blob: fd81884b9c7d8b583ed2c63e1e26efa0aca51dea [file] [log] [blame]
/*
* Linux device driver for RTL8187
*
* Copyright 2007 Michael Wu <flamingice@sourmilk.net>
* Copyright 2007 Andrea Merello <andreamrl@tiscali.it>
*
* Based on the r8187 driver, which is:
* Copyright 2005 Andrea Merello <andreamrl@tiscali.it>, et al.
*
* The driver was extended to the RTL8187B in 2008 by:
* Herton Ronaldo Krzesinski <herton@mandriva.com.br>
* Hin-Tak Leung <htl10@users.sourceforge.net>
* Larry Finger <Larry.Finger@lwfinger.net>
*
* Magic delays and register offsets below are taken from the original
* r8187 driver sources. Thanks to Realtek for their support!
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/usb.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/eeprom_93cx6.h>
#include <net/mac80211.h>
#include "rtl8187.h"
#include "rtl8187_rtl8225.h"
MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
MODULE_AUTHOR("Andrea Merello <andreamrl@tiscali.it>");
MODULE_AUTHOR("Herton Ronaldo Krzesinski <herton@mandriva.com.br>");
MODULE_AUTHOR("Hin-Tak Leung <htl10@users.sourceforge.net>");
MODULE_AUTHOR("Larry Finger <Larry.Finger@lwfinger.net>");
MODULE_DESCRIPTION("RTL8187/RTL8187B USB wireless driver");
MODULE_LICENSE("GPL");
static struct usb_device_id rtl8187_table[] __devinitdata = {
/* Asus */
{USB_DEVICE(0x0b05, 0x171d), .driver_info = DEVICE_RTL8187},
/* Belkin */
{USB_DEVICE(0x050d, 0x705e), .driver_info = DEVICE_RTL8187B},
/* Realtek */
{USB_DEVICE(0x0bda, 0x8187), .driver_info = DEVICE_RTL8187},
{USB_DEVICE(0x0bda, 0x8189), .driver_info = DEVICE_RTL8187B},
{USB_DEVICE(0x0bda, 0x8197), .driver_info = DEVICE_RTL8187B},
{USB_DEVICE(0x0bda, 0x8198), .driver_info = DEVICE_RTL8187B},
/* Surecom */
{USB_DEVICE(0x0769, 0x11F2), .driver_info = DEVICE_RTL8187},
/* Logitech */
{USB_DEVICE(0x0789, 0x010C), .driver_info = DEVICE_RTL8187},
/* Netgear */
{USB_DEVICE(0x0846, 0x6100), .driver_info = DEVICE_RTL8187},
{USB_DEVICE(0x0846, 0x6a00), .driver_info = DEVICE_RTL8187},
{USB_DEVICE(0x0846, 0x4260), .driver_info = DEVICE_RTL8187B},
/* HP */
{USB_DEVICE(0x03f0, 0xca02), .driver_info = DEVICE_RTL8187},
/* Sitecom */
{USB_DEVICE(0x0df6, 0x000d), .driver_info = DEVICE_RTL8187},
{USB_DEVICE(0x0df6, 0x0028), .driver_info = DEVICE_RTL8187B},
/* Sphairon Access Systems GmbH */
{USB_DEVICE(0x114B, 0x0150), .driver_info = DEVICE_RTL8187},
/* Dick Smith Electronics */
{USB_DEVICE(0x1371, 0x9401), .driver_info = DEVICE_RTL8187},
/* Abocom */
{USB_DEVICE(0x13d1, 0xabe6), .driver_info = DEVICE_RTL8187},
/* Qcom */
{USB_DEVICE(0x18E8, 0x6232), .driver_info = DEVICE_RTL8187},
/* AirLive */
{USB_DEVICE(0x1b75, 0x8187), .driver_info = DEVICE_RTL8187},
{}
};
MODULE_DEVICE_TABLE(usb, rtl8187_table);
static const struct ieee80211_rate rtl818x_rates[] = {
{ .bitrate = 10, .hw_value = 0, },
{ .bitrate = 20, .hw_value = 1, },
{ .bitrate = 55, .hw_value = 2, },
{ .bitrate = 110, .hw_value = 3, },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static const struct ieee80211_channel rtl818x_channels[] = {
{ .center_freq = 2412 },
{ .center_freq = 2417 },
{ .center_freq = 2422 },
{ .center_freq = 2427 },
{ .center_freq = 2432 },
{ .center_freq = 2437 },
{ .center_freq = 2442 },
{ .center_freq = 2447 },
{ .center_freq = 2452 },
{ .center_freq = 2457 },
{ .center_freq = 2462 },
{ .center_freq = 2467 },
{ .center_freq = 2472 },
{ .center_freq = 2484 },
};
static void rtl8187_iowrite_async_cb(struct urb *urb)
{
kfree(urb->context);
}
static void rtl8187_iowrite_async(struct rtl8187_priv *priv, __le16 addr,
void *data, u16 len)
{
struct usb_ctrlrequest *dr;
struct urb *urb;
struct rtl8187_async_write_data {
u8 data[4];
struct usb_ctrlrequest dr;
} *buf;
int rc;
buf = kmalloc(sizeof(*buf), GFP_ATOMIC);
if (!buf)
return;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
kfree(buf);
return;
}
dr = &buf->dr;
dr->bRequestType = RTL8187_REQT_WRITE;
dr->bRequest = RTL8187_REQ_SET_REG;
dr->wValue = addr;
dr->wIndex = 0;
dr->wLength = cpu_to_le16(len);
memcpy(buf, data, len);
usb_fill_control_urb(urb, priv->udev, usb_sndctrlpipe(priv->udev, 0),
(unsigned char *)dr, buf, len,
rtl8187_iowrite_async_cb, buf);
usb_anchor_urb(urb, &priv->anchored);
rc = usb_submit_urb(urb, GFP_ATOMIC);
if (rc < 0) {
kfree(buf);
usb_unanchor_urb(urb);
}
usb_free_urb(urb);
}
static inline void rtl818x_iowrite32_async(struct rtl8187_priv *priv,
__le32 *addr, u32 val)
{
__le32 buf = cpu_to_le32(val);
rtl8187_iowrite_async(priv, cpu_to_le16((unsigned long)addr),
&buf, sizeof(buf));
}
void rtl8187_write_phy(struct ieee80211_hw *dev, u8 addr, u32 data)
{
struct rtl8187_priv *priv = dev->priv;
data <<= 8;
data |= addr | 0x80;
rtl818x_iowrite8(priv, &priv->map->PHY[3], (data >> 24) & 0xFF);
rtl818x_iowrite8(priv, &priv->map->PHY[2], (data >> 16) & 0xFF);
rtl818x_iowrite8(priv, &priv->map->PHY[1], (data >> 8) & 0xFF);
rtl818x_iowrite8(priv, &priv->map->PHY[0], data & 0xFF);
}
static void rtl8187_tx_cb(struct urb *urb)
{
struct sk_buff *skb = (struct sk_buff *)urb->context;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = info->rate_driver_data[0];
struct rtl8187_priv *priv = hw->priv;
