| /* |
| * Copyright (c) International Business Machines Corp., 2006 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| * the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Author: Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * The UBI Eraseblock Association (EBA) unit. |
| * |
| * This unit is responsible for I/O to/from logical eraseblock. |
| * |
| * Although in this implementation the EBA table is fully kept and managed in |
| * RAM, which assumes poor scalability, it might be (partially) maintained on |
| * flash in future implementations. |
| * |
| * The EBA unit implements per-logical eraseblock locking. Before accessing a |
| * logical eraseblock it is locked for reading or writing. The per-logical |
| * eraseblock locking is implemented by means of the lock tree. The lock tree |
| * is an RB-tree which refers all the currently locked logical eraseblocks. The |
| * lock tree elements are &struct ltree_entry objects. They are indexed by |
| * (@vol_id, @lnum) pairs. |
| * |
| * EBA also maintains the global sequence counter which is incremented each |
| * time a logical eraseblock is mapped to a physical eraseblock and it is |
| * stored in the volume identifier header. This means that each VID header has |
| * a unique sequence number. The sequence number is only increased an we assume |
| * 64 bits is enough to never overflow. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/crc32.h> |
| #include <linux/err.h> |
| #include "ubi.h" |
| |
| /** |
| * struct ltree_entry - an entry in the lock tree. |
| * @rb: links RB-tree nodes |
| * @vol_id: volume ID of the locked logical eraseblock |
| * @lnum: locked logical eraseblock number |
| * @users: how many tasks are using this logical eraseblock or wait for it |
| * @mutex: read/write mutex to implement read/write access serialization to |
| * the (@vol_id, @lnum) logical eraseblock |
| * |
| * When a logical eraseblock is being locked - corresponding &struct ltree_entry |
| * object is inserted to the lock tree (@ubi->ltree). |
| */ |
| struct ltree_entry { |
| struct rb_node rb; |
| int vol_id; |
| int lnum; |
| int users; |
| struct rw_semaphore mutex; |
| }; |
| |
| /* Slab cache for lock-tree entries */ |
| static struct kmem_cache *ltree_slab; |
| |
| /** |
| * next_sqnum - get next sequence number. |
| * @ubi: UBI device description object |
| * |
| * This function returns next sequence number to use, which is just the current |
| * global sequence counter value. It also increases the global sequence |
| * counter. |
| */ |
| static unsigned long long next_sqnum(struct ubi_device *ubi) |
| { |
| unsigned long long sqnum; |
| |
| spin_lock(&ubi->ltree_lock); |
| sqnum = ubi->global_sqnum++; |
| spin_unlock(&ubi->ltree_lock); |
| |
| return sqnum; |
| } |
| |
| /** |
| * ubi_get_compat - get compatibility flags of a volume. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * |
| * This function returns compatibility flags for an internal volume. User |
| * volumes have no compatibility flags, so %0 is returned. |
| */ |
| static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| { |
| if (vol_id == UBI_LAYOUT_VOL_ID) |
| return UBI_LAYOUT_VOLUME_COMPAT; |
| return 0; |
| } |
| |
| /** |
| * ltree_lookup - look up the lock tree. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function returns a pointer to the corresponding &struct ltree_entry |
| * object if the logical eraseblock is locked and %NULL if it is not. |
| * @ubi->ltree_lock has to be locked. |
| */ |
| static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| int lnum) |
| { |
| struct rb_node *p; |
| |
| p = ubi->ltree.rb_node; |
| while (p) { |
| struct ltree_entry *le; |
| |
| le = rb_entry(p, struct ltree_entry, rb); |
| |
| if (vol_id < le->vol_id) |
| p = p->rb_left; |
| else if (vol_id > le->vol_id) |
| p = p->rb_right; |
| else { |
| if (lnum < le->lnum) |
| p = p->rb_left; |
| else if (lnum > le->lnum) |
| p = p->rb_right; |
| else |
| return le; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ltree_add_entry - add new entry to the lock tree. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| * lock tree. If such entry is already there, its usage counter is increased. |
| * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| * failed. |
| */ |
| static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id, |
| int lnum) |
| { |
| struct ltree_entry *le, *le1, *le_free; |
| |
| le = kmem_cache_alloc(ltree_slab, GFP_KERNEL); |
| if (!le) |
| return ERR_PTR(-ENOMEM); |
