_index_lo);
index <= IPA_MEM_PART(v4_modem_rt_index_hi);
index++) {
cmd[num_cmds].size = mem.size;
cmd[num_cmds].system_addr = mem.phys_base;
cmd[num_cmds].local_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v4_rt_ofst) + index * 4;
desc[num_cmds].opcode = IPA_DMA_SHARED_MEM;
desc[num_cmds].pyld = &cmd[num_cmds];
desc[num_cmds].len = sizeof(*cmd);
desc[num_cmds].type = IPA_IMM_CMD_DESC;
num_cmds++;
}
for (index = IPA_MEM_PART(v6_modem_rt_index_lo);
index <= IPA_MEM_PART(v6_modem_rt_index_hi);
index++) {
cmd[num_cmds].size = mem.size;
cmd[num_cmds].system_addr = mem.phys_base;
cmd[num_cmds].local_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v6_rt_ofst) + index * 4;
desc[num_cmds].opcode = IPA_DMA_SHARED_MEM;
desc[num_cmds].pyld = &cmd[num_cmds];
desc[num_cmds].len = sizeof(*cmd);
desc[num_cmds].type = IPA_IMM_CMD_DESC;
num_cmds++;
}
retval = ipa_send_cmd(num_cmds, desc);
if (retval) {
IPAERR("failed to send immediate command (error %d)\n", retval);
retval = -EFAULT;
}
kfree(cmd);
bail_desc:
kfree(desc);
bail_dma:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return retval;
}
static void ipa_q6_disable_agg_reg(struct ipa_register_write *reg_write,
int ep_idx)
{
reg_write->skip_pipeline_clear = 0;
reg_write->offset = IPA_ENDP_INIT_AGGR_N_OFST_v2_0(ep_idx);
reg_write->value =
(1 & IPA_ENDP_INIT_AGGR_n_AGGR_FORCE_CLOSE_BMSK) <<
IPA_ENDP_INIT_AGGR_n_AGGR_FORCE_CLOSE_SHFT;
reg_write->value_mask =
IPA_ENDP_INIT_AGGR_n_AGGR_FORCE_CLOSE_BMSK <<
IPA_ENDP_INIT_AGGR_n_AGGR_FORCE_CLOSE_SHFT;
reg_write->value |=
((0 & IPA_ENDP_INIT_AGGR_N_AGGR_EN_BMSK) <<
IPA_ENDP_INIT_AGGR_N_AGGR_EN_SHFT);
reg_write->value_mask |=
((IPA_ENDP_INIT_AGGR_N_AGGR_EN_BMSK <<
IPA_ENDP_INIT_AGGR_N_AGGR_EN_SHFT));
}
static int ipa_q6_set_ex_path_dis_agg(void)
{
int ep_idx;
int client_idx;
struct ipa_desc *desc;
int num_descs = 0;
int index;
struct ipa_register_write *reg_write;
int retval;
desc = kcalloc(ipa_ctx->ipa_num_pipes, sizeof(struct ipa_desc),
GFP_KERNEL);
if (!desc) {
IPAERR("failed to allocate memory\n");
return -ENOMEM;
}
/* Set the exception path to AP */
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++) {
ep_idx = ipa2_get_ep_mapping(client_idx);
if (ep_idx == -1)
continue;
if (ipa_ctx->ep[ep_idx].valid &&
ipa_ctx->ep[ep_idx].skip_ep_cfg) {
BUG_ON(num_descs >= ipa_ctx->ipa_num_pipes);
reg_write = kzalloc(sizeof(*reg_write), GFP_KERNEL);
if (!reg_write) {
IPAERR("failed to allocate memory\n");
BUG();
}
reg_write->skip_pipeline_clear = 0;
reg_write->offset = IPA_ENDP_STATUS_n_OFST(ep_idx);
reg_write->value =
(ipa2_get_ep_mapping(IPA_CLIENT_APPS_LAN_CONS) &
IPA_ENDP_STATUS_n_STATUS_ENDP_BMSK) <<
IPA_ENDP_STATUS_n_STATUS_ENDP_SHFT;
reg_write->value_mask =
IPA_ENDP_STATUS_n_STATUS_ENDP_BMSK <<
IPA_ENDP_STATUS_n_STATUS_ENDP_SHFT;
desc[num_descs].opcode = IPA_REGISTER_WRITE;
desc[num_descs].pyld = reg_write;
desc[num_descs].len = sizeof(*reg_write);
desc[num_descs].type = IPA_IMM_CMD_DESC;
desc[num_descs].callback = ipa_free_buffer;
desc[num_descs].user1 = reg_write;
num_descs++;
}
}
/* Disable AGGR on IPA->Q6 pipes */
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++) {
ep_idx = ipa2_get_ep_mapping(client_idx);
if (ep_idx == -1)
continue;
if (IPA_CLIENT_IS_Q6_NON_ZIP_CONS(client_idx) ||
IPA_CLIENT_IS_Q6_ZIP_CONS(client_idx)) {
reg_write = kzalloc(sizeof(*reg_write), GFP_KERNEL);
if (!reg_write) {
IPAERR("failed to allocate memory\n");
BUG();
}
ipa_q6_disable_agg_reg(reg_write, ep_idx);
desc[num_descs].opcode = IPA_REGISTER_WRITE;
desc[num_descs].pyld = reg_write;
desc[num_descs].len = sizeof(*reg_write);
desc[num_descs].type = IPA_IMM_CMD_DESC;
desc[num_descs].callback = ipa_free_buffer;
desc[num_descs].user1 = reg_write;
num_descs++;
}
}
/* Will wait 150msecs for IPA tag process completion */
retval = ipa_tag_process(desc, num_descs,
msecs_to_jiffies(CLEANUP_TAG_PROCESS_TIMEOUT));
if (retval) {
IPAERR("TAG process failed! (error %d)\n", retval);
/* For timeout error ipa_free_buffer cb will free user1 */
if (retval != -ETIME) {
for (index = 0; index < num_descs; index++)
kfree(desc[index].user1);
retval = -EINVAL;
}
}
kfree(desc);
return retval;
}
/**
* ipa_q6_pre_shutdown_cleanup() - A cleanup for all Q6 related configuration
* in IPA HW before modem shutdown. This is performed in
* case of SSR.
*
* Return codes:
* 0: success
* This is a mandatory procedure, in case one of the steps fails, the
* AP needs to restart.
*/
int ipa_q6_pre_shutdown_cleanup(void)
{
/* If uC has notified the APPS upon a ZIP engine error,
* APPS need to assert (This is a non recoverable error).
*/
if (ipa_ctx->uc_ctx.uc_zip_error)
BUG();
IPA_ACTIVE_CLIENTS_INC_SPECIAL("Q6");
/*
* Do not delay Q6 pipes here. This may result in IPA reading a
* DMA_TASK with lock bit set and then Q6 pipe delay is set. In this
* situation IPA will be remain locked as the DMA_TASK with unlock
* bit will not be read by IPA as pipe delay is enabled. IPA uC will
* wait for pipe to be empty before issuing a BAM pipe reset.
*/
if (ipa_q6_monitor_holb_mitigation(false)) {
IPAERR("Failed to disable HOLB monitroing on Q6 pipes\n");
BUG();
}
if (ipa_q6_avoid_holb(false)) {
IPAERR("Failed to set HOLB on Q6 pipes\n");
BUG();
}
if (ipa_q6_clean_q6_tables()) {
IPAERR("Failed to clean Q6 tables\n");
BUG();
}
if (ipa_q6_set_ex_path_dis_agg()) {
IPAERR("Failed to disable aggregation on Q6 pipes\n");
BUG();
}
ipa_ctx->q6_proxy_clk_vote_valid = true;
return 0;
}
/**
* ipa_q6_post_shutdown_cleanup() - A cleanup for the Q6 pipes
* in IPA HW after modem shutdown. This is performed
* in case of SSR.
*
* Return codes:
* 0: success
* This is a mandatory procedure, in case one of the steps fails, the
* AP needs to restart.
*/
int ipa_q6_post_shutdown_cleanup(void)
{
int client_idx;
int res;
/*
* Do not delay Q6 pipes here. This may result in IPA reading a
* DMA_TASK with lock bit set and then Q6 pipe delay is set. In this
* situation IPA will be remain locked as the DMA_TASK with unlock
* bit will not be read by IPA as pipe delay is enabled. IPA uC will
* wait for pipe to be empty before issuing a BAM pipe reset.
*/
if (ipa_q6_avoid_holb(true)) {
IPAERR("Failed to set HOLB on Q6 ZIP pipes\n");
BUG();
}
if (!ipa_ctx->uc_ctx.uc_loaded) {
IPAERR("uC is not loaded, won't reset Q6 pipes\n");
return 0;
}
for (client_idx = 0; client_idx < IPA_CLIENT_MAX; client_idx++)
if (IPA_CLIENT_IS_Q6_NON_ZIP_CONS(client_idx) ||
IPA_CLIENT_IS_Q6_ZIP_CONS(client_idx) ||
IPA_CLIENT_IS_Q6_NON_ZIP_PROD(client_idx) ||
IPA_CLIENT_IS_Q6_ZIP_PROD(client_idx)) {
res = ipa_uc_reset_pipe(client_idx);
if (res)
BUG();
}
return 0;
}
int _ipa_init_sram_v2(void)
{
u32 *ipa_sram_mmio;
unsigned long phys_addr;
struct ipa_hw_imm_cmd_dma_shared_mem *cmd = NULL;
struct ipa_desc desc = {0};
struct ipa_mem_buffer mem;
int rc = 0;
phys_addr = ipa_ctx->ipa_wrapper_base +
ipa_ctx->ctrl->ipa_reg_base_ofst +
IPA_SRAM_DIRECT_ACCESS_N_OFST_v2_0(
ipa_ctx->smem_restricted_bytes / 4);
ipa_sram_mmio = ioremap(phys_addr,
ipa_ctx->smem_sz - ipa_ctx->smem_restricted_bytes);
if (!ipa_sram_mmio) {
IPAERR("fail to ioremap IPA SRAM\n");
return -ENOMEM;
}
#define IPA_SRAM_SET(ofst, val) (ipa_sram_mmio[(ofst - 4) / 4] = val)
IPA_SRAM_SET(IPA_MEM_PART(v6_flt_ofst) - 4, IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v6_flt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v4_rt_ofst) - 4, IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v4_rt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v6_rt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_hdr_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(apps_v4_flt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(uc_info_ofst), IPA_MEM_CANARY_VAL);
iounmap(ipa_sram_mmio);
mem.size = IPA_STATUS_CLEAR_SIZE;
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
memset(mem.base, 0, mem.size);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL) {
IPAERR("Failed to alloc immediate command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
cmd->size = mem.size;
cmd->system_addr = mem.phys_base;
cmd->local_addr = IPA_STATUS_CLEAR_OFST;
desc.opcode = IPA_DMA_SHARED_MEM;
desc.pyld = (void *)cmd;
desc.len = sizeof(struct ipa_hw_imm_cmd_dma_shared_mem);
desc.type = IPA_IMM_CMD_DESC;
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
int _ipa_init_sram_v2_5(void)
{
u32 *ipa_sram_mmio;
unsigned long phys_addr;
phys_addr = ipa_ctx->ipa_wrapper_base +
ipa_ctx->ctrl->ipa_reg_base_ofst +
IPA_SRAM_SW_FIRST_v2_5;
ipa_sram_mmio = ioremap(phys_addr,
ipa_ctx->smem_sz - ipa_ctx->smem_restricted_bytes);
if (!ipa_sram_mmio) {
IPAERR("fail to ioremap IPA SRAM\n");
return -ENOMEM;
}
#define IPA_SRAM_SET(ofst, val) (ipa_sram_mmio[(ofst - 4) / 4] = val)
IPA_SRAM_SET(IPA_MEM_PART(v4_flt_ofst) - 4, IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v4_flt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v6_flt_ofst) - 4, IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v6_flt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v4_rt_ofst) - 4, IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v4_rt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(v6_rt_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_hdr_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_hdr_proc_ctx_ofst) - 4,
IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_hdr_proc_ctx_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(modem_ofst), IPA_MEM_CANARY_VAL);
IPA_SRAM_SET(IPA_MEM_PART(end_ofst), IPA_MEM_CANARY_VAL);
iounmap(ipa_sram_mmio);
return 0;
}
static inline void ipa_sram_set_canary(u32 *sram_mmio, int offset)
{
/* Set 4 bytes of CANARY before the offset */
sram_mmio[(offset - 4) / 4] = IPA_MEM_CANARY_VAL;
}
int _ipa_init_sram_v2_6L(void)
{
u32 *ipa_sram_mmio;
unsigned long phys_addr;
phys_addr = ipa_ctx->ipa_wrapper_base +
ipa_ctx->ctrl->ipa_reg_base_ofst +
IPA_SRAM_SW_FIRST_v2_5;
ipa_sram_mmio = ioremap(phys_addr,
ipa_ctx->smem_sz - ipa_ctx->smem_restricted_bytes);
if (!ipa_sram_mmio) {
IPAERR("fail to ioremap IPA SRAM\n");
return -ENOMEM;
}
/* Consult with ipa_ram_mmap.h on the location of the CANARY values */
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v4_flt_ofst) - 4);
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v4_flt_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v6_flt_ofst) - 4);
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v6_flt_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v4_rt_ofst) - 4);