skb_pull(skb, priv->is_rtl8187b ? sizeof(struct rtl8187b_tx_hdr) :
sizeof(struct rtl8187_tx_hdr));
ieee80211_tx_info_clear_status(info);
if (!(urb->status) && !(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
if (priv->is_rtl8187b) {
skb_queue_tail(&priv->b_tx_status.queue, skb);
/* queue is "full", discard last items */
while (skb_queue_len(&priv->b_tx_status.queue) > 5) {
struct sk_buff *old_skb;
dev_dbg(&priv->udev->dev,
"transmit status queue full\n");
old_skb = skb_dequeue(&priv->b_tx_status.queue);
ieee80211_tx_status_irqsafe(hw, old_skb);
}
return;
} else {
info->flags |= IEEE80211_TX_STAT_ACK;
}
}
if (priv->is_rtl8187b)
ieee80211_tx_status_irqsafe(hw, skb);
else {
/* Retry information for the RTI8187 is only available by
* reading a register in the device. We are in interrupt mode
* here, thus queue the skb and finish on a work queue. */
skb_queue_tail(&priv->b_tx_status.queue, skb);
queue_delayed_work(hw->workqueue, &priv->work, 0);
}
}
static int rtl8187_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct rtl8187_priv *priv = dev->priv;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
unsigned int ep;
void *buf;
struct urb *urb;
__le16 rts_dur = 0;
u32 flags;
int rc;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
kfree_skb(skb);
return NETDEV_TX_OK;
}
flags = skb->len;
flags |= RTL818X_TX_DESC_FLAG_NO_ENC;
flags |= ieee80211_get_tx_rate(dev, info)->hw_value << 24;
if (ieee80211_has_morefrags(((struct ieee80211_hdr *)skb->data)->frame_control))
flags |= RTL818X_TX_DESC_FLAG_MOREFRAG;
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
flags |= RTL818X_TX_DESC_FLAG_RTS;
flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
rts_dur = ieee80211_rts_duration(dev, priv->vif,
skb->len, info);
} else if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
flags |= RTL818X_TX_DESC_FLAG_CTS;
flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
}
if (!priv->is_rtl8187b) {
struct rtl8187_tx_hdr *hdr =
(struct rtl8187_tx_hdr *)skb_push(skb, sizeof(*hdr));
hdr->flags = cpu_to_le32(flags);
hdr->len = 0;
hdr->rts_duration = rts_dur;
hdr->retry = cpu_to_le32((info->control.rates[0].count - 1) << 8);
buf = hdr;
ep = 2;
} else {
/* fc needs to be calculated before skb_push() */
unsigned int epmap[4] = { 6, 7, 5, 4 };
struct ieee80211_hdr *tx_hdr =
(struct ieee80211_hdr *)(skb->data);
u16 fc = le16_to_cpu(tx_hdr->frame_control);
struct rtl8187b_tx_hdr *hdr =
(struct rtl8187b_tx_hdr *)skb_push(skb, sizeof(*hdr));
struct ieee80211_rate *txrate =
ieee80211_get_tx_rate(dev, info);
memset(hdr, 0, sizeof(*hdr));
hdr->flags = cpu_to_le32(flags);
hdr->rts_duration = rts_dur;
hdr->retry = cpu_to_le32((info->control.rates[0].count - 1) << 8);
hdr->tx_duration =
ieee80211_generic_frame_duration(dev, priv->vif,
skb->len, txrate);
buf = hdr;
if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
ep = 12;
else
ep = epmap[skb_get_queue_mapping(skb)];
}
info->rate_driver_data[0] = dev;
info->rate_driver_data[1] = urb;
usb_fill_bulk_urb(urb, priv->udev, usb_sndbulkpipe(priv->udev, ep),
buf, skb->len, rtl8187_tx_cb, skb);
urb->transfer_flags |= URB_ZERO_PACKET;
usb_anchor_urb(urb, &priv->anchored);
rc = usb_submit_urb(urb, GFP_ATOMIC);
if (rc < 0) {
usb_unanchor_urb(urb);
kfree_skb(skb);
}
usb_free_urb(urb);
return NETDEV_TX_OK;
}
static void rtl8187_rx_cb(struct urb *urb)
{
struct sk_buff *skb = (struct sk_buff *)urb->context;
struct rtl8187_rx_info *info = (struct rtl8187_rx_info *)skb->cb;
struct ieee80211_hw *dev = info->dev;
struct rtl8187_priv *priv = dev->priv;
struct ieee80211_rx_status rx_status = { 0 };
int rate, signal;
u32 flags;
u32 quality;
unsigned long f;
spin_lock_irqsave(&priv->rx_queue.lock, f);
if (skb->next)
__skb_unlink(skb, &priv->rx_queue);
else {
spin_unlock_irqrestore(&priv->rx_queue.lock, f);
return;
}
spin_unlock_irqrestore(&priv->rx_queue.lock, f);
skb_put(skb, urb->actual_length);
if (unlikely(urb->status)) {
dev_kfree_skb_irq(skb);
return;
}
if (!priv->is_rtl8187b) {
struct rtl8187_rx_hdr *hdr =
(typeof(hdr))(skb_tail_pointer(skb) - sizeof(*hdr));
flags = le32_to_cpu(hdr->flags);
/* As with the RTL8187B below, the AGC is used to calculate
* signal strength and quality. In this case, the scaling
* constants are derived from the output of p54usb.
*/
quality = 130 - ((41 * hdr->agc) >> 6);
signal = -4 - ((27 * hdr->agc) >> 6);
rx_status.antenna = (hdr->signal >> 7) & 1;
rx_status.mactime = le64_to_cpu(hdr->mac_time);
} else {
struct rtl8187b_rx_hdr *hdr =
(typeof(hdr))(skb_tail_pointer(skb) - sizeof(*hdr));
/* The Realtek datasheet for the RTL8187B shows that the RX
* header contains the following quantities: signal quality,
* RSSI, AGC, the received power in dB, and the measured SNR.
* In testing, none of these quantities show qualitative
* agreement with AP signal strength, except for the AGC,
* which is inversely proportional to the strength of the
* signal. In the following, the quality and signal strength
* are derived from the AGC. The arbitrary scaling constants
* are chosen to make the results close to the values obtained
* for a BCM4312 using b43 as the driver. The noise is ignored
* for now.