| |
| le->vol_id = vol_id; |
| le->lnum = lnum; |
| |
| spin_lock(&ubi->ltree_lock); |
| le1 = ltree_lookup(ubi, vol_id, lnum); |
| |
| if (le1) { |
| /* |
| * This logical eraseblock is already locked. The newly |
| * allocated lock entry is not needed. |
| */ |
| le_free = le; |
| le = le1; |
| } else { |
| struct rb_node **p, *parent = NULL; |
| |
| /* |
| * No lock entry, add the newly allocated one to the |
| * @ubi->ltree RB-tree. |
| */ |
| le_free = NULL; |
| |
| p = &ubi->ltree.rb_node; |
| while (*p) { |
| parent = *p; |
| le1 = rb_entry(parent, struct ltree_entry, rb); |
| |
| if (vol_id < le1->vol_id) |
| p = &(*p)->rb_left; |
| else if (vol_id > le1->vol_id) |
| p = &(*p)->rb_right; |
| else { |
| ubi_assert(lnum != le1->lnum); |
| if (lnum < le1->lnum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| } |
| |
| rb_link_node(&le->rb, parent, p); |
| rb_insert_color(&le->rb, &ubi->ltree); |
| } |
| le->users += 1; |
| spin_unlock(&ubi->ltree_lock); |
| |
| if (le_free) |
| kmem_cache_free(ltree_slab, le_free); |
| |
| return le; |
| } |
| |
| /** |
| * leb_read_lock - lock logical eraseblock for reading. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function locks a logical eraseblock for reading. Returns zero in case |
| * of success and a negative error code in case of failure. |
| */ |
| static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ltree_entry *le; |
| |
| le = ltree_add_entry(ubi, vol_id, lnum); |
| if (IS_ERR(le)) |
| return PTR_ERR(le); |
| down_read(&le->mutex); |
| return 0; |
| } |
| |
| /** |
| * leb_read_unlock - unlock logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| */ |
| static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| int free = 0; |
| struct ltree_entry *le; |
| |
| spin_lock(&ubi->ltree_lock); |
| le = ltree_lookup(ubi, vol_id, lnum); |
| le->users -= 1; |
| ubi_assert(le->users >= 0); |
| if (le->users == 0) { |
| rb_erase(&le->rb, &ubi->ltree); |
| free = 1; |
| } |
| spin_unlock(&ubi->ltree_lock); |
| |
| up_read(&le->mutex); |
| if (free) |
| kmem_cache_free(ltree_slab, le); |
| } |
| |
| /** |
| * leb_write_lock - lock logical eraseblock for writing. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function locks a logical eraseblock for writing. Returns zero in case |
| * of success and a negative error code in case of failure. |
| */ |
| static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ltree_entry *le; |
| |
| le = ltree_add_entry(ubi, vol_id, lnum); |
| if (IS_ERR(le)) |
| return PTR_ERR(le); |
| down_write(&le->mutex); |
| return 0; |
| } |
| |
| /** |
| * leb_write_unlock - unlock logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| */ |
| static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| int free; |
| struct ltree_entry *le; |
| |
| spin_lock(&ubi->ltree_lock); |
| le = ltree_lookup(ubi, vol_id, lnum); |
| le->users -= 1; |
| ubi_assert(le->users >= 0); |
| if (le->users == 0) { |
| rb_erase(&le->rb, &ubi->ltree); |
| free = 1; |
| } else |
| free = 0; |
| spin_unlock(&ubi->ltree_lock); |
| |
| up_write(&le->mutex); |
| if (free) |
| kmem_cache_free(ltree_slab, le); |
| } |
| |
| /** |
| * ubi_eba_unmap_leb - un-map logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function un-maps logical eraseblock @lnum and schedules corresponding |
| * physical eraseblock for erasure. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| int idx = vol_id2idx(ubi, vol_id), err, pnum; |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl[lnum]; |
| if (pnum < 0) |
| /* This logical eraseblock is already unmapped */ |
| goto out_unlock; |
| |
| dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| |
| vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; |
| err = ubi_wl_put_peb(ubi, pnum, 0); |
| |
| out_unlock: |
| leb_write_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /** |
| * ubi_eba_read_leb - read data. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: buffer to store the read data |
| * @offset: offset from where to read |
| * @len: how many bytes to read |
| * @check: data CRC check flag |
| * |
| * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| * bytes. The @check flag only makes sense for static volumes and forces |
| * eraseblock data CRC checking. |
| * |
| * In case of success this function returns zero. In case of a static volume, |
| * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| * returned for any volume type if an ECC error was detected by the MTD device |