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v4_rt_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(v6_rt_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(modem_hdr_ofst));
ipa_sram_set_canary(ipa_sram_mmio,
IPA_MEM_PART(modem_comp_decomp_ofst) - 4);
ipa_sram_set_canary(ipa_sram_mmio,
IPA_MEM_PART(modem_comp_decomp_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(modem_ofst));
ipa_sram_set_canary(ipa_sram_mmio, IPA_MEM_PART(end_ofst));
iounmap(ipa_sram_mmio);
return 0;
}
int _ipa_init_hdr_v2(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_hdr_init_local *cmd = NULL;
int rc = 0;
mem.size = IPA_MEM_PART(modem_hdr_size) + IPA_MEM_PART(apps_hdr_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
memset(mem.base, 0, mem.size);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL) {
IPAERR("Failed to alloc header init command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
cmd->hdr_table_src_addr = mem.phys_base;
cmd->size_hdr_table = mem.size;
cmd->hdr_table_dst_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(modem_hdr_ofst);
desc.opcode = IPA_HDR_INIT_LOCAL;
desc.pyld = (void *)cmd;
desc.len = sizeof(struct ipa_hdr_init_local);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
int _ipa_init_hdr_v2_5(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_hdr_init_local *cmd = NULL;
struct ipa_hw_imm_cmd_dma_shared_mem *dma_cmd = NULL;
mem.size = IPA_MEM_PART(modem_hdr_size) + IPA_MEM_PART(apps_hdr_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
memset(mem.base, 0, mem.size);
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL) {
IPAERR("Failed to alloc header init command object\n");
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base,
mem.phys_base);
return -ENOMEM;
}
cmd->hdr_table_src_addr = mem.phys_base;
cmd->size_hdr_table = mem.size;
cmd->hdr_table_dst_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(modem_hdr_ofst);
desc.opcode = IPA_HDR_INIT_LOCAL;
desc.pyld = (void *)cmd;
desc.len = sizeof(struct ipa_hdr_init_local);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
kfree(cmd);
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base,
mem.phys_base);
return -EFAULT;
}
kfree(cmd);
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
mem.size = IPA_MEM_PART(modem_hdr_proc_ctx_size) +
IPA_MEM_PART(apps_hdr_proc_ctx_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
memset(mem.base, 0, mem.size);
memset(&desc, 0, sizeof(desc));
dma_cmd = kzalloc(sizeof(*dma_cmd), GFP_KERNEL);
if (dma_cmd == NULL) {
IPAERR("Failed to alloc immediate command object\n");
dma_free_coherent(ipa_ctx->pdev,
mem.size,
mem.base,
mem.phys_base);
return -ENOMEM;
}
dma_cmd->system_addr = mem.phys_base;
dma_cmd->local_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(modem_hdr_proc_ctx_ofst);
dma_cmd->size = mem.size;
desc.opcode = IPA_DMA_SHARED_MEM;
desc.pyld = (void *)dma_cmd;
desc.len = sizeof(struct ipa_hw_imm_cmd_dma_shared_mem);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
kfree(dma_cmd);
dma_free_coherent(ipa_ctx->pdev,
mem.size,
mem.base,
mem.phys_base);
return -EFAULT;
}
ipa_write_reg(ipa_ctx->mmio,
IPA_LOCAL_PKT_PROC_CNTXT_BASE_OFST,
dma_cmd->local_addr);
kfree(dma_cmd);
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return 0;
}
int _ipa_init_hdr_v2_6L(void)
{
/* Same implementation as IPAv2 */
return _ipa_init_hdr_v2();
}
int _ipa_init_rt4_v2(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_ip_v4_routing_init *v4_cmd = NULL;
u32 *entry;
int i;
int rc = 0;
for (i = IPA_MEM_PART(v4_modem_rt_index_lo);
i <= IPA_MEM_PART(v4_modem_rt_index_hi);
i++)
ipa_ctx->rt_idx_bitmap[IPA_IP_v4] |= (1 << i);
IPADBG("v4 rt bitmap 0x%lx\n", ipa_ctx->rt_idx_bitmap[IPA_IP_v4]);
mem.size = IPA_MEM_PART(v4_rt_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
entry = mem.base;
for (i = 0; i < IPA_MEM_PART(v4_num_index); i++) {
*entry = ipa_ctx->empty_rt_tbl_mem.phys_base;
entry++;
}
v4_cmd = kzalloc(sizeof(*v4_cmd), GFP_KERNEL);
if (v4_cmd == NULL) {
IPAERR("Failed to alloc v4 routing init command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
desc.opcode = IPA_IP_V4_ROUTING_INIT;
v4_cmd->ipv4_rules_addr = mem.phys_base;
v4_cmd->size_ipv4_rules = mem.size;
v4_cmd->ipv4_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v4_rt_ofst);
IPADBG("putting Routing IPv4 rules to phys 0x%x",
v4_cmd->ipv4_addr);
desc.pyld = (void *)v4_cmd;
desc.len = sizeof(struct ipa_ip_v4_routing_init);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(v4_cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
int _ipa_init_rt6_v2(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_ip_v6_routing_init *v6_cmd = NULL;
u32 *entry;
int i;
int rc = 0;
for (i = IPA_MEM_PART(v6_modem_rt_index_lo);
i <= IPA_MEM_PART(v6_modem_rt_index_hi);
i++)
ipa_ctx->rt_idx_bitmap[IPA_IP_v6] |= (1 << i);
IPADBG("v6 rt bitmap 0x%lx\n", ipa_ctx->rt_idx_bitmap[IPA_IP_v6]);
mem.size = IPA_MEM_PART(v6_rt_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
entry = mem.base;
for (i = 0; i < IPA_MEM_PART(v6_num_index); i++) {
*entry = ipa_ctx->empty_rt_tbl_mem.phys_base;
entry++;
}
v6_cmd = kzalloc(sizeof(*v6_cmd), GFP_KERNEL);
if (v6_cmd == NULL) {
IPAERR("Failed to alloc v6 routing init command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
desc.opcode = IPA_IP_V6_ROUTING_INIT;
v6_cmd->ipv6_rules_addr = mem.phys_base;
v6_cmd->size_ipv6_rules = mem.size;
v6_cmd->ipv6_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v6_rt_ofst);
IPADBG("putting Routing IPv6 rules to phys 0x%x",
v6_cmd->ipv6_addr);
desc.pyld = (void *)v6_cmd;
desc.len = sizeof(struct ipa_ip_v6_routing_init);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(v6_cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
int _ipa_init_flt4_v2(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_ip_v4_filter_init *v4_cmd = NULL;
u32 *entry;
int i;
int rc = 0;
mem.size = IPA_MEM_PART(v4_flt_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
entry = mem.base;
*entry = ((0xFFFFF << 1) | 0x1);
entry++;
for (i = 0; i <= ipa_ctx->ipa_num_pipes; i++) {
*entry = ipa_ctx->empty_rt_tbl_mem.phys_base;
entry++;
}
v4_cmd = kzalloc(sizeof(*v4_cmd), GFP_KERNEL);
if (v4_cmd == NULL) {
IPAERR("Failed to alloc v4 fliter init command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
desc.opcode = IPA_IP_V4_FILTER_INIT;
v4_cmd->ipv4_rules_addr = mem.phys_base;
v4_cmd->size_ipv4_rules = mem.size;
v4_cmd->ipv4_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v4_flt_ofst);
IPADBG("putting Filtering IPv4 rules to phys 0x%x",
v4_cmd->ipv4_addr);
desc.pyld = (void *)v4_cmd;
desc.len = sizeof(struct ipa_ip_v4_filter_init);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(v4_cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
int _ipa_init_flt6_v2(void)
{
struct ipa_desc desc = { 0 };
struct ipa_mem_buffer mem;
struct ipa_ip_v6_filter_init *v6_cmd = NULL;
u32 *entry;
int i;
int rc = 0;
mem.size = IPA_MEM_PART(v6_flt_size);
mem.base = dma_alloc_coherent(ipa_ctx->pdev, mem.size, &mem.phys_base,
GFP_KERNEL);
if (!mem.base) {
IPAERR("fail to alloc DMA buff of size %d\n", mem.size);
return -ENOMEM;
}
entry = mem.base;
*entry = (0xFFFFF << 1) | 0x1;
entry++;
for (i = 0; i <= ipa_ctx->ipa_num_pipes; i++) {
*entry = ipa_ctx->empty_rt_tbl_mem.phys_base;
entry++;
}
v6_cmd = kzalloc(sizeof(*v6_cmd), GFP_KERNEL);
if (v6_cmd == NULL) {
IPAERR("Failed to alloc v6 fliter init command object\n");
rc = -ENOMEM;
goto fail_send_cmd;
}
desc.opcode = IPA_IP_V6_FILTER_INIT;
v6_cmd->ipv6_rules_addr = mem.phys_base;
v6_cmd->size_ipv6_rules = mem.size;
v6_cmd->ipv6_addr = ipa_ctx->smem_restricted_bytes +
IPA_MEM_PART(v6_flt_ofst);
IPADBG("putting Filtering IPv6 rules to phys 0x%x",
v6_cmd->ipv6_addr);
desc.pyld = (void *)v6_cmd;
desc.len = sizeof(struct ipa_ip_v6_filter_init);
desc.type = IPA_IMM_CMD_DESC;
IPA_DUMP_BUFF(mem.base, mem.phys_base, mem.size);
if (ipa_send_cmd(1, &desc)) {
IPAERR("fail to send immediate command\n");
rc = -EFAULT;
}
kfree(v6_cmd);
fail_send_cmd:
dma_free_coherent(ipa_ctx->pdev, mem.size, mem.base, mem.phys_base);
return rc;
}
static int ipa_setup_apps_pipes(void)
{
struct ipa_sys_connect_params sys_in;
int result = 0;
/* CMD OUT (A5->IPA) */
memset(&sys_in, 0, sizeof(struct ipa_sys_connect_params));
sys_in.client = IPA_CLIENT_APPS_CMD_PROD;
sys_in.desc_fifo_sz = IPA_SYS_DESC_FIFO_SZ;
sys_in.ipa_ep_cfg.mode.mode = IPA_DMA;
sys_in.ipa_ep_cfg.mode.dst = IPA_CLIENT_APPS_LAN_CONS;
sys_in.skip_ep_cfg = true;
if (ipa2_setup_sys_pipe(&sys_in, &ipa_ctx->clnt_hdl_cmd)) {
IPAERR(":setup sys pipe failed.\n");
result = -EPERM;
goto fail_cmd;
}
IPADBG("Apps to IPA cmd pipe is connected\n");
ipa_ctx->ctrl->ipa_init_sram();
IPADBG("SRAM initialized\n");
ipa_ctx->ctrl->ipa_init_hdr();
IPADBG("HDR initialized\n");
ipa_ctx->ctrl->ipa_init_rt4();
IPADBG("V4 RT initialized\n");
ipa_ctx->ctrl->ipa_init_rt6();
IPADBG("V6 RT initialized\n");
ipa_ctx->ctrl->ipa_init_flt4();
IPADBG("V4 FLT initialized\n");
ipa_ctx->ctrl->ipa_init_flt6();
IPADBG("V6 FLT initialized\n");
if (ipa_setup_exception_path()) {
IPAERR(":fail to setup excp path\n");
result = -EPERM;
goto fail_schedule_delayed_work;
}
IPADBG("Exception path was successfully set");
if (ipa_setup_dflt_rt_tables()) {
IPAERR(":fail to setup dflt routes\n");
result = -EPERM;
goto fail_schedule_delayed_work;
}
IPADBG("default routing was set\n");
/* LAN IN (IPA->A5) */
memset(&sys_in, 0, sizeof(struct ipa_sys_connect_params));
sys_in.client = IPA_CLIENT_APPS_LAN_CONS;
sys_in.desc_fifo_sz = IPA_SYS_DESC_FIFO_SZ;
if (ipa_ctx->ipa_hw_type == IPA_HW_v1_1) {
sys_in.ipa_ep_cfg.hdr.hdr_a5_mux = 1;
sys_in.ipa_ep_cfg.hdr.hdr_len = IPA_A5_MUX_HEADER_LENGTH;
} else if (ipa_ctx->ipa_hw_type >= IPA_HW_v2_0) {
sys_in.notify = ipa_lan_rx_cb;
sys_in.priv = NULL;
sys_in.ipa_ep_cfg.hdr.hdr_len = IPA_LAN_RX_HEADER_LENGTH;
sys_in.ipa_ep_cfg.hdr_ext.hdr_little_endian = false;
sys_in.ipa_ep_cfg.hdr_ext.hdr_total_len_or_pad_valid = true;
sys_in.ipa_ep_cfg.hdr_ext.hdr_total_len_or_pad = IPA_HDR_PAD;
sys_in.ipa_ep_cfg.hdr_ext.hdr_payload_len_inc_padding = false;
sys_in.ipa_ep_cfg.hdr_ext.hdr_total_len_or_pad_offset = 0;
sys_in.ipa_ep_cfg.hdr_ext.hdr_pad_to_alignment = 2;
sys_in.ipa_ep_cfg.cfg.cs_offload_en = IPA_ENABLE_CS_OFFLOAD_DL;
} else {
WARN_ON(1);
}
/**
* ipa_lan_rx_cb() intended to notify the source EP about packet
* being received on the LAN_CONS via calling the source EP call-back.
* There could be a race condition with calling this call-back. Other
* thread may nullify it - e.g. on EP disconnect.
