blob: 5cf217faed1fa7eca2d2fd62fd0164ccdbc9e69f [file] [log] [blame]
/*
* f2fs extent cache support
*
* Copyright (c) 2015 Motorola Mobility
* Copyright (c) 2015 Samsung Electronics
* Authors: Jaegeuk Kim <jaegeuk@kernel.org>
* Chao Yu <chao2.yu@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p)
{
struct extent_node *en;
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
rb_link_node(&en->rb_node, parent, p);
rb_insert_color(&en->rb_node, &et->root);
et->count++;
atomic_inc(&sbi->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
rb_erase(&en->rb_node, &et->root);
et->count--;
atomic_dec(&sbi->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
}
static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
nid_t ino = inode->i_ino;
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->root = RB_ROOT;
et->cached_en = NULL;
rwlock_init(&et->lock);
atomic_set(&et->refcount, 0);
et->count = 0;
sbi->total_ext_tree++;
}
atomic_inc(&et->refcount);
up_write(&sbi->extent_tree_lock);
/* never died until evict_inode */
F2FS_I(inode)->extent_tree = et;
return et;
}
static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, unsigned int fofs)
{
struct rb_node *node = et->root.rb_node;
struct extent_node *en = et->cached_en;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
stat_inc_cached_node_hit(sbi);
return en;
}
}
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
node = node->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
node = node->rb_right;
else
return en;
}
return NULL;
}
static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_node *prev;
struct rb_node *node;
node = rb_prev(&en->rb_node);
if (!node)
return NULL;
prev = rb_entry(node, struct extent_node, rb_node);
if (__is_back_mergeable(&en->ei, &prev->ei)) {
en->ei.fofs = prev->ei.fofs;
en->ei.blk = prev->ei.blk;
en->ei.len += prev->ei.len;
__detach_extent_node(sbi, et, prev);
return prev;
}
return NULL;
}
static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_node *next;
struct rb_node *node;
node = rb_next(&en->rb_node);
if (!node)
return NULL;
next = rb_entry(node, struct extent_node, rb_node);
if (__is_front_mergeable(&en->ei, &next->ei)) {
en->ei.len += next->ei.len;
__detach_extent_node(sbi, et, next);
return next;
}
return NULL;
}
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node **den)
{
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en;
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs) {
if (__is_front_mergeable(ei, &en->ei)) {
f2fs_bug_on(sbi, !den);
en->ei.fofs = ei->fofs;
en->ei.blk = ei->blk;
en->ei.len += ei->len;
*den = __try_back_merge(sbi, et, en);
goto update_out;
}
p = &(*p)->rb_left;
} else if (ei->fofs >= en->ei.fofs + en->ei.len) {
if (__is_back_mergeable(ei, &en->ei)) {
f2fs_bug_on(sbi, !den);
en->ei.len += ei->len;
*den = __try_front_merge(sbi, et, en);
goto update_out;
}
p = &(*p)->rb_right;
} else {
f2fs_bug_on(sbi, 1);
}
}
en = __attach_extent_node(sbi, et, ei, parent, p);
if (!en)
return NULL;
update_out:
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
return en;
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, bool free_all)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count = et->count;
node = rb_first(&et->root);
while (node) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
if (free_all) {
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
}
if (free_all || list_empty(&en->list)) {
__detach_extent_node(sbi, et, en);
kmem_cache_free(extent_node_slab, en);
}
node = next;
}
return count - et->count;
}
void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
{
struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
largest->len = 0;
}
void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (!f2fs_may_extent_tree(inode))
return;
et = __grab_extent_tree(inode);
if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
return;
set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
write_lock(&et->lock);
if (et->count)
goto out;
en = __insert_extent_tree(sbi, et, &ei, NULL);
if (en) {
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
}
out:
write_unlock(&et->lock);
}
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en;
bool ret = false;
f2fs_bug_on(sbi, !et);
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
read_lock(&et->lock);
if (et->largest.fofs <= pgofs &&
et->largest.fofs + et->largest.len > pgofs) {
*ei = et->largest;
ret = true;
stat_inc_read_hit(sbi);
stat_inc_largest_node_hit(sbi);
goto out;
}
en = __lookup_extent_tree(sbi, et, pgofs);
if (en) {
*ei = en->ei;
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_move_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
spin_unlock(&sbi->extent_lock);
ret = true;
stat_inc_read_hit(sbi);
}
out:
stat_inc_total_hit(sbi);
read_unlock(&et->lock);
trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
return ret;
}
/*
* lookup extent at @fofs, if hit, return the extent
* if not, return NULL and
* @prev_ex: extent before fofs
* @next_ex: extent after fofs
* @insert_p: insert point for new extent at fofs
* in order to simpfy the insertion after.