| * driver. Other negative error cored may be returned in case of other errors. |
| */ |
| int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf, |
| int offset, int len, int check) |
| { |
| int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id); |
| struct ubi_vid_hdr *vid_hdr; |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| uint32_t uninitialized_var(crc); |
| |
| err = leb_read_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl[lnum]; |
| if (pnum < 0) { |
| /* |
| * The logical eraseblock is not mapped, fill the whole buffer |
| * with 0xFF bytes. The exception is static volumes for which |
| * it is an error to read unmapped logical eraseblocks. |
| */ |
| dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| len, offset, vol_id, lnum); |
| leb_read_unlock(ubi, vol_id, lnum); |
| ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| memset(buf, 0xFF, len); |
| return 0; |
| } |
| |
| dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| check = 0; |
| |
| retry: |
| if (check) { |
| vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| if (!vid_hdr) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| if (err && err != UBI_IO_BITFLIPS) { |
| if (err > 0) { |
| /* |
| * The header is either absent or corrupted. |
| * The former case means there is a bug - |
| * switch to read-only mode just in case. |
| * The latter case means a real corruption - we |
| * may try to recover data. FIXME: but this is |
| * not implemented. |
| */ |
| if (err == UBI_IO_BAD_VID_HDR) { |
| ubi_warn("bad VID header at PEB %d, LEB" |
| "%d:%d", pnum, vol_id, lnum); |
| err = -EBADMSG; |
| } else |
| ubi_ro_mode(ubi); |
| } |
| goto out_free; |
| } else if (err == UBI_IO_BITFLIPS) |
| scrub = 1; |
| |
| ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| |
| crc = be32_to_cpu(vid_hdr->data_crc); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| } |
| |
| err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| if (err == UBI_IO_BITFLIPS) { |
| scrub = 1; |
| err = 0; |
| } else if (err == -EBADMSG) { |
| if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| goto out_unlock; |
| scrub = 1; |
| if (!check) { |
| ubi_msg("force data checking"); |
| check = 1; |
| goto retry; |
| } |
| } else |
| goto out_unlock; |
| } |
| |
| if (check) { |
| uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| if (crc1 != crc) { |
| ubi_warn("CRC error: calculated %#08x, must be %#08x", |
| crc1, crc); |
| err = -EBADMSG; |
| goto out_unlock; |
| } |
| } |
| |
| if (scrub) |
| err = ubi_wl_scrub_peb(ubi, pnum); |
| |
| leb_read_unlock(ubi, vol_id, lnum); |
| return err; |
| |
| out_free: |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| out_unlock: |
| leb_read_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /** |
| * recover_peb - recover from write failure. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock to recover |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: data which was not written because of the write failure |
| * @offset: offset of the failed write |
| * @len: how many bytes should have been written |
| * |
| * This function is called in case of a write failure and moves all good data |
| * from the potentially bad physical eraseblock to a good physical eraseblock. |
| * This function also writes the data which was not written due to the failure. |
| * Returns new physical eraseblock number in case of success, and a negative |
| * error code in case of failure. |
| */ |
| static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| const void *buf, int offset, int len) |
| { |
| int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| struct ubi_vid_hdr *vid_hdr; |
| unsigned char *new_buf; |
| |
| vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| if (!vid_hdr) { |
| return -ENOMEM; |
| } |
| |
| retry: |
| new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); |
| if (new_pnum < 0) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return new_pnum; |
| } |
| |
| ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); |
| |
| err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| if (err && err != UBI_IO_BITFLIPS) { |
| if (err > 0) |
| err = -EIO; |
| goto out_put; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); |
| if (err) |
| goto write_error; |
| |
| data_size = offset + len; |
| new_buf = vmalloc(data_size); |
| if (!new_buf) { |
| err = -ENOMEM; |
| goto out_put; |
| } |
| memset(new_buf + offset, 0xFF, len); |
| |
| /* Read everything before the area where the write failure happened */ |