*/
flags = le32_to_cpu(hdr->flags);
quality = 170 - hdr->agc;
signal = 14 - hdr->agc / 2;
rx_status.antenna = (hdr->rssi >> 7) & 1;
rx_status.mactime = le64_to_cpu(hdr->mac_time);
}
if (quality > 100)
quality = 100;
rx_status.qual = quality;
priv->quality = quality;
rx_status.signal = signal;
priv->signal = signal;
rate = (flags >> 20) & 0xF;
skb_trim(skb, flags & 0x0FFF);
rx_status.rate_idx = rate;
rx_status.freq = dev->conf.channel->center_freq;
rx_status.band = dev->conf.channel->band;
rx_status.flag |= RX_FLAG_TSFT;
if (flags & RTL818X_RX_DESC_FLAG_CRC32_ERR)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
ieee80211_rx_irqsafe(dev, skb, &rx_status);
skb = dev_alloc_skb(RTL8187_MAX_RX);
if (unlikely(!skb)) {
/* TODO check rx queue length and refill *somewhere* */
return;
}
info = (struct rtl8187_rx_info *)skb->cb;
info->urb = urb;
info->dev = dev;
urb->transfer_buffer = skb_tail_pointer(skb);
urb->context = skb;
skb_queue_tail(&priv->rx_queue, skb);
usb_anchor_urb(urb, &priv->anchored);
if (usb_submit_urb(urb, GFP_ATOMIC)) {
usb_unanchor_urb(urb);
skb_unlink(skb, &priv->rx_queue);
dev_kfree_skb_irq(skb);
}
}
static int rtl8187_init_urbs(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
struct urb *entry = NULL;
struct sk_buff *skb;
struct rtl8187_rx_info *info;
int ret = 0;
while (skb_queue_len(&priv->rx_queue) < 16) {
skb = __dev_alloc_skb(RTL8187_MAX_RX, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err;
}
entry = usb_alloc_urb(0, GFP_KERNEL);
if (!entry) {
ret = -ENOMEM;
goto err;
}
usb_fill_bulk_urb(entry, priv->udev,
usb_rcvbulkpipe(priv->udev,
priv->is_rtl8187b ? 3 : 1),
skb_tail_pointer(skb),
RTL8187_MAX_RX, rtl8187_rx_cb, skb);
info = (struct rtl8187_rx_info *)skb->cb;
info->urb = entry;
info->dev = dev;
skb_queue_tail(&priv->rx_queue, skb);
usb_anchor_urb(entry, &priv->anchored);
ret = usb_submit_urb(entry, GFP_KERNEL);
if (ret) {
skb_unlink(skb, &priv->rx_queue);
usb_unanchor_urb(entry);
goto err;
}
usb_free_urb(entry);
}
return ret;
err:
usb_free_urb(entry);
kfree_skb(skb);
usb_kill_anchored_urbs(&priv->anchored);
return ret;
}
static void rtl8187b_status_cb(struct urb *urb)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)urb->context;
struct rtl8187_priv *priv = hw->priv;
u64 val;
unsigned int cmd_type;
if (unlikely(urb->status))
return;
/*
* Read from status buffer:
*
* bits [30:31] = cmd type:
* - 0 indicates tx beacon interrupt
* - 1 indicates tx close descriptor
*
* In the case of tx beacon interrupt:
* [0:9] = Last Beacon CW
* [10:29] = reserved
* [30:31] = 00b
* [32:63] = Last Beacon TSF
*
* If it's tx close descriptor:
* [0:7] = Packet Retry Count
* [8:14] = RTS Retry Count
* [15] = TOK
* [16:27] = Sequence No
* [28] = LS
* [29] = FS
* [30:31] = 01b
* [32:47] = unused (reserved?)
* [48:63] = MAC Used Time
*/
val = le64_to_cpu(priv->b_tx_status.buf);
cmd_type = (val >> 30) & 0x3;
if (cmd_type == 1) {
unsigned int pkt_rc, seq_no;
bool tok;
struct sk_buff *skb;
struct ieee80211_hdr *ieee80211hdr;
unsigned long flags;
pkt_rc = val & 0xFF;
tok = val & (1 << 15);
seq_no = (val >> 16) & 0xFFF;
spin_lock_irqsave(&priv->b_tx_status.queue.lock, flags);
skb_queue_reverse_walk(&priv->b_tx_status.queue, skb) {
ieee80211hdr = (struct ieee80211_hdr *)skb->data;
/*
* While testing, it was discovered that the seq_no
* doesn't actually contains the sequence number.
* Instead of returning just the 12 bits of sequence
* number, hardware is returning entire sequence control
* (fragment number plus sequence number) in a 12 bit
* only field overflowing after some time. As a
* workaround, just consider the lower bits, and expect
* it's unlikely we wrongly ack some sent data
*/
if ((le16_to_cpu(ieee80211hdr->seq_ctrl)
& 0xFFF) == seq_no)
break;
}
if (skb != (struct sk_buff *) &priv->b_tx_status.queue) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
__skb_unlink(skb, &priv->b_tx_status.queue);
if (tok)
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.rates[0].count = pkt_rc + 1;
ieee80211_tx_status_irqsafe(hw, skb);
}
spin_unlock_irqrestore(&priv->b_tx_status.queue.lock, flags);
}
usb_anchor_urb(urb, &priv->anchored);
if (usb_submit_urb(urb, GFP_ATOMIC))
usb_unanchor_urb(urb);
}
static int rtl8187b_init_status_urb(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
struct urb *entry;
int ret = 0;
entry = usb_alloc_urb(0, GFP_KERNEL);
if (!entry)
return -ENOMEM;
usb_fill_bulk_urb(entry, priv->udev, usb_rcvbulkpipe(priv->udev, 9),
&priv->b_tx_status.buf, sizeof(priv->b_tx_status.buf),
rtl8187b_status_cb, dev);
usb_anchor_urb(entry, &priv->anchored);
ret = usb_submit_urb(entry, GFP_KERNEL);
if (ret)
usb_unanchor_urb(entry);
usb_free_urb(entry);
return ret;
}
static int rtl8187_cmd_reset(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
u8 reg;
int i;
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= (1 << 1);
reg |= RTL818X_CMD_RESET;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
i = 10;
do {
msleep(2);
if (!(rtl818x_ioread8(priv, &priv->map->CMD) &
RTL818X_CMD_RESET))
break;
} while (--i);
if (!i) {
printk(KERN_ERR "%s: Reset timeout!\n", wiphy_name(dev->wiphy));
return -ETIMEDOUT;
}