* tree must stay unchanged between lookup and insertion.
*/
static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
unsigned int fofs,
struct extent_node **prev_ex,
struct extent_node **next_ex,
struct rb_node ***insert_p,
struct rb_node **insert_parent)
{
struct rb_node **pnode = &et->root.rb_node;
struct rb_node *parent = NULL, *tmp_node;
struct extent_node *en;
if (et->cached_en) {
struct extent_info *cei = &et->cached_en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
return et->cached_en;
}
while (*pnode) {
parent = *pnode;
en = rb_entry(*pnode, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
pnode = &(*pnode)->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
pnode = &(*pnode)->rb_right;
else
return en;
}
*insert_p = pnode;
*insert_parent = parent;
en = rb_entry(parent, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs > en->ei.fofs)
tmp_node = rb_next(parent);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
tmp_node = parent;
if (parent && fofs < en->ei.fofs)
tmp_node = rb_prev(parent);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
return NULL;
}
static struct extent_node *__insert_extent_tree_ret(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node **den,
struct extent_node *prev_ex,
struct extent_node *next_ex,
struct rb_node **insert_p,
struct rb_node *insert_parent)
{
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en = NULL;
int merged = 0;
if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
f2fs_bug_on(sbi, !den);
merged = 1;
prev_ex->ei.len += ei->len;
ei = &prev_ex->ei;
en = prev_ex;
}
if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
f2fs_bug_on(sbi, !den);
if (merged++) {
__detach_extent_node(sbi, et, prev_ex);
*den = prev_ex;
}
next_ex->ei.fofs = ei->fofs;
next_ex->ei.blk = ei->blk;
next_ex->ei.len += ei->len;
en = next_ex;
}
if (merged)
goto update_out;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs)
p = &(*p)->rb_left;
else if (ei->fofs >= en->ei.fofs + en->ei.len)
p = &(*p)->rb_right;
else
f2fs_bug_on(sbi, 1);
}
do_insert:
en = __attach_extent_node(sbi, et, ei, parent, p);
if (!en)
return NULL;
update_out:
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
return en;
}
/* return true, if on-disk extent should be updated */
static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
struct extent_node *den = NULL, *prev_ex = NULL, *next_ex = NULL;
struct extent_info ei, dei, prev;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int endofs;
if (!et)
return false;
trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
write_lock(&et->lock);
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
write_unlock(&et->lock);
return false;
}
prev = et->largest;
dei.len = 0;
/* we do not guarantee that the largest extent is cached all the time */
f2fs_drop_largest_extent(inode, fofs);
/* 1. lookup and remove existing extent info in cache */
en = __lookup_extent_tree_ret(et, fofs, &prev_ex, &next_ex,
&insert_p, &insert_parent);
if (!en)
goto update_extent;
dei = en->ei;
__detach_extent_node(sbi, et, en);
/* 2. if extent can be split, try to split it */
if (dei.len > F2FS_MIN_EXTENT_LEN) {
/* insert left part of split extent into cache */
if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, dei.fofs, dei.blk,
fofs - dei.fofs);
en1 = __insert_extent_tree_ret(sbi, et, &ei, NULL,
NULL, NULL, NULL, NULL);
}
/* insert right part of split extent into cache */
endofs = dei.fofs + dei.len - 1;
if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, fofs + 1,
fofs - dei.fofs + dei.blk + 1, endofs - fofs);
en2 = __insert_extent_tree_ret(sbi, et, &ei, NULL,
NULL, NULL, NULL, NULL);
}
}
update_extent:
/* 3. update extent in extent cache */
if (blkaddr) {
set_extent_info(&ei, fofs, blkaddr, 1);
en3 = __insert_extent_tree_ret(sbi, et, &ei, &den,
prev_ex, next_ex, insert_p, insert_parent);