| if (offset > 0) { |
| err = ubi_io_read_data(ubi, new_buf, pnum, 0, offset); |
| if (err && err != UBI_IO_BITFLIPS) { |
| vfree(new_buf); |
| goto out_put; |
| } |
| } |
| |
| memcpy(new_buf + offset, buf, len); |
| |
| err = ubi_io_write_data(ubi, new_buf, new_pnum, 0, data_size); |
| if (err) { |
| vfree(new_buf); |
| goto write_error; |
| } |
| |
| vfree(new_buf); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| |
| vol->eba_tbl[lnum] = new_pnum; |
| ubi_wl_put_peb(ubi, pnum, 1); |
| |
| ubi_msg("data was successfully recovered"); |
| return 0; |
| |
| out_put: |
| ubi_wl_put_peb(ubi, new_pnum, 1); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| |
| write_error: |
| /* |
| * Bad luck? This physical eraseblock is bad too? Crud. Let's try to |
| * get another one. |
| */ |
| ubi_warn("failed to write to PEB %d", new_pnum); |
| ubi_wl_put_peb(ubi, new_pnum, 1); |
| if (++tries > UBI_IO_RETRIES) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| ubi_msg("try again"); |
| goto retry; |
| } |
| |
| /** |
| * ubi_eba_write_leb - write data to dynamic volume. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: the data to write |
| * @offset: offset within the logical eraseblock where to write |
| * @len: how many bytes to write |
| * @dtype: data type |
| * |
| * This function writes data to logical eraseblock @lnum of a dynamic volume |
| * @vol_id. Returns zero in case of success and a negative error code in case |
| * of failure. In case of error, it is possible that something was still |
| * written to the flash media, but may be some garbage. |
| */ |
| int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum, |
| const void *buf, int offset, int len, int dtype) |
| { |
| int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0; |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| struct ubi_vid_hdr *vid_hdr; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl[lnum]; |
| if (pnum >= 0) { |
| dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| ubi_warn("failed to write data to PEB %d", pnum); |
| if (err == -EIO && ubi->bad_allowed) |
| err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len); |
| if (err) |
| ubi_ro_mode(ubi); |
| } |
| leb_write_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /* |
| * The logical eraseblock is not mapped. We have to get a free physical |
| * eraseblock and write the volume identifier header there first. |
| */ |
| vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| if (!vid_hdr) { |
| leb_write_unlock(ubi, vol_id, lnum); |
| return -ENOMEM; |
| } |
| |
| vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| retry: |
| pnum = ubi_wl_get_peb(ubi, dtype); |
| if (pnum < 0) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| leb_write_unlock(ubi, vol_id, lnum); |
| return pnum; |
| } |
| |
| dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| if (err) { |
| ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| vol_id, lnum, pnum); |
| goto write_error; |
| } |
| |
| err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, " |
| "PEB %d", len, offset, vol_id, lnum, pnum); |
| goto write_error; |
| } |
| |
| vol->eba_tbl[lnum] = pnum; |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return 0; |
| |
| write_error: |
| if (err != -EIO || !ubi->bad_allowed) { |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| /* |
| * Fortunately, this is the first write operation to this physical |
| * eraseblock, so just put it and request a new one. We assume that if |
| * this physical eraseblock went bad, the erase code will handle that. |
| */ |
| err = ubi_wl_put_peb(ubi, pnum, 1); |
| if (err || ++tries > UBI_IO_RETRIES) { |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| ubi_msg("try another PEB"); |
| goto retry; |
| } |
| |
| /** |
| * ubi_eba_write_leb_st - write data to static volume. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: data to write |
| * @len: how many bytes to write |
| * @dtype: data type |
| * @used_ebs: how many logical eraseblocks will this volume contain |
| * |
| * This function writes data to logical eraseblock @lnum of static volume |
| * @vol_id. The @used_ebs argument should contain total number of logical |
| * eraseblock in this static volume. |
| * |
| * When writing to the last logical eraseblock, the @len argument doesn't have |
| * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| * to the real data size, although the @buf buffer has to contain the |
| * alignment. In all other cases, @len has to be aligned. |