/* reload registers from eeprom */
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_LOAD);
i = 10;
do {
msleep(4);
if (!(rtl818x_ioread8(priv, &priv->map->EEPROM_CMD) &
RTL818X_EEPROM_CMD_CONFIG))
break;
} while (--i);
if (!i) {
printk(KERN_ERR "%s: eeprom reset timeout!\n",
wiphy_name(dev->wiphy));
return -ETIMEDOUT;
}
return 0;
}
static int rtl8187_init_hw(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
u8 reg;
int res;
/* reset */
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg |
RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM,
RTL8187_RTL8225_ANAPARAM_ON);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM2,
RTL8187_RTL8225_ANAPARAM2_ON);
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg &
~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0);
msleep(200);
rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x10);
rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x11);
rtl818x_iowrite8(priv, (u8 *)0xFE18, 0x00);
msleep(200);
res = rtl8187_cmd_reset(dev);
if (res)
return res;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM,
RTL8187_RTL8225_ANAPARAM_ON);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM2,
RTL8187_RTL8225_ANAPARAM2_ON);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
/* setup card */
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0);
rtl818x_iowrite8(priv, &priv->map->GPIO, 0);
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, (4 << 8));
rtl818x_iowrite8(priv, &priv->map->GPIO, 1);
rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, 0);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
rtl818x_iowrite16(priv, (__le16 *)0xFFF4, 0xFFFF);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG1);
reg &= 0x3F;
reg |= 0x80;
rtl818x_iowrite8(priv, &priv->map->CONFIG1, reg);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0);
rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0);
rtl818x_iowrite8(priv, &priv->map->RATE_FALLBACK, 0);
// TODO: set RESP_RATE and BRSR properly
rtl818x_iowrite8(priv, &priv->map->RESP_RATE, (8 << 4) | 0);
rtl818x_iowrite16(priv, &priv->map->BRSR, 0x01F3);
/* host_usb_init */
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0);
rtl818x_iowrite8(priv, &priv->map->GPIO, 0);
reg = rtl818x_ioread8(priv, (u8 *)0xFE53);
rtl818x_iowrite8(priv, (u8 *)0xFE53, reg | (1 << 7));
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, (4 << 8));
rtl818x_iowrite8(priv, &priv->map->GPIO, 0x20);
rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, 0);
rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x80);
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x80);
rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x80);
msleep(100);
rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x000a8008);
rtl818x_iowrite16(priv, &priv->map->BRSR, 0xFFFF);
rtl818x_iowrite32(priv, &priv->map->RF_PARA, 0x00100044);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
rtl818x_iowrite8(priv, &priv->map->CONFIG3, 0x44);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1FF7);
msleep(100);
priv->rf->init(dev);
rtl818x_iowrite16(priv, &priv->map->BRSR, 0x01F3);
reg = rtl818x_ioread8(priv, &priv->map->PGSELECT) & ~1;
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1);
rtl818x_iowrite16(priv, (__le16 *)0xFFFE, 0x10);
rtl818x_iowrite8(priv, &priv->map->TALLY_SEL, 0x80);
rtl818x_iowrite8(priv, (u8 *)0xFFFF, 0x60);
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg);
return 0;
}
static const u8 rtl8187b_reg_table[][3] = {
{0xF0, 0x32, 0}, {0xF1, 0x32, 0}, {0xF2, 0x00, 0}, {0xF3, 0x00, 0},
{0xF4, 0x32, 0}, {0xF5, 0x43, 0}, {0xF6, 0x00, 0}, {0xF7, 0x00, 0},
{0xF8, 0x46, 0}, {0xF9, 0xA4, 0}, {0xFA, 0x00, 0}, {0xFB, 0x00, 0},
{0xFC, 0x96, 0}, {0xFD, 0xA4, 0}, {0xFE, 0x00, 0}, {0xFF, 0x00, 0},
{0x58, 0x4B, 1}, {0x59, 0x00, 1}, {0x5A, 0x4B, 1}, {0x5B, 0x00, 1},
{0x60, 0x4B, 1}, {0x61, 0x09, 1}, {0x62, 0x4B, 1}, {0x63, 0x09, 1},
{0xCE, 0x0F, 1}, {0xCF, 0x00, 1}, {0xE0, 0xFF, 1}, {0xE1, 0x0F, 1},
{0xE2, 0x00, 1}, {0xF0, 0x4E, 1}, {0xF1, 0x01, 1}, {0xF2, 0x02, 1},
{0xF3, 0x03, 1}, {0xF4, 0x04, 1}, {0xF5, 0x05, 1}, {0xF6, 0x06, 1},
{0xF7, 0x07, 1}, {0xF8, 0x08, 1},
{0x4E, 0x00, 2}, {0x0C, 0x04, 2}, {0x21, 0x61, 2}, {0x22, 0x68, 2},
{0x23, 0x6F, 2}, {0x24, 0x76, 2}, {0x25, 0x7D, 2}, {0x26, 0x84, 2},
{0x27, 0x8D, 2}, {0x4D, 0x08, 2}, {0x50, 0x05, 2}, {0x51, 0xF5, 2},
{0x52, 0x04, 2}, {0x53, 0xA0, 2}, {0x54, 0x1F, 2}, {0x55, 0x23, 2},
{0x56, 0x45, 2}, {0x57, 0x67, 2}, {0x58, 0x08, 2}, {0x59, 0x08, 2},
{0x5A, 0x08, 2}, {0x5B, 0x08, 2}, {0x60, 0x08, 2}, {0x61, 0x08, 2},
{0x62, 0x08, 2}, {0x63, 0x08, 2}, {0x64, 0xCF, 2}, {0x72, 0x56, 2},
{0x73, 0x9A, 2},
{0x34, 0xF0, 0}, {0x35, 0x0F, 0}, {0x5B, 0x40, 0}, {0x84, 0x88, 0},
{0x85, 0x24, 0}, {0x88, 0x54, 0}, {0x8B, 0xB8, 0}, {0x8C, 0x07, 0},
{0x8D, 0x00, 0}, {0x94, 0x1B, 0}, {0x95, 0x12, 0}, {0x96, 0x00, 0},
{0x97, 0x06, 0}, {0x9D, 0x1A, 0}, {0x9F, 0x10, 0}, {0xB4, 0x22, 0},
{0xBE, 0x80, 0}, {0xDB, 0x00, 0}, {0xEE, 0x00, 0}, {0x91, 0x03, 0},
{0x4C, 0x00, 2}, {0x9F, 0x00, 3}, {0x8C, 0x01, 0}, {0x8D, 0x10, 0},
{0x8E, 0x08, 0}, {0x8F, 0x00, 0}
};
static int rtl8187b_init_hw(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