* This lock intended to protect the access to the source EP call-back
*/
spin_lock_init(&ipa_ctx->disconnect_lock);
if (ipa2_setup_sys_pipe(&sys_in, &ipa_ctx->clnt_hdl_data_in)) {
IPAERR(":setup sys pipe failed.\n");
result = -EPERM;
goto fail_schedule_delayed_work;
}
/* LAN-WAN OUT (A5->IPA) */
memset(&sys_in, 0, sizeof(struct ipa_sys_connect_params));
sys_in.client = IPA_CLIENT_APPS_LAN_WAN_PROD;
sys_in.desc_fifo_sz = IPA_SYS_TX_DATA_DESC_FIFO_SZ;
sys_in.ipa_ep_cfg.mode.mode = IPA_BASIC;
if (ipa2_setup_sys_pipe(&sys_in, &ipa_ctx->clnt_hdl_data_out)) {
IPAERR(":setup sys pipe failed.\n");
result = -EPERM;
goto fail_data_out;
}
return 0;
fail_data_out:
ipa2_teardown_sys_pipe(ipa_ctx->clnt_hdl_data_in);
fail_schedule_delayed_work:
if (ipa_ctx->dflt_v6_rt_rule_hdl)
__ipa_del_rt_rule(ipa_ctx->dflt_v6_rt_rule_hdl);
if (ipa_ctx->dflt_v4_rt_rule_hdl)
__ipa_del_rt_rule(ipa_ctx->dflt_v4_rt_rule_hdl);
if (ipa_ctx->excp_hdr_hdl)
__ipa_del_hdr(ipa_ctx->excp_hdr_hdl, false);
ipa2_teardown_sys_pipe(ipa_ctx->clnt_hdl_cmd);
fail_cmd:
return result;
}
static void ipa_teardown_apps_pipes(void)
{
ipa2_teardown_sys_pipe(ipa_ctx->clnt_hdl_data_out);
ipa2_teardown_sys_pipe(ipa_ctx->clnt_hdl_data_in);
__ipa_del_rt_rule(ipa_ctx->dflt_v6_rt_rule_hdl);
__ipa_del_rt_rule(ipa_ctx->dflt_v4_rt_rule_hdl);
__ipa_del_hdr(ipa_ctx->excp_hdr_hdl, false);
ipa2_teardown_sys_pipe(ipa_ctx->clnt_hdl_cmd);
}
#ifdef CONFIG_COMPAT
long compat_ipa_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int retval = 0;
struct ipa_ioc_nat_alloc_mem32 nat_mem32;
struct ipa_ioc_nat_alloc_mem nat_mem;
switch (cmd) {
case IPA_IOC_ADD_HDR32:
cmd = IPA_IOC_ADD_HDR;
break;
case IPA_IOC_DEL_HDR32:
cmd = IPA_IOC_DEL_HDR;
break;
case IPA_IOC_ADD_RT_RULE32:
cmd = IPA_IOC_ADD_RT_RULE;
break;
case IPA_IOC_DEL_RT_RULE32:
cmd = IPA_IOC_DEL_RT_RULE;
break;
case IPA_IOC_ADD_FLT_RULE32:
cmd = IPA_IOC_ADD_FLT_RULE;
break;
case IPA_IOC_DEL_FLT_RULE32:
cmd = IPA_IOC_DEL_FLT_RULE;
break;
case IPA_IOC_GET_RT_TBL32:
cmd = IPA_IOC_GET_RT_TBL;
break;
case IPA_IOC_COPY_HDR32:
cmd = IPA_IOC_COPY_HDR;
break;
case IPA_IOC_QUERY_INTF32:
cmd = IPA_IOC_QUERY_INTF;
break;
case IPA_IOC_QUERY_INTF_TX_PROPS32:
cmd = IPA_IOC_QUERY_INTF_TX_PROPS;
break;
case IPA_IOC_QUERY_INTF_RX_PROPS32:
cmd = IPA_IOC_QUERY_INTF_RX_PROPS;
break;
case IPA_IOC_QUERY_INTF_EXT_PROPS32:
cmd = IPA_IOC_QUERY_INTF_EXT_PROPS;
break;
case IPA_IOC_GET_HDR32:
cmd = IPA_IOC_GET_HDR;
break;
case IPA_IOC_ALLOC_NAT_MEM32:
if (copy_from_user((u8 *)&nat_mem32, (u8 *)arg,
sizeof(struct ipa_ioc_nat_alloc_mem32))) {
retval = -EFAULT;
goto ret;
}
memcpy(nat_mem.dev_name, nat_mem32.dev_name,
IPA_RESOURCE_NAME_MAX);
nat_mem.size = (size_t)nat_mem32.size;
nat_mem.offset = (off_t)nat_mem32.offset;
/* null terminate the string */
nat_mem.dev_name[IPA_RESOURCE_NAME_MAX - 1] = '\0';
if (ipa2_allocate_nat_device(&nat_mem)) {
retval = -EFAULT;
goto ret;
}
nat_mem32.offset = (compat_off_t)nat_mem.offset;
if (copy_to_user((u8 *)arg, (u8 *)&nat_mem32,
sizeof(struct ipa_ioc_nat_alloc_mem32))) {
retval = -EFAULT;
}
ret:
return retval;
case IPA_IOC_V4_INIT_NAT32:
cmd = IPA_IOC_V4_INIT_NAT;
break;
case IPA_IOC_NAT_DMA32:
cmd = IPA_IOC_NAT_DMA;
break;
case IPA_IOC_V4_DEL_NAT32:
cmd = IPA_IOC_V4_DEL_NAT;
break;
case IPA_IOC_GET_NAT_OFFSET32:
cmd = IPA_IOC_GET_NAT_OFFSET;
break;
case IPA_IOC_PULL_MSG32:
cmd = IPA_IOC_PULL_MSG;
break;
case IPA_IOC_RM_ADD_DEPENDENCY32:
cmd = IPA_IOC_RM_ADD_DEPENDENCY;
break;
case IPA_IOC_RM_DEL_DEPENDENCY32:
cmd = IPA_IOC_RM_DEL_DEPENDENCY;
break;
case IPA_IOC_GENERATE_FLT_EQ32:
cmd = IPA_IOC_GENERATE_FLT_EQ;
break;
case IPA_IOC_QUERY_RT_TBL_INDEX32:
cmd = IPA_IOC_QUERY_RT_TBL_INDEX;
break;
case IPA_IOC_WRITE_QMAPID32:
cmd = IPA_IOC_WRITE_QMAPID;
break;
case IPA_IOC_MDFY_FLT_RULE32:
cmd = IPA_IOC_MDFY_FLT_RULE;
break;
case IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_ADD32:
cmd = IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_ADD;
break;
case IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_DEL32:
cmd = IPA_IOC_NOTIFY_WAN_UPSTREAM_ROUTE_DEL;
break;
case IPA_IOC_NOTIFY_WAN_EMBMS_CONNECTED32:
cmd = IPA_IOC_NOTIFY_WAN_EMBMS_CONNECTED;
break;
case IPA_IOC_MDFY_RT_RULE32:
cmd = IPA_IOC_MDFY_RT_RULE;
break;
case IPA_IOC_COMMIT_HDR:
case IPA_IOC_RESET_HDR:
case IPA_IOC_COMMIT_RT:
case IPA_IOC_RESET_RT:
case IPA_IOC_COMMIT_FLT:
case IPA_IOC_RESET_FLT:
case IPA_IOC_DUMP:
case IPA_IOC_PUT_RT_TBL:
case IPA_IOC_PUT_HDR:
case IPA_IOC_SET_FLT:
case IPA_IOC_QUERY_EP_MAPPING:
break;
default:
return -ENOIOCTLCMD;
}
return ipa_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif
static const struct file_operations ipa_drv_fops = {
.owner = THIS_MODULE,
.open = ipa_open,
.read = ipa_read,
.unlocked_ioctl = ipa_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_ipa_ioctl,
#endif
};
static int ipa_get_clks(struct device *dev)
{
ipa_clk = clk_get(dev, "core_clk");
if (IS_ERR(ipa_clk)) {
if (ipa_clk != ERR_PTR(-EPROBE_DEFER))
IPAERR("fail to get ipa clk\n");
return PTR_ERR(ipa_clk);
}
if (smmu_info.present && smmu_info.arm_smmu) {
smmu_clk = clk_get(dev, "smmu_clk");
if (IS_ERR(smmu_clk)) {
if (smmu_clk != ERR_PTR(-EPROBE_DEFER))
IPAERR("fail to get smmu clk\n");
return PTR_ERR(smmu_clk);
}
if (clk_get_rate(smmu_clk) == 0) {
long rate = clk_round_rate(smmu_clk, 1000);
clk_set_rate(smmu_clk, rate);
}
}
if (ipa_ctx->ipa_hw_type < IPA_HW_v2_0) {
ipa_cnoc_clk = clk_get(dev, "iface_clk");
if (IS_ERR(ipa_cnoc_clk)) {
ipa_cnoc_clk = NULL;
IPAERR("fail to get cnoc clk\n");
return -ENODEV;
}
ipa_clk_src = clk_get(dev, "core_src_clk");
if (IS_ERR(ipa_clk_src)) {
ipa_clk_src = NULL;
IPAERR("fail to get ipa clk src\n");
return -ENODEV;
}
sys_noc_ipa_axi_clk = clk_get(dev, "bus_clk");
if (IS_ERR(sys_noc_ipa_axi_clk)) {
sys_noc_ipa_axi_clk = NULL;
IPAERR("fail to get sys_noc_ipa_axi clk\n");
return -ENODEV;
}
ipa_inactivity_clk = clk_get(dev, "inactivity_clk");
if (IS_ERR(ipa_inactivity_clk)) {
ipa_inactivity_clk = NULL;
IPAERR("fail to get inactivity clk\n");
return -ENODEV;
}
}
return 0;
}
void _ipa_enable_clks_v2_0(void)
{
IPADBG("enabling gcc_ipa_clk\n");
if (ipa_clk) {
clk_prepare(ipa_clk);
clk_enable(ipa_clk);
IPADBG("curr_ipa_clk_rate=%d", ipa_ctx->curr_ipa_clk_rate);
clk_set_rate(ipa_clk, ipa_ctx->curr_ipa_clk_rate);
ipa_uc_notify_clk_state(true);
} else {
WARN_ON(1);
}
if (smmu_clk)
clk_prepare_enable(smmu_clk);
/* Enable the BAM IRQ. */
ipa_sps_irq_control_all(true);
ipa_suspend_apps_pipes(false);
}
void _ipa_enable_clks_v1_1(void)
{
if (ipa_cnoc_clk) {
clk_prepare(ipa_cnoc_clk);
clk_enable(ipa_cnoc_clk);
clk_set_rate(ipa_cnoc_clk, IPA_CNOC_CLK_RATE);
} else {
WARN_ON(1);
}
if (ipa_clk_src)
clk_set_rate(ipa_clk_src,
ipa_ctx->curr_ipa_clk_rate);
else
WARN_ON(1);
if (ipa_clk)
clk_prepare(ipa_clk);
else
WARN_ON(1);
if (sys_noc_ipa_axi_clk)
clk_prepare(sys_noc_ipa_axi_clk);
else
WARN_ON(1);
if (ipa_inactivity_clk)
clk_prepare(ipa_inactivity_clk);
else
WARN_ON(1);
if (ipa_clk)
clk_enable(ipa_clk);
else
WARN_ON(1);
if (sys_noc_ipa_axi_clk)
clk_enable(sys_noc_ipa_axi_clk);
else
WARN_ON(1);
if (ipa_inactivity_clk)
clk_enable(ipa_inactivity_clk);
else
WARN_ON(1);
}
static unsigned int ipa_get_bus_vote(void)
{
unsigned int idx = 1;
if (ipa_ctx->curr_ipa_clk_rate == ipa_ctx->ctrl->ipa_clk_rate_svs) {
idx = 1;
} else if (ipa_ctx->curr_ipa_clk_rate ==
ipa_ctx->ctrl->ipa_clk_rate_nominal) {
if (ipa_ctx->ctrl->msm_bus_data_ptr->num_usecases <= 2)
idx = 1;
else
idx = 2;
} else if (ipa_ctx->curr_ipa_clk_rate ==
ipa_ctx->ctrl->ipa_clk_rate_turbo) {
idx = ipa_ctx->ctrl->msm_bus_data_ptr->num_usecases - 1;
} else {
WARN_ON(1);
}
IPADBG("curr %d idx %d\n", ipa_ctx->curr_ipa_clk_rate, idx);
return idx;
}
/**
* ipa_enable_clks() - Turn on IPA clocks
*
* Return codes:
* None
*/
void ipa_enable_clks(void)
{
IPADBG("enabling IPA clocks and bus voting\n");
ipa_ctx->ctrl->ipa_enable_clks();
if (ipa_ctx->ipa_hw_mode != IPA_HW_MODE_VIRTUAL)
if (msm_bus_scale_client_update_request(ipa_ctx->ipa_bus_hdl,
ipa_get_bus_vote()))
WARN_ON(1);
}
void _ipa_disable_clks_v1_1(void)
{
if (ipa_inactivity_clk)
clk_disable_unprepare(ipa_inactivity_clk);
else
WARN_ON(1);
if (sys_noc_ipa_axi_clk)
clk_disable_unprepare(sys_noc_ipa_axi_clk);
else
WARN_ON(1);
if (ipa_clk)
clk_disable_unprepare(ipa_clk);
else
WARN_ON(1);
if (ipa_cnoc_clk)
clk_disable_unprepare(ipa_cnoc_clk);
else
WARN_ON(1);
}
void _ipa_disable_clks_v2_0(void)
{
IPADBG("disabling gcc_ipa_clk\n");
ipa_suspend_apps_pipes(true);
ipa_sps_irq_control_all(false);
ipa_uc_notify_clk_state(false);
if (ipa_clk)
clk_disable_unprepare(ipa_clk);
else
WARN_ON(1);
if (smmu_clk)
clk_disable_unprepare(smmu_clk);
}
/**
* ipa_disable_clks() - Turn off IPA clocks
*
* Return codes:
* None
*/
void ipa_disable_clks(void)
{
IPADBG("disabling IPA clocks and bus voting\n");
ipa_ctx->ctrl->ipa_disable_clks();
if (ipa_ctx->ipa_hw_mode != IPA_HW_MODE_VIRTUAL)
if (msm_bus_scale_client_update_request(ipa_ctx->ipa_bus_hdl,
0))
WARN_ON(1);
}
/**
* ipa_start_tag_process() - Send TAG packet and wait for it to come back
*
* This function is called prior to clock gating when active client counter
* is 1. TAG process ensures that there are no packets inside IPA HW that
* were not submitted to peer's BAM. During TAG process all aggregation frames
* are (force) closed.