/* give up extent_cache, if split and small updates happen */
if (dei.len >= 1 &&
prev.len < F2FS_MIN_EXTENT_LEN &&
et->largest.len < F2FS_MIN_EXTENT_LEN) {
et->largest.len = 0;
set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
}
}
/* 4. update in global extent list */
spin_lock(&sbi->extent_lock);
if (en && !list_empty(&en->list))
list_del(&en->list);
/*
* en1 and en2 split from en, they will become more and more smaller
* fragments after splitting several times. So if the length is smaller
* than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
*/
if (en1)
list_add_tail(&en1->list, &sbi->extent_list);
if (en2)
list_add_tail(&en2->list, &sbi->extent_list);
if (en3) {
if (list_empty(&en3->list))
list_add_tail(&en3->list, &sbi->extent_list);
else
list_move_tail(&en3->list, &sbi->extent_list);
}
if (den && !list_empty(&den->list))
list_del(&den->list);
spin_unlock(&sbi->extent_lock);
/* 5. release extent node */
if (en)
kmem_cache_free(extent_node_slab, en);
if (den)
kmem_cache_free(extent_node_slab, den);
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
__free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return !__is_extent_same(&prev, &et->largest);
}
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
struct extent_node *en, *tmp;
unsigned long ino = F2FS_ROOT_INO(sbi);
struct radix_tree_root *root = &sbi->extent_tree_root;
unsigned int found;
unsigned int node_cnt = 0, tree_cnt = 0;
int remained;
if (!test_opt(sbi, EXTENT_CACHE))
return 0;
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
/* 1. remove unreferenced extent tree */
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
if (!atomic_read(&et->refcount)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
radix_tree_delete(root, et->ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
tree_cnt++;
if (node_cnt + tree_cnt >= nr_shrink)
goto unlock_out;
}
}
}
up_write(&sbi->extent_tree_lock);
/* 2. remove LRU extent entries */
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
remained = nr_shrink - (node_cnt + tree_cnt);
spin_lock(&sbi->extent_lock);
list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
if (!remained--)
break;
list_del_init(&en->list);
}
spin_unlock(&sbi->extent_lock);
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, false);
write_unlock(&et->lock);
if (node_cnt + tree_cnt >= nr_shrink)
break;
}
}
unlock_out:
up_write(&sbi->extent_tree_lock);
out:
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
return node_cnt + tree_cnt;
}
unsigned int f2fs_destroy_extent_node(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return 0;
write_lock(&et->lock);
node_cnt = __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return node_cnt;
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return;
if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
atomic_dec(&et->refcount);
return;
}
/* free all extent info belong to this extent tree */
node_cnt = f2fs_destroy_extent_node(inode);
/* delete extent tree entry in radix tree */
down_write(&sbi->extent_tree_lock);
atomic_dec(&et->refcount);
f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
up_write(&sbi->extent_tree_lock);
F2FS_I(inode)->extent_tree = NULL;
trace_f2fs_destroy_extent_tree(inode, node_cnt);
}
bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!f2fs_may_extent_tree(inode))
return false;
return f2fs_lookup_extent_tree(inode, pgofs, ei);
}
void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
pgoff_t fofs;
if (!f2fs_may_extent_tree(dn->inode))
return;
f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr))
sync_inode_page(dn);
}
void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
init_rwsem(&sbi->extent_tree_lock);
INIT_LIST_HEAD(&sbi->extent_list);
spin_lock_init(&sbi->extent_lock);
sbi->total_ext_tree = 0;
atomic_set(&sbi->total_ext_node, 0);
}
int __init create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}