int res, i;
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
reg |= RTL818X_CONFIG3_ANAPARAM_WRITE | RTL818X_CONFIG3_GNT_SELECT;
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM2,
RTL8187B_RTL8225_ANAPARAM2_ON);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM,
RTL8187B_RTL8225_ANAPARAM_ON);
rtl818x_iowrite8(priv, &priv->map->ANAPARAM3,
RTL8187B_RTL8225_ANAPARAM3_ON);
rtl818x_iowrite8(priv, (u8 *)0xFF61, 0x10);
reg = rtl818x_ioread8(priv, (u8 *)0xFF62);
rtl818x_iowrite8(priv, (u8 *)0xFF62, reg & ~(1 << 5));
rtl818x_iowrite8(priv, (u8 *)0xFF62, reg | (1 << 5));
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
reg &= ~RTL818X_CONFIG3_ANAPARAM_WRITE;
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
res = rtl8187_cmd_reset(dev);
if (res)
return res;
rtl818x_iowrite16(priv, (__le16 *)0xFF2D, 0x0FFF);
reg = rtl818x_ioread8(priv, &priv->map->CW_CONF);
reg |= RTL818X_CW_CONF_PERPACKET_RETRY_SHIFT;
rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL);
reg |= RTL818X_TX_AGC_CTL_PERPACKET_GAIN_SHIFT |
RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL_SHIFT;
rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFFE0, 0x0FFF, 1);
rtl818x_iowrite16(priv, &priv->map->BEACON_INTERVAL, 100);
rtl818x_iowrite16(priv, &priv->map->ATIM_WND, 2);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFFD4, 0xFFFF, 1);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG1);
rtl818x_iowrite8(priv, &priv->map->CONFIG1, (reg & 0x3F) | 0x80);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0);
for (i = 0; i < ARRAY_SIZE(rtl8187b_reg_table); i++) {
rtl818x_iowrite8_idx(priv,
(u8 *)(uintptr_t)
(rtl8187b_reg_table[i][0] | 0xFF00),
rtl8187b_reg_table[i][1],
rtl8187b_reg_table[i][2]);
}
rtl818x_iowrite16(priv, &priv->map->TID_AC_MAP, 0xFA50);
rtl818x_iowrite16(priv, &priv->map->INT_MIG, 0);
rtl818x_iowrite32_idx(priv, (__le32 *)0xFFF0, 0, 1);
rtl818x_iowrite32_idx(priv, (__le32 *)0xFFF4, 0, 1);
rtl818x_iowrite8_idx(priv, (u8 *)0xFFF8, 0, 1);
rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x00004001);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF72, 0x569A, 2);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
reg |= RTL818X_CONFIG3_ANAPARAM_WRITE;
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x0480);
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x2488);
rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1FFF);
msleep(100);
priv->rf->init(dev);
reg = RTL818X_CMD_TX_ENABLE | RTL818X_CMD_RX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF);
rtl818x_iowrite8(priv, (u8 *)0xFE41, 0xF4);
rtl818x_iowrite8(priv, (u8 *)0xFE40, 0x00);
rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x00);
rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x01);
rtl818x_iowrite8(priv, (u8 *)0xFE40, 0x0F);
rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x00);
rtl818x_iowrite8(priv, (u8 *)0xFE42, 0x01);
reg = rtl818x_ioread8(priv, (u8 *)0xFFDB);
rtl818x_iowrite8(priv, (u8 *)0xFFDB, reg | (1 << 2));
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF72, 0x59FA, 3);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF74, 0x59D2, 3);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF76, 0x59D2, 3);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF78, 0x19FA, 3);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF7A, 0x19FA, 3);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFF7C, 0x00D0, 3);
rtl818x_iowrite8(priv, (u8 *)0xFF61, 0);
rtl818x_iowrite8_idx(priv, (u8 *)0xFF80, 0x0F, 1);
rtl818x_iowrite8_idx(priv, (u8 *)0xFF83, 0x03, 1);
rtl818x_iowrite8(priv, (u8 *)0xFFDA, 0x10);
rtl818x_iowrite8_idx(priv, (u8 *)0xFF4D, 0x08, 2);
rtl818x_iowrite32(priv, &priv->map->HSSI_PARA, 0x0600321B);
rtl818x_iowrite16_idx(priv, (__le16 *)0xFFEC, 0x0800, 1);
priv->slot_time = 0x9;
priv->aifsn[0] = 2; /* AIFSN[AC_VO] */
priv->aifsn[1] = 2; /* AIFSN[AC_VI] */
priv->aifsn[2] = 7; /* AIFSN[AC_BK] */
priv->aifsn[3] = 3; /* AIFSN[AC_BE] */
rtl818x_iowrite8(priv, &priv->map->ACM_CONTROL, 0);
return 0;
}
static void rtl8187_work(struct work_struct *work)
{
/* The RTL8187 returns the retry count through register 0xFFFA. In
* addition, it appears to be a cumulative retry count, not the
* value for the current TX packet. When multiple TX entries are
* queued, the retry count will be valid for the last one in the queue.
* The "error" should not matter for purposes of rate setting. */
struct rtl8187_priv *priv = container_of(work, struct rtl8187_priv,
work.work);
struct ieee80211_tx_info *info;
struct ieee80211_hw *dev = priv->dev;
static u16 retry;
u16 tmp;
mutex_lock(&priv->conf_mutex);
tmp = rtl818x_ioread16(priv, (__le16 *)0xFFFA);
while (skb_queue_len(&priv->b_tx_status.queue) > 0) {
struct sk_buff *old_skb;
old_skb = skb_dequeue(&priv->b_tx_status.queue);
info = IEEE80211_SKB_CB(old_skb);
info->status.rates[0].count = tmp - retry + 1;
ieee80211_tx_status_irqsafe(dev, old_skb);
}
retry = tmp;
mutex_unlock(&priv->conf_mutex);
}
static int rtl8187_start(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
u32 reg;
int ret;
ret = (!priv->is_rtl8187b) ? rtl8187_init_hw(dev) :
rtl8187b_init_hw(dev);
if (ret)
return ret;