*
* Return codes:
* None
*/
static void ipa_start_tag_process(struct work_struct *work)
{
int res;
IPADBG("starting TAG process\n");
/* close aggregation frames on all pipes */
res = ipa_tag_aggr_force_close(-1);
if (res)
IPAERR("ipa_tag_aggr_force_close failed %d\n", res);
IPA_ACTIVE_CLIENTS_DEC_SPECIAL("TAG_PROCESS");
IPADBG("TAG process done\n");
}
/**
* ipa2_active_clients_log_mod() - Log a modification in the active clients
* reference count
*
* This method logs any modification in the active clients reference count:
* It logs the modification in the circular history buffer
* It logs the modification in the hash table - looking for an entry,
* creating one if needed and deleting one if needed.
*
* @id: ipa2_active client logging info struct to hold the log information
* @inc: a boolean variable to indicate whether the modification is an increase
* or decrease
* @int_ctx: a boolean variable to indicate whether this call is being made from
* an interrupt context and therefore should allocate GFP_ATOMIC memory
*
* Method process:
* - Hash the unique identifier string
* - Find the hash in the table
* 1)If found, increase or decrease the reference count
* 2)If not found, allocate a new hash table entry struct and initialize it
* - Remove and deallocate unneeded data structure
* - Log the call in the circular history buffer (unless it is a simple call)
*/
void ipa2_active_clients_log_mod(struct ipa_active_client_logging_info *id,
bool inc, bool int_ctx)
{
char temp_str[IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN];
unsigned long long t;
unsigned long nanosec_rem;
struct ipa2_active_client_htable_entry *hentry;
struct ipa2_active_client_htable_entry *hfound;
u32 hkey;
char str_to_hash[IPA2_ACTIVE_CLIENTS_LOG_NAME_LEN];
hfound = NULL;
memset(str_to_hash, 0, IPA2_ACTIVE_CLIENTS_LOG_NAME_LEN);
strlcpy(str_to_hash, id->id_string, IPA2_ACTIVE_CLIENTS_LOG_NAME_LEN);
hkey = arch_fast_hash(str_to_hash, IPA2_ACTIVE_CLIENTS_LOG_NAME_LEN,
0);
hash_for_each_possible(ipa_ctx->ipa2_active_clients_logging.htable,
hentry, list, hkey) {
if (!strcmp(hentry->id_string, id->id_string)) {
hentry->count = hentry->count + (inc ? 1 : -1);
hfound = hentry;
}
}
if (hfound == NULL) {
hentry = NULL;
hentry = kzalloc(sizeof(
struct ipa2_active_client_htable_entry),
int_ctx ? GFP_ATOMIC : GFP_KERNEL);
if (hentry == NULL) {
IPAERR("failed allocating active clients hash entry");
return;
}
hentry->type = id->type;
strlcpy(hentry->id_string, id->id_string,
IPA2_ACTIVE_CLIENTS_LOG_NAME_LEN);
INIT_HLIST_NODE(&hentry->list);
hentry->count = inc ? 1 : -1;
hash_add(ipa_ctx->ipa2_active_clients_logging.htable,
&hentry->list, hkey);
} else if (hfound->count == 0) {
hash_del(&hfound->list);
kfree(hfound);
}
if (id->type != SIMPLE) {
t = local_clock();
nanosec_rem = do_div(t, 1000000000) / 1000;
snprintf(temp_str, IPA2_ACTIVE_CLIENTS_LOG_LINE_LEN,
inc ? "[%5lu.%06lu] ^ %s, %s: %d" :
"[%5lu.%06lu] v %s, %s: %d",
(unsigned long)t, nanosec_rem,
id->id_string, id->file, id->line);
ipa2_active_clients_log_insert(temp_str);
}
}
void ipa2_active_clients_log_dec(struct ipa_active_client_logging_info *id,
bool int_ctx)
{
ipa2_active_clients_log_mod(id, false, int_ctx);
}
void ipa2_active_clients_log_inc(struct ipa_active_client_logging_info *id,
bool int_ctx)
{
ipa2_active_clients_log_mod(id, true, int_ctx);
}
/**
* ipa_inc_client_enable_clks() - Increase active clients counter, and
* enable ipa clocks if necessary
*
* Please do not use this API, use the wrapper macros instead (ipa_i.h)
* IPA2_ACTIVE_CLIENTS_INC_XXXX();
*
* Return codes:
* None
*/
void ipa2_inc_client_enable_clks(struct ipa_active_client_logging_info *id)
{
ipa_active_clients_lock();
ipa2_active_clients_log_inc(id, false);
ipa_ctx->ipa_active_clients.cnt++;
if (ipa_ctx->ipa_active_clients.cnt == 1)
ipa_enable_clks();
IPADBG("active clients = %d\n", ipa_ctx->ipa_active_clients.cnt);
ipa_active_clients_unlock();
}
/**
* ipa_inc_client_enable_clks_no_block() - Only increment the number of active
* clients if no asynchronous actions should be done. Asynchronous actions are
* locking a mutex and waking up IPA HW.
*
* Please do not use this API, use the wrapper macros instead (ipa_i.h)
*
*
* Return codes: 0 for success
* -EPERM if an asynchronous action should have been done
*/
int ipa2_inc_client_enable_clks_no_block(struct ipa_active_client_logging_info
*id)
{
int res = 0;
unsigned long flags;
if (ipa_active_clients_trylock(&flags) == 0)
return -EPERM;
if (ipa_ctx->ipa_active_clients.cnt == 0) {
res = -EPERM;
goto bail;
}
ipa2_active_clients_log_inc(id, true);
ipa_ctx->ipa_active_clients.cnt++;
IPADBG("active clients = %d\n", ipa_ctx->ipa_active_clients.cnt);
bail:
ipa_active_clients_trylock_unlock(&flags);
return res;
}
/**
* ipa_dec_client_disable_clks() - Decrease active clients counter
*
* In case that there are no active clients this function also starts
* TAG process. When TAG progress ends ipa clocks will be gated.
* start_tag_process_again flag is set during this function to signal TAG
* process to start again as there was another client that may send data to ipa
*
* Please do not use this API, use the wrapper macros instead (ipa_i.h)
* IPA2_ACTIVE_CLIENTS_DEC_XXXX();
*
* Return codes:
* None
*/
void ipa2_dec_client_disable_clks(struct ipa_active_client_logging_info *id)
{
struct ipa_active_client_logging_info log_info;
ipa_active_clients_lock();
ipa2_active_clients_log_dec(id, false);
ipa_ctx->ipa_active_clients.cnt--;
IPADBG("active clients = %d\n", ipa_ctx->ipa_active_clients.cnt);
if (ipa_ctx->ipa_active_clients.cnt == 0) {
if (ipa_ctx->tag_process_before_gating) {
IPA_ACTIVE_CLIENTS_PREP_SPECIAL(log_info,
"TAG_PROCESS");
ipa2_active_clients_log_inc(&log_info, false);
ipa_ctx->tag_process_before_gating = false;
/*
* When TAG process ends, active clients will be
* decreased
*/
ipa_ctx->ipa_active_clients.cnt = 1;
queue_work(ipa_ctx->power_mgmt_wq, &ipa_tag_work);
} else {
ipa_disable_clks();
}
}
ipa_active_clients_unlock();
}
/**
* ipa_inc_acquire_wakelock() - Increase active clients counter, and
* acquire wakelock if necessary
*
* Return codes:
* None
*/
void ipa_inc_acquire_wakelock(enum ipa_wakelock_ref_client ref_client)
{
unsigned long flags;
if (ref_client >= IPA_WAKELOCK_REF_CLIENT_MAX)
return;
spin_lock_irqsave(&ipa_ctx->wakelock_ref_cnt.spinlock, flags);
if (ipa_ctx->wakelock_ref_cnt.cnt & (1 << ref_client))
IPAERR("client enum %d mask already set. ref cnt = %d\n",
ref_client, ipa_ctx->wakelock_ref_cnt.cnt);
ipa_ctx->wakelock_ref_cnt.cnt |= (1 << ref_client);
if (ipa_ctx->wakelock_ref_cnt.cnt)
__pm_stay_awake(&ipa_ctx->w_lock);
IPADBG("active wakelock ref cnt = %d client enum %d\n",
ipa_ctx->wakelock_ref_cnt.cnt, ref_client);
spin_unlock_irqrestore(&ipa_ctx->wakelock_ref_cnt.spinlock, flags);
}
/**
* ipa_dec_release_wakelock() - Decrease active clients counter
*
* In case if the ref count is 0, release the wakelock.
*
* Return codes:
* None
*/
void ipa_dec_release_wakelock(enum ipa_wakelock_ref_client ref_client)
{
unsigned long flags;
if (ref_client >= IPA_WAKELOCK_REF_CLIENT_MAX)
return;
spin_lock_irqsave(&ipa_ctx->wakelock_ref_cnt.spinlock, flags);
ipa_ctx->wakelock_ref_cnt.cnt &= ~(1 << ref_client);
IPADBG("active wakelock ref cnt = %d client enum %d\n",
ipa_ctx->wakelock_ref_cnt.cnt, ref_client);
if (ipa_ctx->wakelock_ref_cnt.cnt == 0)
__pm_relax(&ipa_ctx->w_lock);
spin_unlock_irqrestore(&ipa_ctx->wakelock_ref_cnt.spinlock, flags);
}
static int ipa_setup_bam_cfg(const struct ipa_plat_drv_res *res)
{
void *ipa_bam_mmio;
int reg_val;
int retval = 0;
ipa_bam_mmio = ioremap(res->ipa_mem_base + IPA_BAM_REG_BASE_OFST,
IPA_BAM_REMAP_SIZE);
if (!ipa_bam_mmio)
return -ENOMEM;
switch (ipa_ctx->ipa_hw_type) {
case IPA_HW_v1_1:
reg_val = IPA_BAM_CNFG_BITS_VALv1_1;
break;
case IPA_HW_v2_0:
case IPA_HW_v2_5:
case IPA_HW_v2_6L:
reg_val = IPA_BAM_CNFG_BITS_VALv2_0;
break;
default:
retval = -EPERM;
goto fail;
}
if (ipa_ctx->ipa_hw_type < IPA_HW_v2_5)
ipa_write_reg(ipa_bam_mmio, IPA_BAM_CNFG_BITS_OFST, reg_val);
fail:
iounmap(ipa_bam_mmio);
return retval;
}
int ipa2_set_required_perf_profile(enum ipa_voltage_level floor_voltage,
u32 bandwidth_mbps)
{
enum ipa_voltage_level needed_voltage;
u32 clk_rate;
IPADBG("floor_voltage=%d, bandwidth_mbps=%u",
floor_voltage, bandwidth_mbps);
if (floor_voltage < IPA_VOLTAGE_UNSPECIFIED ||
floor_voltage >= IPA_VOLTAGE_MAX) {
IPAERR("bad voltage\n");
return -EINVAL;
}
if (ipa_ctx->enable_clock_scaling) {
IPADBG("Clock scaling is enabled\n");
if (bandwidth_mbps >=
ipa_ctx->ctrl->clock_scaling_bw_threshold_turbo)
needed_voltage = IPA_VOLTAGE_TURBO;
else if (bandwidth_mbps >=
ipa_ctx->ctrl->clock_scaling_bw_threshold_nominal)
needed_voltage = IPA_VOLTAGE_NOMINAL;
else
needed_voltage = IPA_VOLTAGE_SVS;
} else {
IPADBG("Clock scaling is disabled\n");
needed_voltage = IPA_VOLTAGE_NOMINAL;
}
needed_voltage = max(needed_voltage, floor_voltage);
switch (needed_voltage) {
case IPA_VOLTAGE_SVS:
clk_rate = ipa_ctx->ctrl->ipa_clk_rate_svs;
break;
case IPA_VOLTAGE_NOMINAL:
clk_rate = ipa_ctx->ctrl->ipa_clk_rate_nominal;
break;
case IPA_VOLTAGE_TURBO:
clk_rate = ipa_ctx->ctrl->ipa_clk_rate_turbo;
break;
default:
IPAERR("bad voltage\n");
WARN_ON(1);
return -EFAULT;
}
if (clk_rate == ipa_ctx->curr_ipa_clk_rate) {
IPADBG("Same voltage\n");
return 0;
}
ipa_active_clients_lock();
ipa_ctx->curr_ipa_clk_rate = clk_rate;
IPADBG("setting clock rate to %u\n", ipa_ctx->curr_ipa_clk_rate);
if (ipa_ctx->ipa_active_clients.cnt > 0) {
clk_set_rate(ipa_clk, ipa_ctx->curr_ipa_clk_rate);
if (ipa_ctx->ipa_hw_mode != IPA_HW_MODE_VIRTUAL)
if (msm_bus_scale_client_update_request(
ipa_ctx->ipa_bus_hdl, ipa_get_bus_vote()))
WARN_ON(1);
} else {
IPADBG("clocks are gated, not setting rate\n");
}
ipa_active_clients_unlock();
IPADBG("Done\n");
return 0;
}
static int ipa_init_flt_block(void)
{
int result = 0;
/*
* SW workaround for Improper Filter Behavior when neither Global nor
* Pipe Rules are present => configure dummy global filter rule