| * |
| * It is prohibited to write more then once to logical eraseblocks of static |
| * volumes. This function returns zero in case of success and a negative error |
| * code in case of failure. |
| */ |
| int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum, |
| const void *buf, int len, int dtype, int used_ebs) |
| { |
| int err, pnum, tries = 0, data_size = len; |
| int idx = vol_id2idx(ubi, vol_id); |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| struct ubi_vid_hdr *vid_hdr; |
| uint32_t crc; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| if (lnum == used_ebs - 1) |
| /* If this is the last LEB @len may be unaligned */ |
| len = ALIGN(data_size, ubi->min_io_size); |
| else |
| ubi_assert(len % ubi->min_io_size == 0); |
| |
| vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| if (!vid_hdr) |
| return -ENOMEM; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| vid_hdr->vol_type = UBI_VID_STATIC; |
| vid_hdr->data_size = cpu_to_be32(data_size); |
| vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| |
| retry: |
| pnum = ubi_wl_get_peb(ubi, dtype); |
| if (pnum < 0) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| leb_write_unlock(ubi, vol_id, lnum); |
| return pnum; |
| } |
| |
| dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", |
| len, vol_id, lnum, pnum, used_ebs); |
| |
| err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| if (err) { |
| ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| vol_id, lnum, pnum); |
| goto write_error; |
| } |
| |
| err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| if (err) { |
| ubi_warn("failed to write %d bytes of data to PEB %d", |
| len, pnum); |
| goto write_error; |
| } |
| |
| ubi_assert(vol->eba_tbl[lnum] < 0); |
| vol->eba_tbl[lnum] = pnum; |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return 0; |
| |
| write_error: |
| if (err != -EIO || !ubi->bad_allowed) { |
| /* |
| * This flash device does not admit of bad eraseblocks or |
| * something nasty and unexpected happened. Switch to read-only |
| * mode just in case. |
| */ |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| err = ubi_wl_put_peb(ubi, pnum, 1); |
| if (err || ++tries > UBI_IO_RETRIES) { |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| ubi_msg("try another PEB"); |
| goto retry; |
| } |
| |
| /* |
| * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: data to write |
| * @len: how many bytes to write |
| * @dtype: data type |
| * |
| * This function changes the contents of a logical eraseblock atomically. @buf |
| * has to contain new logical eraseblock data, and @len - the length of the |
| * data, which has to be aligned. This function guarantees that in case of an |
| * unclean reboot the old contents is preserved. Returns zero in case of |
| * success and a negative error code in case of failure. |
| */ |
| int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum, |
| const void *buf, int len, int dtype) |
| { |
| int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id); |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| struct ubi_vid_hdr *vid_hdr; |
| uint32_t crc; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| if (!vid_hdr) |
| return -ENOMEM; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| crc = crc32(UBI_CRC32_INIT, buf, len); |
| vid_hdr->vol_type = UBI_VID_STATIC; |
| vid_hdr->data_size = cpu_to_be32(len); |
| vid_hdr->copy_flag = 1; |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| |
| retry: |
| pnum = ubi_wl_get_peb(ubi, dtype); |
| if (pnum < 0) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| leb_write_unlock(ubi, vol_id, lnum); |
| return pnum; |
| } |
| |
| dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", |
| vol_id, lnum, vol->eba_tbl[lnum], pnum); |
| |
| err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| if (err) { |
| ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", |
| vol_id, lnum, pnum); |
| goto write_error; |
| } |
| |
| err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| if (err) { |
| ubi_warn("failed to write %d bytes of data to PEB %d", |
| len, pnum); |
| goto write_error; |
| } |
| |
| if (vol->eba_tbl[lnum] >= 0) { |
| err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1); |
| if (err) { |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| leb_write_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| } |
| |
| vol->eba_tbl[lnum] = pnum; |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return 0; |
| |