mutex_lock(&priv->conf_mutex);
init_usb_anchor(&priv->anchored);
priv->dev = dev;
if (priv->is_rtl8187b) {
reg = RTL818X_RX_CONF_MGMT |
RTL818X_RX_CONF_DATA |
RTL818X_RX_CONF_BROADCAST |
RTL818X_RX_CONF_NICMAC |
RTL818X_RX_CONF_BSSID |
(7 << 13 /* RX FIFO threshold NONE */) |
(7 << 10 /* MAX RX DMA */) |
RTL818X_RX_CONF_RX_AUTORESETPHY |
RTL818X_RX_CONF_ONLYERLPKT |
RTL818X_RX_CONF_MULTICAST;
priv->rx_conf = reg;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg);
rtl818x_iowrite32(priv, &priv->map->TX_CONF,
RTL818X_TX_CONF_HW_SEQNUM |
RTL818X_TX_CONF_DISREQQSIZE |
(7 << 8 /* short retry limit */) |
(7 << 0 /* long retry limit */) |
(7 << 21 /* MAX TX DMA */));
rtl8187_init_urbs(dev);
rtl8187b_init_status_urb(dev);
mutex_unlock(&priv->conf_mutex);
return 0;
}
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF);
rtl818x_iowrite32(priv, &priv->map->MAR[0], ~0);
rtl818x_iowrite32(priv, &priv->map->MAR[1], ~0);
rtl8187_init_urbs(dev);
reg = RTL818X_RX_CONF_ONLYERLPKT |
RTL818X_RX_CONF_RX_AUTORESETPHY |
RTL818X_RX_CONF_BSSID |
RTL818X_RX_CONF_MGMT |
RTL818X_RX_CONF_DATA |
(7 << 13 /* RX FIFO threshold NONE */) |
(7 << 10 /* MAX RX DMA */) |
RTL818X_RX_CONF_BROADCAST |
RTL818X_RX_CONF_NICMAC;
priv->rx_conf = reg;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->CW_CONF);
reg &= ~RTL818X_CW_CONF_PERPACKET_CW_SHIFT;
reg |= RTL818X_CW_CONF_PERPACKET_RETRY_SHIFT;
rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL);
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_GAIN_SHIFT;
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL_SHIFT;
reg &= ~RTL818X_TX_AGC_CTL_FEEDBACK_ANT;
rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg);
reg = RTL818X_TX_CONF_CW_MIN |
(7 << 21 /* MAX TX DMA */) |
RTL818X_TX_CONF_NO_ICV;
rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg |= RTL818X_CMD_TX_ENABLE;
reg |= RTL818X_CMD_RX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
INIT_DELAYED_WORK(&priv->work, rtl8187_work);
mutex_unlock(&priv->conf_mutex);
return 0;
}
static void rtl8187_stop(struct ieee80211_hw *dev)
{
struct rtl8187_priv *priv = dev->priv;
struct sk_buff *skb;
u32 reg;
mutex_lock(&priv->conf_mutex);
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= ~RTL818X_CMD_TX_ENABLE;
reg &= ~RTL818X_CMD_RX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
priv->rf->stop(dev);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG4);
rtl818x_iowrite8(priv, &priv->map->CONFIG4, reg | RTL818X_CONFIG4_VCOOFF);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
while ((skb = skb_dequeue(&priv->b_tx_status.queue)))
dev_kfree_skb_any(skb);
usb_kill_anchored_urbs(&priv->anchored);
if (!priv->is_rtl8187b)
cancel_delayed_work_sync(&priv->work);
mutex_unlock(&priv->conf_mutex);
}
static int rtl8187_add_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct rtl8187_priv *priv = dev->priv;
int i;
int ret = -EOPNOTSUPP;
mutex_lock(&priv->conf_mutex);
if (priv->mode != NL80211_IFTYPE_MONITOR)
goto exit;
switch (conf->type) {
case NL80211_IFTYPE_STATION:
priv->mode = conf->type;
break;
default:
goto exit;
}
ret = 0;
priv->vif = conf->vif;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
for (i = 0; i < ETH_ALEN; i++)
rtl818x_iowrite8(priv, &priv->map->MAC[i],
((u8 *)conf->mac_addr)[i]);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
exit:
mutex_unlock(&priv->conf_mutex);
return ret;
}
static void rtl8187_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct rtl8187_priv *priv = dev->priv;
mutex_lock(&priv->conf_mutex);
priv->mode = NL80211_IFTYPE_MONITOR;
priv->vif = NULL;
mutex_unlock(&priv->conf_mutex);
}
static int rtl8187_config(struct ieee80211_hw *dev, u32 changed)
{
struct rtl8187_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
u32 reg;
mutex_lock(&priv->conf_mutex);
reg = rtl818x_ioread32(priv, &priv->map->TX_CONF);
/* Enable TX loopback on MAC level to avoid TX during channel
* changes, as this has be seen to causes problems and the
* card will stop work until next reset
*/
rtl818x_iowrite32(priv, &priv->map->TX_CONF,
reg | RTL818X_TX_CONF_LOOPBACK_MAC);
priv->rf->set_chan(dev, conf);
msleep(10);
rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg);
rtl818x_iowrite16(priv, &priv->map->ATIM_WND, 2);
rtl818x_iowrite16(priv, &priv->map->ATIMTR_INTERVAL, 100);
rtl818x_iowrite16(priv, &priv->map->BEACON_INTERVAL, 100);
rtl818x_iowrite16(priv, &priv->map->BEACON_INTERVAL_TIME, 100);
mutex_unlock(&priv->conf_mutex);
return 0;
}
static int rtl8187_config_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct rtl8187_priv *priv = dev->priv;
int i;
u8 reg;
mutex_lock(&priv->conf_mutex);
for (i = 0; i < ETH_ALEN; i++)
rtl818x_iowrite8(priv, &priv->map->BSSID[i], conf->bssid[i]);
if (is_valid_ether_addr(conf->bssid)) {
reg = RTL818X_MSR_INFRA;
if (priv->is_rtl8187b)
reg |= RTL818X_MSR_ENEDCA;
rtl818x_iowrite8(priv, &priv->map->MSR, reg);
} else {
reg = RTL818X_MSR_NO_LINK;
rtl818x_iowrite8(priv, &priv->map->MSR, reg);
}
mutex_unlock(&priv->conf_mutex);
return 0;
}
/*
* With 8187B, AC_*_PARAM clashes with FEMR definition in struct rtl818x_csr for
* example. Thus we have to use raw values for AC_*_PARAM register addresses.