* always which results in a miss
*/
struct ipa_ioc_add_flt_rule *rules;
struct ipa_flt_rule_add *rule;
struct ipa_ioc_get_rt_tbl rt_lookup;
enum ipa_ip_type ip;
if (ipa_ctx->ipa_hw_type >= IPA_HW_v1_1) {
size_t sz = sizeof(struct ipa_ioc_add_flt_rule) +
sizeof(struct ipa_flt_rule_add);
rules = kmalloc(sz, GFP_KERNEL);
if (rules == NULL) {
IPAERR("fail to alloc mem for dummy filter rule\n");
return -ENOMEM;
}
IPADBG("Adding global rules for IPv4 and IPv6");
for (ip = IPA_IP_v4; ip < IPA_IP_MAX; ip++) {
memset(&rt_lookup, 0,
sizeof(struct ipa_ioc_get_rt_tbl));
rt_lookup.ip = ip;
strlcpy(rt_lookup.name, IPA_DFLT_RT_TBL_NAME,
IPA_RESOURCE_NAME_MAX);
ipa2_get_rt_tbl(&rt_lookup);
ipa2_put_rt_tbl(rt_lookup.hdl);
memset(rules, 0, sz);
rule = &rules->rules[0];
rules->commit = 1;
rules->ip = ip;
rules->global = 1;
rules->num_rules = 1;
rule->at_rear = 1;
if (ip == IPA_IP_v4) {
rule->rule.attrib.attrib_mask =
IPA_FLT_PROTOCOL | IPA_FLT_DST_ADDR;
rule->rule.attrib.u.v4.protocol =
IPA_INVALID_L4_PROTOCOL;
rule->rule.attrib.u.v4.dst_addr_mask = ~0;
rule->rule.attrib.u.v4.dst_addr = ~0;
} else if (ip == IPA_IP_v6) {
rule->rule.attrib.attrib_mask =
IPA_FLT_NEXT_HDR | IPA_FLT_DST_ADDR;
rule->rule.attrib.u.v6.next_hdr =
IPA_INVALID_L4_PROTOCOL;
rule->rule.attrib.u.v6.dst_addr_mask[0] = ~0;
rule->rule.attrib.u.v6.dst_addr_mask[1] = ~0;
rule->rule.attrib.u.v6.dst_addr_mask[2] = ~0;
rule->rule.attrib.u.v6.dst_addr_mask[3] = ~0;
rule->rule.attrib.u.v6.dst_addr[0] = ~0;
rule->rule.attrib.u.v6.dst_addr[1] = ~0;
rule->rule.attrib.u.v6.dst_addr[2] = ~0;
rule->rule.attrib.u.v6.dst_addr[3] = ~0;
} else {
result = -EINVAL;
WARN_ON(1);
break;
}
rule->rule.action = IPA_PASS_TO_ROUTING;
rule->rule.rt_tbl_hdl = rt_lookup.hdl;
rule->rule.retain_hdr = true;
if (ipa2_add_flt_rule(rules) ||
rules->rules[0].status) {
result = -EINVAL;
WARN_ON(1);
break;
}
}
kfree(rules);
}
return result;
}
static void ipa_sps_process_irq_schedule_rel(void)
{
queue_delayed_work(ipa_ctx->sps_power_mgmt_wq,
&ipa_sps_release_resource_work,
msecs_to_jiffies(IPA_SPS_PROD_TIMEOUT_MSEC));
}
/**
* ipa_suspend_handler() - Handles the suspend interrupt:
* wakes up the suspended peripheral by requesting its consumer
* @interrupt: Interrupt type
* @private_data: The client's private data
* @interrupt_data: Interrupt specific information data
*/
void ipa_suspend_handler(enum ipa_irq_type interrupt,
void *private_data,
void *interrupt_data)
{
enum ipa_rm_resource_name resource;
u32 suspend_data =
((struct ipa_tx_suspend_irq_data *)interrupt_data)->endpoints;
u32 bmsk = 1;
u32 i = 0;
int res;
struct ipa_ep_cfg_holb holb_cfg;
IPADBG("interrupt=%d, interrupt_data=%u\n", interrupt, suspend_data);
memset(&holb_cfg, 0, sizeof(holb_cfg));
holb_cfg.tmr_val = 0;
for (i = 0; i < ipa_ctx->ipa_num_pipes; i++) {
if ((suspend_data & bmsk) && (ipa_ctx->ep[i].valid)) {
if (IPA_CLIENT_IS_APPS_CONS(ipa_ctx->ep[i].client)) {
/*
* pipe will be unsuspended as part of
* enabling IPA clocks
*/
if (!atomic_read(
&ipa_ctx->sps_pm.dec_clients)
) {
IPA_ACTIVE_CLIENTS_INC_EP(
ipa_ctx->ep[i].client);
IPADBG("Pipes un-suspended.\n");
IPADBG("Enter poll mode.\n");
atomic_set(
&ipa_ctx->sps_pm.dec_clients,
1);
ipa_sps_process_irq_schedule_rel();
}
} else {
resource = ipa2_get_rm_resource_from_ep(i);
res = ipa_rm_request_resource_with_timer(
resource);
if (res == -EPERM &&
IPA_CLIENT_IS_CONS(
ipa_ctx->ep[i].client)) {
holb_cfg.en = 1;
res = ipa2_cfg_ep_holb_by_client(
ipa_ctx->ep[i].client, &holb_cfg);
if (res) {
IPAERR("holb en fail\n");
IPAERR("IPAHW stall\n");
BUG();
}
}
}
}
bmsk = bmsk << 1;
}
}
/**
* ipa2_restore_suspend_handler() - restores the original suspend IRQ handler
* as it was registered in the IPA init sequence.
* Return codes:
* 0: success
* -EPERM: failed to remove current handler or failed to add original handler
*/
int ipa2_restore_suspend_handler(void)
{
int result = 0;
result = ipa2_remove_interrupt_handler(IPA_TX_SUSPEND_IRQ);
if (result) {
IPAERR("remove handler for suspend interrupt failed\n");
return -EPERM;
}
result = ipa2_add_interrupt_handler(IPA_TX_SUSPEND_IRQ,
ipa_suspend_handler, true, NULL);
if (result) {
IPAERR("register handler for suspend interrupt failed\n");
result = -EPERM;
}
return result;
}
static int apps_cons_release_resource(void)
{
return 0;
}
static int apps_cons_request_resource(void)
{
return 0;
}
static void ipa_sps_release_resource(struct work_struct *work)
{
mutex_lock(&ipa_ctx->sps_pm.sps_pm_lock);
/* check whether still need to decrease client usage */
if (atomic_read(&ipa_ctx->sps_pm.dec_clients)) {
if (atomic_read(&ipa_ctx->sps_pm.eot_activity)) {
IPADBG("EOT pending Re-scheduling\n");
ipa_sps_process_irq_schedule_rel();
} else {
atomic_set(&ipa_ctx->sps_pm.dec_clients, 0);
IPA_ACTIVE_CLIENTS_DEC_SPECIAL("SPS_RESOURCE");
}
}
atomic_set(&ipa_ctx->sps_pm.eot_activity, 0);
mutex_unlock(&ipa_ctx->sps_pm.sps_pm_lock);
}
int ipa_create_apps_resource(void)
{
struct ipa_rm_create_params apps_cons_create_params;
struct ipa_rm_perf_profile profile;
int result = 0;
memset(&apps_cons_create_params, 0,
sizeof(apps_cons_create_params));
apps_cons_create_params.name = IPA_RM_RESOURCE_APPS_CONS;
apps_cons_create_params.request_resource = apps_cons_request_resource;
apps_cons_create_params.release_resource = apps_cons_release_resource;
result = ipa_rm_create_resource(&apps_cons_create_params);
if (result) {
IPAERR("ipa_rm_create_resource failed\n");
return result;
}
profile.max_supported_bandwidth_mbps = IPA_APPS_MAX_BW_IN_MBPS;
ipa_rm_set_perf_profile(IPA_RM_RESOURCE_APPS_CONS, &profile);
return result;
}
/**
* ipa_init() - Initialize the IPA Driver
* @resource_p: contain platform specific values from DST file
* @pdev: The platform device structure representing the IPA driver
*
* Function initialization process:
* - Allocate memory for the driver context data struct
* - Initializing the ipa_ctx with:
* 1)parsed values from the dts file
* 2)parameters passed to the module initialization
* 3)read HW values(such as core memory size)
* - Map IPA core registers to CPU memory
* - Restart IPA core(HW reset)
* - Register IPA BAM to SPS driver and get a BAM handler
* - Set configuration for IPA BAM via BAM_CNFG_BITS
* - Initialize the look-aside caches(kmem_cache/slab) for filter,
* routing and IPA-tree
* - Create memory pool with 4 objects for DMA operations(each object
* is 512Bytes long), this object will be use for tx(A5->IPA)
* - Initialize lists head(routing,filter,hdr,system pipes)
* - Initialize mutexes (for ipa_ctx and NAT memory mutexes)
* - Initialize spinlocks (for list related to A5<->IPA pipes)
* - Initialize 2 single-threaded work-queue named "ipa rx wq" and "ipa tx wq"
* - Initialize Red-Black-Tree(s) for handles of header,routing rule,
* routing table ,filtering rule
* - Setup all A5<->IPA pipes by calling to ipa_setup_a5_pipes
* - Preparing the descriptors for System pipes
* - Initialize the filter block by committing IPV4 and IPV6 default rules
* - Create empty routing table in system memory(no committing)
* - Initialize pipes memory pool with ipa_pipe_mem_init for supported platforms
* - Create a char-device for IPA
* - Initialize IPA RM (resource manager)
*/
static int ipa_init(const struct ipa_plat_drv_res *resource_p,
struct device *ipa_dev)
{
int result = 0;
int i;
struct sps_bam_props bam_props = { 0 };
struct ipa_flt_tbl *flt_tbl;
struct ipa_rt_tbl_set *rset;
struct ipa_active_client_logging_info log_info;
IPADBG("IPA Driver initialization started\n");
/*
* since structure alignment is implementation dependent, add test to
* avoid different and incompatible data layouts
*/
BUILD_BUG_ON(sizeof(struct ipa_hw_pkt_status) != IPA_PKT_STATUS_SIZE);
ipa_ctx = kzalloc(sizeof(*ipa_ctx), GFP_KERNEL);
if (!ipa_ctx) {
IPAERR(":kzalloc err.\n");
result = -ENOMEM;
goto fail_mem_ctx;
}
ipa_ctx->pdev = ipa_dev;
ipa_ctx->uc_pdev = ipa_dev;
ipa_ctx->smmu_present = smmu_info.present;
if (!ipa_ctx->smmu_present)
ipa_ctx->smmu_s1_bypass = true;
else
ipa_ctx->smmu_s1_bypass = smmu_info.s1_bypass;
ipa_ctx->ipa_wrapper_base = resource_p->ipa_mem_base;
ipa_ctx->ipa_wrapper_size = resource_p->ipa_mem_size;
ipa_ctx->ipa_hw_type = resource_p->ipa_hw_type;
ipa_ctx->ipa_hw_mode = resource_p->ipa_hw_mode;
ipa_ctx->use_ipa_teth_bridge = resource_p->use_ipa_teth_bridge;
ipa_ctx->ipa_bam_remote_mode = resource_p->ipa_bam_remote_mode;
ipa_ctx->modem_cfg_emb_pipe_flt = resource_p->modem_cfg_emb_pipe_flt;
ipa_ctx->ipa_wdi2 = resource_p->ipa_wdi2;
ipa_ctx->wan_rx_ring_size = resource_p->wan_rx_ring_size;
ipa_ctx->lan_rx_ring_size = resource_p->lan_rx_ring_size;
ipa_ctx->skip_uc_pipe_reset = resource_p->skip_uc_pipe_reset;
ipa_ctx->use_dma_zone = resource_p->use_dma_zone;
ipa_ctx->tethered_flow_control = resource_p->tethered_flow_control;
/* Setting up IPA RX Polling Timeout Seconds */
ipa_rx_timeout_min_max_calc(&ipa_ctx->ipa_rx_min_timeout_usec,
&ipa_ctx->ipa_rx_max_timeout_usec,
resource_p->ipa_rx_polling_sleep_msec);
/* Setting up ipa polling iteration */
if ((resource_p->ipa_polling_iteration >= MIN_POLLING_ITERATION)
&& (resource_p->ipa_polling_iteration <= MAX_POLLING_ITERATION))
ipa_ctx->ipa_polling_iteration =
resource_p->ipa_polling_iteration;
else
ipa_ctx->ipa_polling_iteration = MAX_POLLING_ITERATION;
/* default aggregation parameters */
ipa_ctx->aggregation_type = IPA_MBIM_16;
ipa_ctx->aggregation_byte_limit = 1;
ipa_ctx->aggregation_time_limit = 0;
ipa_ctx->ipa2_active_clients_logging.log_rdy = false;
ipa_ctx->ctrl = kzalloc(sizeof(*ipa_ctx->ctrl), GFP_KERNEL);
if (!ipa_ctx->ctrl) {
IPAERR("memory allocation error for ctrl\n");
result = -ENOMEM;
goto fail_mem_ctrl;
}
result = ipa_controller_static_bind(ipa_ctx->ctrl,
ipa_ctx->ipa_hw_type);
if (result) {
IPAERR("fail to static bind IPA ctrl.\n");
result = -EFAULT;
goto fail_bind;
}
IPADBG("hdr_lcl=%u ip4_rt=%u ip6_rt=%u ip4_flt=%u ip6_flt=%u\n",
ipa_ctx->hdr_tbl_lcl, ipa_ctx->ip4_rt_tbl_lcl,
ipa_ctx->ip6_rt_tbl_lcl, ipa_ctx->ip4_flt_tbl_lcl,
ipa_ctx->ip6_flt_tbl_lcl);