| write_error: |
| if (err != -EIO || !ubi->bad_allowed) { |
| /* |
| * This flash device does not admit of bad eraseblocks or |
| * something nasty and unexpected happened. Switch to read-only |
| * mode just in case. |
| */ |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| err = ubi_wl_put_peb(ubi, pnum, 1); |
| if (err || ++tries > UBI_IO_RETRIES) { |
| ubi_ro_mode(ubi); |
| leb_write_unlock(ubi, vol_id, lnum); |
| ubi_free_vid_hdr(ubi, vid_hdr); |
| return err; |
| } |
| |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| ubi_msg("try another PEB"); |
| goto retry; |
| } |
| |
| /** |
| * ltree_entry_ctor - lock tree entries slab cache constructor. |
| * @obj: the lock-tree entry to construct |
| * @cache: the lock tree entry slab cache |
| * @flags: constructor flags |
| */ |
| static void ltree_entry_ctor(void *obj, struct kmem_cache *cache, |
| unsigned long flags) |
| { |
| struct ltree_entry *le = obj; |
| |
| le->users = 0; |
| init_rwsem(&le->mutex); |
| } |
| |
| /** |
| * ubi_eba_copy_leb - copy logical eraseblock. |
| * @ubi: UBI device description object |
| * @from: physical eraseblock number from where to copy |
| * @to: physical eraseblock number where to copy |
| * @vid_hdr: VID header of the @from physical eraseblock |
| * |
| * This function copies logical eraseblock from physical eraseblock @from to |
| * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation |
| * was canceled because bit-flips were detected at the target PEB, and a |
| * negative error code in case of failure. |
| */ |
| int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| struct ubi_vid_hdr *vid_hdr) |
| { |
| int err, vol_id, lnum, data_size, aldata_size, pnum, idx; |
| struct ubi_volume *vol; |
| uint32_t crc; |
| void *buf, *buf1 = NULL; |
| |
| vol_id = be32_to_cpu(vid_hdr->vol_id); |
| lnum = be32_to_cpu(vid_hdr->lnum); |
| |
| dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| |
| if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| data_size = be32_to_cpu(vid_hdr->data_size); |
| aldata_size = ALIGN(data_size, ubi->min_io_size); |
| } else |
| data_size = aldata_size = |
| ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| |
| buf = vmalloc(aldata_size); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* |
| * We do not want anybody to write to this logical eraseblock while we |
| * are moving it, so we lock it. |
| */ |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) { |
| vfree(buf); |
| return err; |
| } |
| |
| /* |
| * But the logical eraseblock might have been put by this time. |
| * Cancel if it is true. |
| */ |
| idx = vol_id2idx(ubi, vol_id); |
| |
| /* |
| * We may race with volume deletion/re-size, so we have to hold |
| * @ubi->volumes_lock. |
| */ |
| spin_lock(&ubi->volumes_lock); |
| vol = ubi->volumes[idx]; |
| if (!vol) { |
| dbg_eba("volume %d was removed meanwhile", vol_id); |
| spin_unlock(&ubi->volumes_lock); |
| goto out_unlock; |
| } |
| |
| pnum = vol->eba_tbl[lnum]; |
| if (pnum != from) { |
| dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " |
| "PEB %d, cancel", vol_id, lnum, from, pnum); |
| spin_unlock(&ubi->volumes_lock); |
| goto out_unlock; |
| } |
| spin_unlock(&ubi->volumes_lock); |
| |
| /* OK, now the LEB is locked and we can safely start moving it */ |
| |
| dbg_eba("read %d bytes of data", aldata_size); |
| err = ubi_io_read_data(ubi, buf, from, 0, aldata_size); |
| if (err && err != UBI_IO_BITFLIPS) { |
| ubi_warn("error %d while reading data from PEB %d", |
| err, from); |
| goto out_unlock; |
| } |
| |
| /* |
| * Now we have got to calculate how much data we have to to copy. In |
| * case of a static volume it is fairly easy - the VID header contains |
| * the data size. In case of a dynamic volume it is more difficult - we |
| * have to read the contents, cut 0xFF bytes from the end and copy only |
| * the first part. We must do this to avoid writing 0xFF bytes as it |
| * may have some side-effects. And not only this. It is important not |
| * to include those 0xFFs to CRC because later the they may be filled |
| * by data. |
| */ |
| if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| aldata_size = data_size = |
| ubi_calc_data_len(ubi, buf, data_size); |
| |
| cond_resched(); |
| crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| cond_resched(); |
| |
| /* |
| * It may turn out to me that the whole @from physical eraseblock |
| * contains only 0xFF bytes. Then we have to only write the VID header |
| * and do not write any data. This also means we should not set |
| * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| */ |
| if (data_size > 0) { |
| vid_hdr->copy_flag = 1; |
| vid_hdr->data_size = cpu_to_be32(data_size); |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| } |
| vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); |
| |
| err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); |
| if (err) |
| goto out_unlock; |
| |
| cond_resched(); |
| |
| /* Read the VID header back and check if it was written correctly */ |
| err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); |
| if (err) { |
| if (err != UBI_IO_BITFLIPS) |
| ubi_warn("cannot read VID header back from PEB %d", to); |
| goto out_unlock; |
| } |
| |
| if (data_size > 0) { |
| err = ubi_io_write_data(ubi, buf, to, 0, aldata_size); |
| if (err) |
| goto out_unlock; |
| |
| /* |
| * We've written the data and are going to read it back to make |
| * sure it was written correctly. |
| */ |
| buf1 = vmalloc(aldata_size); |
| if (!buf1) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| cond_resched(); |
| |
| err = ubi_io_read_data(ubi, buf1, to, 0, aldata_size); |
| if (err) { |
| if (err != UBI_IO_BITFLIPS) |
| ubi_warn("cannot read data back from PEB %d", |
| to); |
| goto out_unlock; |
| } |
| |
| cond_resched(); |
| |
| if (memcmp(buf, buf1, aldata_size)) { |
| ubi_warn("read data back from PEB %d - it is different", |
| to); |
| goto out_unlock; |
| } |
| } |
| |
| ubi_assert(vol->eba_tbl[lnum] == from); |
| vol->eba_tbl[lnum] = to; |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| vfree(buf); |
| vfree(buf1); |
| |
| return 0; |
| |
| out_unlock: |
| leb_write_unlock(ubi, vol_id, lnum); |
| vfree(buf); |
| vfree(buf1); |
| return err; |
| } |
| |
| /** |
| * ubi_eba_init_scan - initialize the EBA unit using scanning information. |
| * @ubi: UBI device description object |
| * @si: scanning information |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) |
| { |
| int i, j, err, num_volumes; |
| struct ubi_scan_volume *sv; |
| struct ubi_volume *vol; |
| struct ubi_scan_leb *seb; |
| struct rb_node *rb; |
| |
| dbg_eba("initialize EBA unit"); |
| |
| spin_lock_init(&ubi->ltree_lock); |
| ubi->ltree = RB_ROOT; |
| |
| if (ubi_devices_cnt == 0) { |
| ltree_slab = kmem_cache_create("ubi_ltree_slab", |
| sizeof(struct ltree_entry), 0, |
| 0, <ree_entry_ctor, NULL); |
| if (!ltree_slab) |
| return -ENOMEM; |
| } |
| |
| ubi->global_sqnum = si->max_sqnum + 1; |
| num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| |
| for (i = 0; i < num_volumes; i++) { |
| vol = ubi->volumes[i]; |
| if (!vol) |
| continue; |
| |
| cond_resched(); |
| |
| vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), |
| GFP_KERNEL); |
| if (!vol->eba_tbl) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| for (j = 0; j < vol->reserved_pebs; j++) |
| vol->eba_tbl[j] = UBI_LEB_UNMAPPED; |
| |
| sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); |
| if (!sv) |
| continue; |
| |
| ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { |
| if (seb->lnum >= vol->reserved_pebs) |
| /* |
| * This may happen in case of an unclean reboot |
| * during re-size. |
| */ |
| ubi_scan_move_to_list(sv, seb, &si->erase); |
| vol->eba_tbl[seb->lnum] = seb->pnum; |
| } |
| } |
| |
| if (ubi->bad_allowed) { |
| ubi_calculate_reserved(ubi); |
| |
| if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| /* No enough free physical eraseblocks */ |
| ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| ubi_warn("cannot reserve enough PEBs for bad PEB " |
| "handling, reserved %d, need %d", |
| ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| } else |
| ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| |
| ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| } |
| |
| dbg_eba("EBA unit is initialized"); |
| return 0; |
| |
| out_free: |
| for (i = 0; i < num_volumes; i++) { |
| if (!ubi->volumes[i]) |
| continue; |
| kfree(ubi->volumes[i]->eba_tbl); |
| } |
| if (ubi_devices_cnt == 0) |
| kmem_cache_destroy(ltree_slab); |
| return err; |
| } |
| |
| /** |
| * ubi_eba_close - close EBA unit. |
| * @ubi: UBI device description object |
| */ |
| void ubi_eba_close(const struct ubi_device *ubi) |
| { |
| int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| |
| dbg_eba("close EBA unit"); |
| |
| for (i = 0; i < num_volumes; i++) { |
| if (!ubi->volumes[i]) |
| continue; |
| kfree(ubi->volumes[i]->eba_tbl); |
| } |
| if (ubi_devices_cnt == 1) |
| kmem_cache_destroy(ltree_slab); |
| } |