*/
static __le32 *rtl8187b_ac_addr[4] = {
(__le32 *) 0xFFF0, /* AC_VO */
(__le32 *) 0xFFF4, /* AC_VI */
(__le32 *) 0xFFFC, /* AC_BK */
(__le32 *) 0xFFF8, /* AC_BE */
};
#define SIFS_TIME 0xa
static void rtl8187_conf_erp(struct rtl8187_priv *priv, bool use_short_slot,
bool use_short_preamble)
{
if (priv->is_rtl8187b) {
u8 difs, eifs;
u16 ack_timeout;
int queue;
if (use_short_slot) {
priv->slot_time = 0x9;
difs = 0x1c;
eifs = 0x53;
} else {
priv->slot_time = 0x14;
difs = 0x32;
eifs = 0x5b;
}
rtl818x_iowrite8(priv, &priv->map->SIFS, 0x22);
rtl818x_iowrite8(priv, &priv->map->SLOT, priv->slot_time);
rtl818x_iowrite8(priv, &priv->map->DIFS, difs);
/*
* BRSR+1 on 8187B is in fact EIFS register
* Value in units of 4 us
*/
rtl818x_iowrite8(priv, (u8 *)&priv->map->BRSR + 1, eifs);
/*
* For 8187B, CARRIER_SENSE_COUNTER is in fact ack timeout
* register. In units of 4 us like eifs register
* ack_timeout = ack duration + plcp + difs + preamble
*/
ack_timeout = 112 + 48 + difs;
if (use_short_preamble)
ack_timeout += 72;
else
ack_timeout += 144;
rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER,
DIV_ROUND_UP(ack_timeout, 4));
for (queue = 0; queue < 4; queue++)
rtl818x_iowrite8(priv, (u8 *) rtl8187b_ac_addr[queue],
priv->aifsn[queue] * priv->slot_time +
SIFS_TIME);
} else {
rtl818x_iowrite8(priv, &priv->map->SIFS, 0x22);
if (use_short_slot) {
rtl818x_iowrite8(priv, &priv->map->SLOT, 0x9);
rtl818x_iowrite8(priv, &priv->map->DIFS, 0x14);
rtl818x_iowrite8(priv, &priv->map->EIFS, 91 - 0x14);
} else {
rtl818x_iowrite8(priv, &priv->map->SLOT, 0x14);
rtl818x_iowrite8(priv, &priv->map->DIFS, 0x24);
rtl818x_iowrite8(priv, &priv->map->EIFS, 91 - 0x24);
}
}
}
static void rtl8187_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct rtl8187_priv *priv = dev->priv;
if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE))
rtl8187_conf_erp(priv, info->use_short_slot,
info->use_short_preamble);
}
static void rtl8187_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_addr_list *mclist)
{
struct rtl8187_priv *priv = dev->priv;
if (changed_flags & FIF_FCSFAIL)
priv->rx_conf ^= RTL818X_RX_CONF_FCS;
if (changed_flags & FIF_CONTROL)
priv->rx_conf ^= RTL818X_RX_CONF_CTRL;
if (changed_flags & FIF_OTHER_BSS)
priv->rx_conf ^= RTL818X_RX_CONF_MONITOR;
if (*total_flags & FIF_ALLMULTI || mc_count > 0)
priv->rx_conf |= RTL818X_RX_CONF_MULTICAST;
else
priv->rx_conf &= ~RTL818X_RX_CONF_MULTICAST;
*total_flags = 0;
if (priv->rx_conf & RTL818X_RX_CONF_FCS)
*total_flags |= FIF_FCSFAIL;
if (priv->rx_conf & RTL818X_RX_CONF_CTRL)
*total_flags |= FIF_CONTROL;
if (priv->rx_conf & RTL818X_RX_CONF_MONITOR)
*total_flags |= FIF_OTHER_BSS;
if (priv->rx_conf & RTL818X_RX_CONF_MULTICAST)
*total_flags |= FIF_ALLMULTI;
rtl818x_iowrite32_async(priv, &priv->map->RX_CONF, priv->rx_conf);
}
static int rtl8187_conf_tx(struct ieee80211_hw *dev, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct rtl8187_priv *priv = dev->priv;
u8 cw_min, cw_max;
if (queue > 3)
return -EINVAL;
cw_min = fls(params->cw_min);
cw_max = fls(params->cw_max);
if (priv->is_rtl8187b) {
priv->aifsn[queue] = params->aifs;
/*
* This is the structure of AC_*_PARAM registers in 8187B:
* - TXOP limit field, bit offset = 16
* - ECWmax, bit offset = 12
* - ECWmin, bit offset = 8
* - AIFS, bit offset = 0
*/
rtl818x_iowrite32(priv, rtl8187b_ac_addr[queue],
(params->txop << 16) | (cw_max << 12) |
(cw_min << 8) | (params->aifs *
priv->slot_time + SIFS_TIME));
} else {
if (queue != 0)
return -EINVAL;
rtl818x_iowrite8(priv, &priv->map->CW_VAL,
cw_min | (cw_max << 4));
}
return 0;
}
static const struct ieee80211_ops rtl8187_ops = {
.tx = rtl8187_tx,
.start = rtl8187_start,
.stop = rtl8187_stop,
.add_interface = rtl8187_add_interface,
.remove_interface = rtl8187_remove_interface,
.config = rtl8187_config,
.config_interface = rtl8187_config_interface,
.bss_info_changed = rtl8187_bss_info_changed,
.configure_filter = rtl8187_configure_filter,
.conf_tx = rtl8187_conf_tx
};
static void rtl8187_eeprom_register_read(struct eeprom_93cx6 *eeprom)
{
struct ieee80211_hw *dev = eeprom->data;
struct rtl8187_priv *priv = dev->priv;
u8 reg = rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
eeprom->reg_data_in = reg & RTL818X_EEPROM_CMD_WRITE;
eeprom->reg_data_out = reg & RTL818X_EEPROM_CMD_READ;
eeprom->reg_data_clock = reg & RTL818X_EEPROM_CMD_CK;
eeprom->reg_chip_select = reg & RTL818X_EEPROM_CMD_CS;
}
static void rtl8187_eeprom_register_write(struct eeprom_93cx6 *eeprom)
{
struct ieee80211_hw *dev = eeprom->data;
struct rtl8187_priv *priv = dev->priv;
u8 reg = RTL818X_EEPROM_CMD_PROGRAM;
if (eeprom->reg_data_in)
reg |= RTL818X_EEPROM_CMD_WRITE;
if (eeprom->reg_data_out)
reg |= RTL818X_EEPROM_CMD_READ;
if (eeprom->reg_data_clock)
reg |= RTL818X_EEPROM_CMD_CK;
if (eeprom->reg_chip_select)
reg |= RTL818X_EEPROM_CMD_CS;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, reg);
udelay(10);
}
static int __devinit rtl8187_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct ieee80211_hw *dev;
struct rtl8187_priv *priv;
struct eeprom_93cx6 eeprom;
struct ieee80211_channel *channel;
const char *chip_name;
u16 txpwr, reg;
int err, i;
dev = ieee80211_alloc_hw(sizeof(*priv), &rtl8187_ops);
if (!dev) {
printk(KERN_ERR "rtl8187: ieee80211 alloc failed\n");
return -ENOMEM;
}
priv = dev->priv;
priv->is_rtl8187b = (id->driver_info == DEVICE_RTL8187B);
SET_IEEE80211_DEV(dev, &intf->dev);
usb_set_intfdata(intf, dev);
priv->udev = udev;
usb_get_dev(udev);