if (bus_scale_table) {
IPADBG("Use bus scaling info from device tree\n");
ipa_ctx->ctrl->msm_bus_data_ptr = bus_scale_table;
}
if (ipa_ctx->ipa_hw_mode != IPA_HW_MODE_VIRTUAL) {
/* get BUS handle */
ipa_ctx->ipa_bus_hdl =
msm_bus_scale_register_client(
ipa_ctx->ctrl->msm_bus_data_ptr);
if (!ipa_ctx->ipa_bus_hdl) {
IPAERR("fail to register with bus mgr!\n");
result = -ENODEV;
goto fail_bus_reg;
}
} else {
IPADBG("Skipping bus scaling registration on Virtual plat\n");
}
if (ipa2_active_clients_log_init())
goto fail_init_active_client;
/* get IPA clocks */
result = ipa_get_clks(master_dev);
if (result)
goto fail_clk;
/* Enable ipa_ctx->enable_clock_scaling */
ipa_ctx->enable_clock_scaling = 1;
ipa_ctx->curr_ipa_clk_rate = ipa_ctx->ctrl->ipa_clk_rate_turbo;
/* enable IPA clocks explicitly to allow the initialization */
ipa_enable_clks();
/* setup IPA register access */
ipa_ctx->mmio = ioremap(resource_p->ipa_mem_base +
ipa_ctx->ctrl->ipa_reg_base_ofst,
resource_p->ipa_mem_size);
if (!ipa_ctx->mmio) {
IPAERR(":ipa-base ioremap err.\n");
result = -EFAULT;
goto fail_remap;
}
result = ipa_init_hw();
if (result) {
IPAERR(":error initializing HW.\n");
result = -ENODEV;
goto fail_init_hw;
}
IPADBG("IPA HW initialization sequence completed");
ipa_ctx->ipa_num_pipes = ipa_get_num_pipes();
ipa_ctx->ctrl->ipa_sram_read_settings();
IPADBG("SRAM, size: 0x%x, restricted bytes: 0x%x\n",
ipa_ctx->smem_sz, ipa_ctx->smem_restricted_bytes);
if (ipa_ctx->smem_reqd_sz >
ipa_ctx->smem_sz - ipa_ctx->smem_restricted_bytes) {
IPAERR("SW expect more core memory, needed %d, avail %d\n",
ipa_ctx->smem_reqd_sz, ipa_ctx->smem_sz -
ipa_ctx->smem_restricted_bytes);
result = -ENOMEM;
goto fail_init_hw;
}
mutex_init(&ipa_ctx->ipa_active_clients.mutex);
spin_lock_init(&ipa_ctx->ipa_active_clients.spinlock);
IPA_ACTIVE_CLIENTS_PREP_SPECIAL(log_info, "PROXY_CLK_VOTE");
ipa2_active_clients_log_inc(&log_info, false);
ipa_ctx->ipa_active_clients.cnt = 1;
/* Create workqueues for power management */
ipa_ctx->power_mgmt_wq =
create_singlethread_workqueue("ipa_power_mgmt");
if (!ipa_ctx->power_mgmt_wq) {
IPAERR("failed to create power mgmt wq\n");
result = -ENOMEM;
goto fail_init_hw;
}
ipa_ctx->sps_power_mgmt_wq =
create_singlethread_workqueue("sps_ipa_power_mgmt");
if (!ipa_ctx->sps_power_mgmt_wq) {
IPAERR("failed to create sps power mgmt wq\n");
result = -ENOMEM;
goto fail_create_sps_wq;
}
/* register IPA with SPS driver */
bam_props.phys_addr = resource_p->bam_mem_base;
bam_props.virt_size = resource_p->bam_mem_size;
bam_props.irq = resource_p->bam_irq;
bam_props.num_pipes = ipa_ctx->ipa_num_pipes;
bam_props.summing_threshold = IPA_SUMMING_THRESHOLD;
bam_props.event_threshold = IPA_EVENT_THRESHOLD;
bam_props.options |= SPS_BAM_NO_LOCAL_CLK_GATING;
if (ipa_ctx->ipa_hw_mode != IPA_HW_MODE_VIRTUAL)
bam_props.options |= SPS_BAM_OPT_IRQ_WAKEUP;
if (ipa_ctx->ipa_bam_remote_mode == true)
bam_props.manage |= SPS_BAM_MGR_DEVICE_REMOTE;
if (!ipa_ctx->smmu_s1_bypass)
bam_props.options |= SPS_BAM_SMMU_EN;
bam_props.options |= SPS_BAM_CACHED_WP;
bam_props.ee = resource_p->ee;
bam_props.ipc_loglevel = 3;
result = sps_register_bam_device(&bam_props, &ipa_ctx->bam_handle);
if (result) {
IPAERR(":bam register err.\n");
result = -EPROBE_DEFER;
goto fail_register_bam_device;
}
IPADBG("IPA BAM is registered\n");
if (ipa_setup_bam_cfg(resource_p)) {
IPAERR(":bam cfg err.\n");
result = -ENODEV;
goto fail_flt_rule_cache;
}
/* init the lookaside cache */
ipa_ctx->flt_rule_cache = kmem_cache_create("IPA_FLT",
sizeof(struct ipa_flt_entry), 0, 0, NULL);
if (!ipa_ctx->flt_rule_cache) {
IPAERR(":ipa flt cache create failed\n");
result = -ENOMEM;
goto fail_flt_rule_cache;
}
ipa_ctx->rt_rule_cache = kmem_cache_create("IPA_RT",
sizeof(struct ipa_rt_entry), 0, 0, NULL);
if (!ipa_ctx->rt_rule_cache) {
IPAERR(":ipa rt cache create failed\n");
result = -ENOMEM;
goto fail_rt_rule_cache;
}
ipa_ctx->hdr_cache = kmem_cache_create("IPA_HDR",
sizeof(struct ipa_hdr_entry), 0, 0, NULL);
if (!ipa_ctx->hdr_cache) {
IPAERR(":ipa hdr cache create failed\n");
result = -ENOMEM;
goto fail_hdr_cache;
}
ipa_ctx->hdr_offset_cache =
kmem_cache_create("IPA_HDR_OFFSET",
sizeof(struct ipa_hdr_offset_entry), 0, 0, NULL);
if (!ipa_ctx->hdr_offset_cache) {
IPAERR(":ipa hdr off cache create failed\n");
result = -ENOMEM;
goto fail_hdr_offset_cache;
}
ipa_ctx->hdr_proc_ctx_cache = kmem_cache_create("IPA_HDR_PROC_CTX",
sizeof(struct ipa_hdr_proc_ctx_entry), 0, 0, NULL);
if (!ipa_ctx->hdr_proc_ctx_cache) {
IPAERR(":ipa hdr proc ctx cache create failed\n");
result = -ENOMEM;
goto fail_hdr_proc_ctx_cache;
}
ipa_ctx->hdr_proc_ctx_offset_cache =
kmem_cache_create("IPA_HDR_PROC_CTX_OFFSET",
sizeof(struct ipa_hdr_proc_ctx_offset_entry), 0, 0, NULL);
if (!ipa_ctx->hdr_proc_ctx_offset_cache) {
IPAERR(":ipa hdr proc ctx off cache create failed\n");
result = -ENOMEM;
goto fail_hdr_proc_ctx_offset_cache;
}
ipa_ctx->rt_tbl_cache = kmem_cache_create("IPA_RT_TBL",
sizeof(struct ipa_rt_tbl), 0, 0, NULL);
if (!ipa_ctx->rt_tbl_cache) {
IPAERR(":ipa rt tbl cache create failed\n");
result = -ENOMEM;
goto fail_rt_tbl_cache;
}
ipa_ctx->tx_pkt_wrapper_cache =
kmem_cache_create("IPA_TX_PKT_WRAPPER",
sizeof(struct ipa_tx_pkt_wrapper), 0, 0, NULL);
if (!ipa_ctx->tx_pkt_wrapper_cache) {
IPAERR(":ipa tx pkt wrapper cache create failed\n");
result = -ENOMEM;
goto fail_tx_pkt_wrapper_cache;
}
ipa_ctx->rx_pkt_wrapper_cache =
kmem_cache_create("IPA_RX_PKT_WRAPPER",
sizeof(struct ipa_rx_pkt_wrapper), 0, 0, NULL);
if (!ipa_ctx->rx_pkt_wrapper_cache) {
IPAERR(":ipa rx pkt wrapper cache create failed\n");
result = -ENOMEM;
goto fail_rx_pkt_wrapper_cache;
}
/* Setup DMA pool */
ipa_ctx->dma_pool = dma_pool_create("ipa_tx", ipa_ctx->pdev,
IPA_NUM_DESC_PER_SW_TX * sizeof(struct sps_iovec),
0, 0);
if (!ipa_ctx->dma_pool) {
IPAERR("cannot alloc DMA pool.\n");
result = -ENOMEM;
goto fail_dma_pool;
}
ipa_ctx->glob_flt_tbl[IPA_IP_v4].in_sys = !ipa_ctx->ip4_flt_tbl_lcl;
ipa_ctx->glob_flt_tbl[IPA_IP_v6].in_sys = !ipa_ctx->ip6_flt_tbl_lcl;
/* init the various list heads */
INIT_LIST_HEAD(&ipa_ctx->glob_flt_tbl[IPA_IP_v4].head_flt_rule_list);
INIT_LIST_HEAD(&ipa_ctx->glob_flt_tbl[IPA_IP_v6].head_flt_rule_list);
INIT_LIST_HEAD(&ipa_ctx->hdr_tbl.head_hdr_entry_list);
for (i = 0; i < IPA_HDR_BIN_MAX; i++) {
INIT_LIST_HEAD(&ipa_ctx->hdr_tbl.head_offset_list[i]);
INIT_LIST_HEAD(&ipa_ctx->hdr_tbl.head_free_offset_list[i]);
}
INIT_LIST_HEAD(&ipa_ctx->hdr_proc_ctx_tbl.head_proc_ctx_entry_list);
for (i = 0; i < IPA_HDR_PROC_CTX_BIN_MAX; i++) {
INIT_LIST_HEAD(&ipa_ctx->hdr_proc_ctx_tbl.head_offset_list[i]);
INIT_LIST_HEAD(&ipa_ctx->
hdr_proc_ctx_tbl.head_free_offset_list[i]);
}
INIT_LIST_HEAD(&ipa_ctx->rt_tbl_set[IPA_IP_v4].head_rt_tbl_list);
INIT_LIST_HEAD(&ipa_ctx->rt_tbl_set[IPA_IP_v6].head_rt_tbl_list);
for (i = 0; i < ipa_ctx->ipa_num_pipes; i++) {
flt_tbl = &ipa_ctx->flt_tbl[i][IPA_IP_v4];
INIT_LIST_HEAD(&flt_tbl->head_flt_rule_list);
flt_tbl->in_sys = !ipa_ctx->ip4_flt_tbl_lcl;
flt_tbl = &ipa_ctx->flt_tbl[i][IPA_IP_v6];
INIT_LIST_HEAD(&flt_tbl->head_flt_rule_list);
flt_tbl->in_sys = !ipa_ctx->ip6_flt_tbl_lcl;
}
rset = &ipa_ctx->reap_rt_tbl_set[IPA_IP_v4];
INIT_LIST_HEAD(&rset->head_rt_tbl_list);
rset = &ipa_ctx->reap_rt_tbl_set[IPA_IP_v6];
INIT_LIST_HEAD(&rset->head_rt_tbl_list);
INIT_LIST_HEAD(&ipa_ctx->intf_list);
INIT_LIST_HEAD(&ipa_ctx->msg_list);
INIT_LIST_HEAD(&ipa_ctx->pull_msg_list);
init_waitqueue_head(&ipa_ctx->msg_waitq);
mutex_init(&ipa_ctx->msg_lock);
mutex_init(&ipa_ctx->lock);
mutex_init(&ipa_ctx->nat_mem.lock);
idr_init(&ipa_ctx->ipa_idr);
spin_lock_init(&ipa_ctx->idr_lock);
/* wlan related member */
memset(&ipa_ctx->wc_memb, 0, sizeof(ipa_ctx->wc_memb));
spin_lock_init(&ipa_ctx->wc_memb.wlan_spinlock);
spin_lock_init(&ipa_ctx->wc_memb.ipa_tx_mul_spinlock);
INIT_LIST_HEAD(&ipa_ctx->wc_memb.wlan_comm_desc_list);
/*
* setup an empty routing table in system memory, this will be used
* to delete a routing table cleanly and safely
*/
ipa_ctx->empty_rt_tbl_mem.size = IPA_ROUTING_RULE_BYTE_SIZE;
ipa_ctx->empty_rt_tbl_mem.base =
dma_alloc_coherent(ipa_ctx->pdev,
ipa_ctx->empty_rt_tbl_mem.size,
&ipa_ctx->empty_rt_tbl_mem.phys_base,
GFP_KERNEL);
if (!ipa_ctx->empty_rt_tbl_mem.base) {
IPAERR("DMA buff alloc fail %d bytes for empty routing tbl\n",
ipa_ctx->empty_rt_tbl_mem.size);
result = -ENOMEM;
goto fail_apps_pipes;
}
memset(ipa_ctx->empty_rt_tbl_mem.base, 0,
ipa_ctx->empty_rt_tbl_mem.size);
IPADBG("empty routing table was allocated in system memory");
/* setup the A5-IPA pipes */
if (ipa_setup_apps_pipes()) {
IPAERR(":failed to setup IPA-Apps pipes.\n");
result = -ENODEV;
goto fail_empty_rt_tbl;
}
IPADBG("IPA System2Bam pipes were connected\n");
if (ipa_init_flt_block()) {
IPAERR("fail to setup dummy filter rules\n");
result = -ENODEV;
goto fail_empty_rt_tbl;
}
IPADBG("filter block was set with dummy filter rules");
/* setup the IPA pipe mem pool */
if (resource_p->ipa_pipe_mem_size)
ipa_pipe_mem_init(resource_p->ipa_pipe_mem_start_ofst,
resource_p->ipa_pipe_mem_size);
ipa_ctx->class = class_create(THIS_MODULE, DRV_NAME);
result = alloc_chrdev_region(&ipa_ctx->dev_num, 0, 1, DRV_NAME);
if (result) {
IPAERR("alloc_chrdev_region err.\n");
result = -ENODEV;
goto fail_alloc_chrdev_region;
}
ipa_ctx->dev = device_create(ipa_ctx->class, NULL, ipa_ctx->dev_num,
ipa_ctx, DRV_NAME);
if (IS_ERR(ipa_ctx->dev)) {
IPAERR(":device_create err.\n");
result = -ENODEV;
goto fail_device_create;
}
cdev_init(&ipa_ctx->cdev, &ipa_drv_fops);
ipa_ctx->cdev.owner = THIS_MODULE;
ipa_ctx->cdev.ops = &ipa_drv_fops; /* from LDD3 */
result = cdev_add(&ipa_ctx->cdev, ipa_ctx->dev_num, 1);
if (result) {
IPAERR(":cdev_add err=%d\n", -result);
result = -ENODEV;
goto fail_cdev_add;
}
IPADBG("ipa cdev added successful. major:%d minor:%d\n",
MAJOR(ipa_ctx->dev_num),
MINOR(ipa_ctx->dev_num));
if (create_nat_device()) {
IPAERR("unable to create nat device\n");
result = -ENODEV;
goto fail_nat_dev_add;
}
/* Create a wakeup source. */
wakeup_source_init(&ipa_ctx->w_lock, "IPA_WS");
spin_lock_init(&ipa_ctx->wakelock_ref_cnt.spinlock);
/* Initialize the SPS PM lock. */
mutex_init(&ipa_ctx->sps_pm.sps_pm_lock);
/* Initialize IPA RM (resource manager) */
result = ipa_rm_initialize();
if (result) {
IPAERR("RM initialization failed (%d)\n", -result);
result = -ENODEV;
goto fail_ipa_rm_init;
}
IPADBG("IPA resource manager initialized");
result = ipa_create_apps_resource();
if (result) {
IPAERR("Failed to create APPS_CONS resource\n");
result = -ENODEV;
goto fail_create_apps_resource;
}
/*register IPA IRQ handler*/
result = ipa_interrupts_init(resource_p->ipa_irq, 0,
master_dev);
if (result) {
IPAERR("ipa interrupts initialization failed\n");
result = -ENODEV;
goto fail_ipa_interrupts_init;
}
/*add handler for suspend interrupt*/
result = ipa_add_interrupt_handler(IPA_TX_SUSPEND_IRQ,
ipa_suspend_handler, false, NULL);
if (result) {
IPAERR("register handler for suspend interrupt failed\n");
result = -ENODEV;
goto fail_add_interrupt_handler;
}
if (ipa_ctx->use_ipa_teth_bridge) {
/* Initialize the tethering bridge driver */
result = teth_bridge_driver_init();
if (result) {
IPAERR(":teth_bridge init failed (%d)\n", -result);
result = -ENODEV;
goto fail_add_interrupt_handler;
}
IPADBG("teth_bridge initialized");
}
ipa_debugfs_init();
result = ipa_uc_interface_init();
if (result)
IPAERR(":ipa Uc interface init failed (%d)\n", -result);
else
IPADBG(":ipa Uc interface init ok\n");
result = ipa_wdi_init();
if (result)
IPAERR(":wdi init failed (%d)\n", -result);
else
IPADBG(":wdi init ok\n");
result = ipa_ntn_init();
if (result)
IPAERR(":ntn init failed (%d)\n", -result);
else
IPADBG(":ntn init ok\n");
ipa_ctx->q6_proxy_clk_vote_valid = true;
ipa_register_panic_hdlr();
pr_info("IPA driver initialization was successful.\n");
return 0;
fail_add_interrupt_handler:
free_irq(resource_p->ipa_irq, master_dev);
fail_ipa_interrupts_init:
ipa_rm_delete_resource(IPA_RM_RESOURCE_APPS_CONS);
fail_create_apps_resource:
ipa_rm_exit();
fail_ipa_rm_init:
fail_nat_dev_add:
cdev_del(&ipa_ctx->cdev);
fail_cdev_add:
device_destroy(ipa_ctx->class, ipa_ctx->dev_num);
fail_device_create:
unregister_chrdev_region(ipa_ctx->dev_num, 1);
fail_alloc_chrdev_region:
if (ipa_ctx->pipe_mem_pool)
gen_pool_destroy(ipa_ctx->pipe_mem_pool);
fail_empty_rt_tbl:
ipa_teardown_apps_pipes();
dma_free_coherent(ipa_ctx->pdev,
ipa_ctx->empty_rt_tbl_mem.size,
ipa_ctx->empty_rt_tbl_mem.base,
ipa_ctx->empty_rt_tbl_mem.phys_base);
fail_apps_pipes:
idr_destroy(&ipa_ctx->ipa_idr);
fail_dma_pool:
kmem_cache_destroy(ipa_ctx->rx_pkt_wrapper_cache);
fail_rx_pkt_wrapper_cache:
kmem_cache_destroy(ipa_ctx->tx_pkt_wrapper_cache);
fail_tx_pkt_wrapper_cache:
kmem_cache_destroy(ipa_ctx->rt_tbl_cache);
fail_rt_tbl_cache:
kmem_cache_destroy(ipa_ctx->hdr_proc_ctx_offset_cache);
fail_hdr_proc_ctx_offset_cache:
kmem_cache_destroy(ipa_ctx->hdr_proc_ctx_cache);
fail_hdr_proc_ctx_cache:
kmem_cache_destroy(ipa_ctx->hdr_offset_cache);
fail_hdr_offset_cache:
kmem_cache_destroy(ipa_ctx->hdr_cache);
fail_hdr_cache:
kmem_cache_destroy(ipa_ctx->rt_rule_cache);
fail_rt_rule_cache:
kmem_cache_destroy(ipa_ctx->flt_rule_cache);
fail_flt_rule_cache:
sps_deregister_bam_device(ipa_ctx->bam_handle);
fail_register_bam_device:
destroy_workqueue(ipa_ctx->sps_power_mgmt_wq);
fail_create_sps_wq:
destroy_workqueue(ipa_ctx->power_mgmt_wq);
fail_init_hw:
iounmap(ipa_ctx->mmio);
fail_remap:
ipa_disable_clks();
fail_clk:
ipa2_active_clients_log_destroy();
fail_init_active_client:
msm_bus_scale_unregister_client(ipa_ctx->ipa_bus_hdl);
fail_bus_reg:
if (bus_scale_table) {
msm_bus_cl_clear_pdata(bus_scale_table);
bus_scale_table = NULL;
}
fail_bind:
kfree(ipa_ctx->ctrl);
fail_mem_ctrl:
kfree(ipa_ctx);
ipa_ctx = NULL;
fail_mem_ctx:
return result;
}
static int get_ipa_dts_configuration(struct platform_device *pdev,
struct ipa_plat_drv_res *ipa_drv_res)
{
int result;
struct resource *resource;
/* initialize ipa_res */
ipa_drv_res->ipa_pipe_mem_start_ofst = IPA_PIPE_MEM_START_OFST;
ipa_drv_res->ipa_pipe_mem_size = IPA_PIPE_MEM_SIZE;
ipa_drv_res->ipa_hw_type = 0;
ipa_drv_res->ipa_hw_mode = 0;
ipa_drv_res->ipa_bam_remote_mode = false;
ipa_drv_res->modem_cfg_emb_pipe_flt = false;
ipa_drv_res->ipa_wdi2 = false;
ipa_drv_res->wan_rx_ring_size = IPA_GENERIC_RX_POOL_SZ;
ipa_drv_res->lan_rx_ring_size = IPA_GENERIC_RX_POOL_SZ;
/* Get IPA HW Version */
result = of_property_read_u32(pdev->dev.of_node, "qcom,ipa-hw-ver",
&ipa_drv_res->ipa_hw_type);
if ((result) || (ipa_drv_res->ipa_hw_type == 0)) {
IPAERR(":get resource failed for ipa-hw-ver!\n");
return -ENODEV;
}
IPADBG(": ipa_hw_type = %d", ipa_drv_res->ipa_hw_type);
/* Get IPA HW mode */
result = of_property_read_u32(pdev->dev.of_node, "qcom,ipa-hw-mode",
&ipa_drv_res->ipa_hw_mode);
if (result)
IPADBG("using default (IPA_MODE_NORMAL) for ipa-hw-mode\n");
else
IPADBG(": found ipa_drv_res->ipa_hw_mode = %d",
ipa_drv_res->ipa_hw_mode);
/* Get IPA WAN / LAN RX pool sizes */
result = of_property_read_u32(pdev->dev.of_node,
"qcom,wan-rx-ring-size",
&ipa_drv_res->wan_rx_ring_size);
if (result)
IPADBG("using default for wan-rx-ring-size = %u\n",
ipa_drv_res->wan_rx_ring_size);
else
IPADBG(": found ipa_drv_res->wan-rx-ring-size = %u",
ipa_drv_res->wan_rx_ring_size);
result = of_property_read_u32(pdev->dev.of_node,
"qcom,lan-rx-ring-size",
&ipa_drv_res->lan_rx_ring_size);
if (result)
IPADBG("using default for lan-rx-ring-size = %u\n",
ipa_drv_res->lan_rx_ring_size);
else
IPADBG(": found ipa_drv_res->lan-rx-ring-size = %u",
ipa_drv_res->lan_rx_ring_size);
ipa_drv_res->use_ipa_teth_bridge =
of_property_read_bool(pdev->dev.of_node,
"qcom,use-ipa-tethering-bridge");
IPADBG(": using TBDr = %s",
ipa_drv_res->use_ipa_teth_bridge
? "True" : "False");
ipa_drv_res->ipa_bam_remote_mode =
of_property_read_bool(pdev->dev.of_node,
"qcom,ipa-bam-remote-mode");
IPADBG(": ipa bam remote mode = %s\n",
ipa_drv_res->ipa_bam_remote_mode
? "True" : "False");
ipa_drv_res->modem_cfg_emb_pipe_flt =
of_property_read_bool(pdev->dev.of_node,
"qcom,modem-cfg-emb-pipe-flt");
IPADBG(": modem configure embedded pipe filtering = %s\n",
ipa_drv_res->modem_cfg_emb_pipe_flt
? "True" : "False");
ipa_drv_res->ipa_wdi2 =
of_property_read_bool(pdev->dev.of_node,
"qcom,ipa-wdi2");
IPADBG(": WDI-2.0 = %s\n",
ipa_drv_res->ipa_wdi2
? "True" : "False");
ipa_drv_res->skip_uc_pipe_reset =
of_property_read_bool(pdev->dev.of_node,
"qcom,skip-uc-pipe-reset");
IPADBG(": skip uC pipe reset = %s\n",
ipa_drv_res->skip_uc_pipe_reset
? "True" : "False");
ipa_drv_res->use_dma_zone =
of_property_read_bool(pdev->dev.of_node,
"qcom,use-dma-zone");
IPADBG(": use dma zone = %s\n",
ipa_drv_res->use_dma_zone
? "True" : "False");
ipa_drv_res->tethered_flow_control =
of_property_read_bool(pdev->dev.of_node,
"qcom,tethered-flow-control");
IPADBG(": Use apps based flow control = %s\n",
ipa_drv_res->tethered_flow_control
? "True" : "False");
/* Get IPA wrapper address */
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ipa-base");
if (!resource) {
IPAERR(":get resource failed for ipa-base!\n");
return -ENODEV;
}
ipa_drv_res->ipa_mem_base = resource->start;
ipa_drv_res->ipa_mem_size = resource_size(resource);
IPADBG(": ipa-base = 0x%x, size = 0x%x\n",
ipa_drv_res->ipa_mem_base,
ipa_drv_res->ipa_mem_size);
smmu_info.ipa_base = ipa_drv_res->ipa_mem_base;
smmu_info.ipa_size = ipa_drv_res->ipa_mem_size;
/* Get IPA BAM address */
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"bam-base");
if (!resource) {
IPAERR(":get resource failed for bam-base!\n");
return -ENODEV;
}
ipa_drv_res->bam_mem_base = resource->start;
ipa_drv_res->bam_mem_size = resource_size(resource);
IPADBG(": bam-base = 0x%x, size = 0x%x\n",
ipa_drv_res->bam_mem_base,
ipa_drv_res->bam_mem_size);
/* Get IPA pipe mem start ofst */
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ipa-pipe-mem");
if (!resource) {
IPADBG(":not using pipe memory - resource nonexisting\n");
} else {
ipa_drv_res->ipa_pipe_mem_start_ofst = resource->start;
ipa_drv_res->ipa_pipe_mem_size = resource_size(resource);
IPADBG(":using pipe memory - at 0x%x of size 0x%x\n",
ipa_drv_res->ipa_pipe_mem_start_ofst,
ipa_drv_res->ipa_pipe_mem_size);
}
/* Get IPA IRQ number */
resource = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"ipa-irq");
if (!resource) {
IPAERR(":get resource failed for ipa-irq!\n");
return -ENODEV;
}
ipa_drv_res->ipa_irq = resource->start;
IPADBG(":ipa-irq = %d\n", ipa_drv_res->ipa_irq);
/* Get IPA BAM IRQ number */
resource = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"bam-irq");
if (!resource) {
IPAERR(":get resource failed for bam-irq!\n");
return -ENODEV;
}
ipa_drv_res->bam_irq = resource->start;
IPADBG(":ibam-irq = %d\n", ipa_drv_res->bam_irq);
result = of_property_read_u32(pdev->dev.of_node, "qcom,ee",
&ipa_drv_res->ee);
if (result)
ipa_drv_res->ee = 0;
/* Get IPA RX Polling Timeout Seconds */
result = of_property_read_u32(pdev->dev.of_node,
"qcom,rx-polling-sleep-ms",
&ipa_drv_res->ipa_rx_polling_sleep_msec);
if (result) {
ipa_drv_res->ipa_rx_polling_sleep_msec = ONE_MSEC;
IPADBG("using default polling timeout of 1MSec\n");
} else {
IPADBG(": found ipa_drv_res->ipa_rx_polling_sleep_sec = %d",
ipa_drv_res->ipa_rx_polling_sleep_msec);
}
/* Get IPA Polling Iteration */
result = of_property_read_u32(pdev->dev.of_node,
"qcom,ipa-polling-iteration",
&ipa_drv_res->ipa_polling_iteration);
if (result) {
ipa_drv_res->ipa_polling_iteration = MAX_POLLING_ITERATION;
IPADBG("using default polling iteration\n");
} else {
IPADBG(": found ipa_drv_res->ipa_polling_iteration = %d",
ipa_drv_res->ipa_polling_iteration);
}
return 0;
}
static int ipa_smmu_wlan_cb_probe(struct device *dev)
{
struct ipa_smmu_cb_ctx *cb = ipa2_get_wlan_smmu_ctx();
int atomic_ctx = 1;
int fast = 1;
int bypass = 1;
int ret;
IPADBG("sub pdev=%p\n", dev);
cb->dev = dev;
cb->iommu = iommu_domain_alloc(msm_iommu_get_bus(dev));
if (!cb->iommu) {
IPAERR("could not alloc iommu domain\n");
/* assume this failure is because iommu driver is not ready */