skb_queue_head_init(&priv->rx_queue);
BUILD_BUG_ON(sizeof(priv->channels) != sizeof(rtl818x_channels));
BUILD_BUG_ON(sizeof(priv->rates) != sizeof(rtl818x_rates));
memcpy(priv->channels, rtl818x_channels, sizeof(rtl818x_channels));
memcpy(priv->rates, rtl818x_rates, sizeof(rtl818x_rates));
priv->map = (struct rtl818x_csr *)0xFF00;
priv->band.band = IEEE80211_BAND_2GHZ;
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(rtl818x_channels);
priv->band.bitrates = priv->rates;
priv->band.n_bitrates = ARRAY_SIZE(rtl818x_rates);
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
priv->mode = NL80211_IFTYPE_MONITOR;
dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_RX_INCLUDES_FCS;
eeprom.data = dev;
eeprom.register_read = rtl8187_eeprom_register_read;
eeprom.register_write = rtl8187_eeprom_register_write;
if (rtl818x_ioread32(priv, &priv->map->RX_CONF) & (1 << 6))
eeprom.width = PCI_EEPROM_WIDTH_93C66;
else
eeprom.width = PCI_EEPROM_WIDTH_93C46;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
udelay(10);
eeprom_93cx6_multiread(&eeprom, RTL8187_EEPROM_MAC_ADDR,
(__le16 __force *)dev->wiphy->perm_addr, 3);
if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
printk(KERN_WARNING "rtl8187: Invalid hwaddr! Using randomly "
"generated MAC address\n");
random_ether_addr(dev->wiphy->perm_addr);
}
channel = priv->channels;
for (i = 0; i < 3; i++) {
eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_1 + i,
&txpwr);
(*channel++).hw_value = txpwr & 0xFF;
(*channel++).hw_value = txpwr >> 8;
}
for (i = 0; i < 2; i++) {
eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_4 + i,
&txpwr);
(*channel++).hw_value = txpwr & 0xFF;
(*channel++).hw_value = txpwr >> 8;
}
eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_BASE,
&priv->txpwr_base);
reg = rtl818x_ioread8(priv, &priv->map->PGSELECT) & ~1;
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1);
/* 0 means asic B-cut, we should use SW 3 wire
* bit-by-bit banging for radio. 1 means we can use
* USB specific request to write radio registers */
priv->asic_rev = rtl818x_ioread8(priv, (u8 *)0xFFFE) & 0x3;
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
if (!priv->is_rtl8187b) {
u32 reg32;
reg32 = rtl818x_ioread32(priv, &priv->map->TX_CONF);
reg32 &= RTL818X_TX_CONF_HWVER_MASK;
switch (reg32) {
case RTL818X_TX_CONF_R8187vD_B:
/* Some RTL8187B devices have a USB ID of 0x8187
* detect them here */
chip_name = "RTL8187BvB(early)";
priv->is_rtl8187b = 1;
priv->hw_rev = RTL8187BvB;
break;
case RTL818X_TX_CONF_R8187vD:
chip_name = "RTL8187vD";
break;
default:
chip_name = "RTL8187vB (default)";
}
} else {
/*
* Force USB request to write radio registers for 8187B, Realtek
* only uses it in their sources
*/
/*if (priv->asic_rev == 0) {
printk(KERN_WARNING "rtl8187: Forcing use of USB "
"requests to write to radio registers\n");
priv->asic_rev = 1;
}*/
switch (rtl818x_ioread8(priv, (u8 *)0xFFE1)) {
case RTL818X_R8187B_B:
chip_name = "RTL8187BvB";
priv->hw_rev = RTL8187BvB;
break;
case RTL818X_R8187B_D:
chip_name = "RTL8187BvD";
priv->hw_rev = RTL8187BvD;
break;
case RTL818X_R8187B_E:
chip_name = "RTL8187BvE";
priv->hw_rev = RTL8187BvE;
break;
default:
chip_name = "RTL8187BvB (default)";
priv->hw_rev = RTL8187BvB;
}
}
if (!priv->is_rtl8187b) {
for (i = 0; i < 2; i++) {
eeprom_93cx6_read(&eeprom,
RTL8187_EEPROM_TXPWR_CHAN_6 + i,
&txpwr);
(*channel++).hw_value = txpwr & 0xFF;
(*channel++).hw_value = txpwr >> 8;
}
} else {
eeprom_93cx6_read(&eeprom, RTL8187_EEPROM_TXPWR_CHAN_6,
&txpwr);
(*channel++).hw_value = txpwr & 0xFF;
eeprom_93cx6_read(&eeprom, 0x0A, &txpwr);
(*channel++).hw_value = txpwr & 0xFF;
eeprom_93cx6_read(&eeprom, 0x1C, &txpwr);
(*channel++).hw_value = txpwr & 0xFF;
(*channel++).hw_value = txpwr >> 8;
}
if (priv->is_rtl8187b)
printk(KERN_WARNING "rtl8187: 8187B chip detected.\n");
/*
* XXX: Once this driver supports anything that requires
* beacons it must implement IEEE80211_TX_CTL_ASSIGN_SEQ.
*/
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if ((id->driver_info == DEVICE_RTL8187) && priv->is_rtl8187b)
printk(KERN_INFO "rtl8187: inconsistency between id with OEM"
" info!\n");
priv->rf = rtl8187_detect_rf(dev);
dev->extra_tx_headroom = (!priv->is_rtl8187b) ?
sizeof(struct rtl8187_tx_hdr) :
sizeof(struct rtl8187b_tx_hdr);
if (!priv->is_rtl8187b)
dev->queues = 1;
else
dev->queues = 4;
err = ieee80211_register_hw(dev);
if (err) {
printk(KERN_ERR "rtl8187: Cannot register device\n");
goto err_free_dev;
}
mutex_init(&priv->conf_mutex);
skb_queue_head_init(&priv->b_tx_status.queue);
printk(KERN_INFO "%s: hwaddr %pM, %s V%d + %s\n",
wiphy_name(dev->wiphy), dev->wiphy->perm_addr,
chip_name, priv->asic_rev, priv->rf->name);
return 0;
err_free_dev:
ieee80211_free_hw(dev);
usb_set_intfdata(intf, NULL);
usb_put_dev(udev);
return err;
}
static void __devexit rtl8187_disconnect(struct usb_interface *intf)
{
struct ieee80211_hw *dev = usb_get_intfdata(intf);
struct rtl8187_priv *priv;
if (!dev)
return;
ieee80211_unregister_hw(dev);
priv = dev->priv;
usb_reset_device(priv->udev);
usb_put_dev(interface_to_usbdev(intf));
ieee80211_free_hw(dev);
}
static struct usb_driver rtl8187_driver = {
.name = KBUILD_MODNAME,
.id_table = rtl8187_table,
.probe = rtl8187_probe,
.disconnect = __devexit_p(rtl8187_disconnect),
};
static int __init rtl8187_init(void)
{
return usb_register(&rtl8187_driver);
}
static void __exit rtl8187_exit(void)
{
usb_deregister(&rtl8187_driver);
}
module_init(rtl8187_init);
module_exit(rtl8187_exit);