return -EPROBE_DEFER;
}
cb->valid = true;
if (smmu_info.s1_bypass) {
if (iommu_domain_set_attr(cb->iommu,
DOMAIN_ATTR_S1_BYPASS,
&bypass)) {
IPAERR("couldn't set bypass\n");
cb->valid = false;
return -EIO;
}
IPADBG("SMMU S1 BYPASS\n");
} else {
if (iommu_domain_set_attr(cb->iommu,
DOMAIN_ATTR_ATOMIC,
&atomic_ctx)) {
IPAERR("couldn't set domain as atomic\n");
cb->valid = false;
return -EIO;
}
IPADBG("SMMU atomic set\n");
if (smmu_info.fast_map) {
if (iommu_domain_set_attr(cb->iommu,
DOMAIN_ATTR_FAST,
&fast)) {
IPAERR("couldn't set fast map\n");
cb->valid = false;
return -EIO;
}
IPADBG("SMMU fast map set\n");
}
}
ret = iommu_attach_device(cb->iommu, dev);
if (ret) {
IPAERR("could not attach device ret=%d\n", ret);
cb->valid = false;
return ret;
}
if (!smmu_info.s1_bypass) {
IPAERR("map IPA region to WLAN_CB IOMMU\n");
ret = ipa_iommu_map(cb->iommu,
rounddown(smmu_info.ipa_base, PAGE_SIZE),
rounddown(smmu_info.ipa_base, PAGE_SIZE),
roundup(smmu_info.ipa_size, PAGE_SIZE),
IOMMU_READ | IOMMU_WRITE | IOMMU_MMIO);
if (ret) {
IPAERR("map IPA to WLAN_CB IOMMU failed ret=%d\n",
ret);
arm_iommu_detach_device(cb->dev);
cb->valid = false;
return ret;
}
}
return 0;
}
static int ipa_smmu_uc_cb_probe(struct device *dev)
{
struct ipa_smmu_cb_ctx *cb = ipa2_get_uc_smmu_ctx();
int atomic_ctx = 1;
int ret;
int fast = 1;
int bypass = 1;
u32 iova_ap_mapping[2];
IPADBG("UC CB PROBE sub pdev=%p\n", dev);
ret = of_property_read_u32_array(dev->of_node, "qcom,iova-mapping",
iova_ap_mapping, 2);
if (ret) {
IPAERR("Fail to read UC start/size iova addresses\n");
return ret;
}
cb->va_start = iova_ap_mapping[0];
cb->va_size = iova_ap_mapping[1];
cb->va_end = cb->va_start + cb->va_size;
IPADBG("UC va_start=0x%x va_sise=0x%x\n", cb->va_start, cb->va_size);
if (dma_set_mask(dev, DMA_BIT_MASK(32)) ||
dma_set_coherent_mask(dev, DMA_BIT_MASK(32))) {
IPAERR("DMA set mask failed\n");
return -EOPNOTSUPP;
}
IPADBG("UC CB PROBE=%p create IOMMU mapping\n", dev);
cb->dev = dev;
cb->mapping = arm_iommu_create_mapping(msm_iommu_get_bus(dev),
cb->va_start, cb->va_size);
if (IS_ERR_OR_NULL(cb->mapping)) {
IPADBG("Fail to create mapping\n");
/* assume this failure is because iommu driver is not ready */
return -EPROBE_DEFER;
}
IPADBG("SMMU mapping created\n");
cb->valid = true;
IPADBG("UC CB PROBE sub pdev=%p set attribute\n", dev);
if (smmu_info.s1_bypass) {
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_S1_BYPASS,
&bypass)) {
IPAERR("couldn't set bypass\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU S1 BYPASS\n");
} else {
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_ATOMIC,
&atomic_ctx)) {
IPAERR("couldn't set domain as atomic\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU atomic set\n");
if (smmu_info.fast_map) {
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_FAST,
&fast)) {
IPAERR("couldn't set fast map\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU fast map set\n");
}
}
IPADBG("UC CB PROBE sub pdev=%p attaching IOMMU device\n", dev);
ret = arm_iommu_attach_device(cb->dev, cb->mapping);
if (ret) {
IPAERR("could not attach device ret=%d\n", ret);
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return ret;
}
cb->next_addr = cb->va_end;
ipa_ctx->uc_pdev = dev;
IPADBG("UC CB PROBE pdev=%p attached\n", dev);
return 0;
}
static int ipa_smmu_ap_cb_probe(struct device *dev)
{
struct ipa_smmu_cb_ctx *cb = ipa2_get_smmu_ctx();
int result;
int atomic_ctx = 1;
int fast = 1;
int bypass = 1;
u32 iova_ap_mapping[2];
IPADBG("AP CB probe: sub pdev=%p\n", dev);
result = of_property_read_u32_array(dev->of_node, "qcom,iova-mapping",
iova_ap_mapping, 2);
if (result) {
IPAERR("Fail to read AP start/size iova addresses\n");
return result;
}
cb->va_start = iova_ap_mapping[0];
cb->va_size = iova_ap_mapping[1];
cb->va_end = cb->va_start + cb->va_size;
IPADBG("AP va_start=0x%x va_sise=0x%x\n", cb->va_start, cb->va_size);
if (dma_set_mask(dev, DMA_BIT_MASK(32)) ||
dma_set_coherent_mask(dev, DMA_BIT_MASK(32))) {
IPAERR("DMA set mask failed\n");
return -EOPNOTSUPP;
}
cb->dev = dev;
cb->mapping = arm_iommu_create_mapping(msm_iommu_get_bus(dev),
cb->va_start,
cb->va_size);
if (IS_ERR_OR_NULL(cb->mapping)) {
IPADBG("Fail to create mapping\n");
/* assume this failure is because iommu driver is not ready */
return -EPROBE_DEFER;
}
IPADBG("SMMU mapping created\n");
cb->valid = true;
if (smmu_info.s1_bypass) {
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_S1_BYPASS,
&bypass)) {
IPAERR("couldn't set bypass\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU S1 BYPASS\n");
} else {
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_ATOMIC,
&atomic_ctx)) {
IPAERR("couldn't set domain as atomic\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU atomic set\n");
if (iommu_domain_set_attr(cb->mapping->domain,
DOMAIN_ATTR_FAST,
&fast)) {
IPAERR("couldn't set fast map\n");
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return -EIO;
}
IPADBG("SMMU fast map set\n");
}
result = arm_iommu_attach_device(cb->dev, cb->mapping);
if (result) {
IPAERR("couldn't attach to IOMMU ret=%d\n", result);
cb->valid = false;
return result;
}
if (!smmu_info.s1_bypass) {
IPAERR("map IPA region to AP_CB IOMMU\n");
result = ipa_iommu_map(cb->mapping->domain,
rounddown(smmu_info.ipa_base, PAGE_SIZE),
rounddown(smmu_info.ipa_base, PAGE_SIZE),
roundup(smmu_info.ipa_size, PAGE_SIZE),
IOMMU_READ | IOMMU_WRITE | IOMMU_MMIO);
if (result) {
IPAERR("map IPA region to AP_CB IOMMU failed ret=%d\n",
result);
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return result;
}
}
smmu_info.present = true;
if (!bus_scale_table)
bus_scale_table = msm_bus_cl_get_pdata(ipa_pdev);
/* Proceed to real initialization */
result = ipa_init(&ipa_res, dev);
if (result) {
IPAERR("ipa_init failed\n");
arm_iommu_detach_device(cb->dev);
arm_iommu_release_mapping(cb->mapping);
cb->valid = false;
return result;
}
return result;
}
int ipa_plat_drv_probe(struct platform_device *pdev_p,
struct ipa_api_controller *api_ctrl,
const struct of_device_id *pdrv_match)
{
int result;
struct device *dev = &pdev_p->dev;
IPADBG("IPA driver probing started\n");
if (of_device_is_compatible(dev->of_node, "qcom,ipa-smmu-ap-cb"))
return ipa_smmu_ap_cb_probe(dev);
if (of_device_is_compatible(dev->of_node, "qcom,ipa-smmu-wlan-cb"))
return ipa_smmu_wlan_cb_probe(dev);
if (of_device_is_compatible(dev->of_node, "qcom,ipa-smmu-uc-cb"))
return ipa_smmu_uc_cb_probe(dev);
master_dev = dev;
if (!ipa_pdev)
ipa_pdev = pdev_p;
result = get_ipa_dts_configuration(pdev_p, &ipa_res);
if (result) {
IPAERR("IPA dts parsing failed\n");
return result;
}
result = ipa2_bind_api_controller(ipa_res.ipa_hw_type, api_ctrl);
if (result) {
IPAERR("IPA API binding failed\n");
return result;
}
if (of_property_read_bool(pdev_p->dev.of_node, "qcom,arm-smmu")) {
if (of_property_read_bool(pdev_p->dev.of_node,
"qcom,smmu-s1-bypass"))
smmu_info.s1_bypass = true;
if (of_property_read_bool(pdev_p->dev.of_node,
"qcom,smmu-fast-map"))
smmu_info.fast_map = true;
smmu_info.arm_smmu = true;
pr_info("IPA smmu_info.s1_bypass=%d smmu_info.fast_map=%d\n",
smmu_info.s1_bypass, smmu_info.fast_map);
result = of_platform_populate(pdev_p->dev.of_node,
pdrv_match, NULL, &pdev_p->dev);
} else if (of_property_read_bool(pdev_p->dev.of_node,
"qcom,msm-smmu")) {
IPAERR("Legacy IOMMU not supported\n");
result = -EOPNOTSUPP;
} else {
if (dma_set_mask(&pdev_p->dev, DMA_BIT_MASK(32)) ||
dma_set_coherent_mask(&pdev_p->dev,
DMA_BIT_MASK(32))) {
IPAERR("DMA set mask failed\n");
return -EOPNOTSUPP;
}
if (!bus_scale_table)
bus_scale_table = msm_bus_cl_get_pdata(pdev_p);
/* Proceed to real initialization */
result = ipa_init(&ipa_res, dev);
if (result) {
IPAERR("ipa_init failed\n");
return result;
}
}
return result;
}
/**
* ipa2_ap_suspend() - suspend callback for runtime_pm
* @dev: pointer to device
*
* This callback will be invoked by the runtime_pm framework when an AP suspend
* operation is invoked, usually by pressing a suspend button.
*
* Returns -EAGAIN to runtime_pm framework in case IPA is in use by AP.
* This will postpone the suspend operation until IPA is no longer used by AP.
*/
int ipa2_ap_suspend(struct device *dev)
{
int i;
IPADBG("Enter...\n");
/* In case there is a tx/rx handler in polling mode fail to suspend */
for (i = 0; i < ipa_ctx->ipa_num_pipes; i++) {
if (ipa_ctx->ep[i].sys &&
atomic_read(&ipa_ctx->ep[i].sys->curr_polling_state)) {
IPAERR("EP %d is in polling state, do not suspend\n",
i);
return -EAGAIN;
}
}
/* release SPS IPA resource without waiting for inactivity timer */
atomic_set(&ipa_ctx->sps_pm.eot_activity, 0);
ipa_sps_release_resource(NULL);
IPADBG("Exit\n");
return 0;
}
/**
* ipa2_ap_resume() - resume callback for runtime_pm
* @dev: pointer to device
*
* This callback will be invoked by the runtime_pm framework when an AP resume
* operation is invoked.
*
* Always returns 0 since resume should always succeed.
*/
int ipa2_ap_resume(struct device *dev)
{
return 0;
}
struct ipa_context *ipa_get_ctx(void)
{
return ipa_ctx;
}
int ipa_iommu_map(struct iommu_domain *domain,
unsigned long iova, phys_addr_t paddr, size_t size, int prot)
{
struct ipa_smmu_cb_ctx *ap_cb = ipa2_get_smmu_ctx();
struct ipa_smmu_cb_ctx *uc_cb = ipa2_get_uc_smmu_ctx();
IPADBG("domain =0x%p iova 0x%lx\n", domain, iova);
IPADBG("paddr =0x%pa size 0x%x\n", &paddr, (u32)size);
/* Checking the address overlapping */
if (domain == ipa2_get_smmu_domain()) {
if (iova >= ap_cb->va_start && iova < ap_cb->va_end) {
IPAERR("iommu AP overlap addr 0x%lx\n", iova);
}
} else if (domain == ipa2_get_wlan_smmu_domain()) {
/* wlan is one time map */
} else if (domain == ipa2_get_uc_smmu_domain()) {
if (iova >= uc_cb->va_start && iova < uc_cb->va_end) {
IPAERR("iommu uC overlap addr 0x%lx\n", iova);
}
} else {
IPAERR("Unexpected domain 0x%p\n", domain);
ipa_assert();
return -EFAULT;
}
return iommu_map(domain, iova, paddr, size, prot);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("IPA HW device driver");