blob: ed9c6101685af878b76154547827fe5b79b490a8 [file] [log] [blame]
/* Copyright (c) 2013-2015, 2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "SMB:%s: " fmt, __func__
#include <linux/i2c.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/errno.h>
#include <linux/extcon.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/math64.h>
#include <linux/slab.h>
#include <linux/power_supply.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/bitops.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/completion.h>
#include <linux/pm_wakeup.h>
#define _SMB1360_MASK(BITS, POS) \
((unsigned char)(((1 << (BITS)) - 1) << (POS)))
#define SMB1360_MASK(LEFT_BIT_POS, RIGHT_BIT_POS) \
_SMB1360_MASK((LEFT_BIT_POS) - (RIGHT_BIT_POS) + 1, \
(RIGHT_BIT_POS))
/* Charger Registers */
#define CFG_BATT_CHG_REG 0x00
#define CHG_ITERM_MASK SMB1360_MASK(2, 0)
#define CHG_ITERM_25MA 0x0
#define CHG_ITERM_200MA 0x7
#define RECHG_MV_MASK SMB1360_MASK(6, 5)
#define RECHG_MV_SHIFT 5
#define OTG_CURRENT_MASK SMB1360_MASK(4, 3)
#define OTG_CURRENT_SHIFT 3
#define CFG_BATT_CHG_ICL_REG 0x05
#define AC_INPUT_ICL_PIN_BIT BIT(7)
#define AC_INPUT_PIN_HIGH_BIT BIT(6)
#define RESET_STATE_USB_500 BIT(5)
#define INPUT_CURR_LIM_MASK SMB1360_MASK(3, 0)
#define INPUT_CURR_LIM_300MA 0x0
#define CFG_GLITCH_FLT_REG 0x06
#define AICL_ENABLED_BIT BIT(0)
#define INPUT_UV_GLITCH_FLT_20MS_BIT BIT(7)
#define CFG_CHG_MISC_REG 0x7
#define CHG_EN_BY_PIN_BIT BIT(7)
#define CHG_EN_ACTIVE_LOW_BIT BIT(6)
#define PRE_TO_FAST_REQ_CMD_BIT BIT(5)
#define CFG_BAT_OV_ENDS_CHG_CYC BIT(4)
#define CHG_CURR_TERM_DIS_BIT BIT(3)
#define CFG_AUTO_RECHG_DIS_BIT BIT(2)
#define CFG_CHG_INHIBIT_EN_BIT BIT(0)
#define CFG_CHG_FUNC_CTRL_REG 0x08
#define CHG_RECHG_THRESH_FG_SRC_BIT BIT(1)
#define CFG_STAT_CTRL_REG 0x09
#define CHG_STAT_IRQ_ONLY_BIT BIT(4)
#define CHG_TEMP_CHG_ERR_BLINK_BIT BIT(3)
#define CHG_STAT_ACTIVE_HIGH_BIT BIT(1)
#define CHG_STAT_DISABLE_BIT BIT(0)
#define CFG_SFY_TIMER_CTRL_REG 0x0A
#define SAFETY_TIME_DISABLE_BIT BIT(5)
#define SAFETY_TIME_MINUTES_SHIFT 2
#define SAFETY_TIME_MINUTES_MASK SMB1360_MASK(3, 2)
#define CFG_BATT_MISSING_REG 0x0D
#define BATT_MISSING_SRC_THERM_BIT BIT(1)
#define CFG_FG_BATT_CTRL_REG 0x0E
#define CFG_FG_OTP_BACK_UP_ENABLE BIT(7)
#define BATT_ID_ENABLED_BIT BIT(5)
#define CHG_BATT_ID_FAIL BIT(4)
#define BATT_ID_FAIL_SELECT_PROFILE BIT(3)
#define BATT_PROFILE_SELECT_MASK SMB1360_MASK(3, 0)
#define BATT_PROFILEA_MASK 0x0
#define BATT_PROFILEB_MASK 0xF
#define IRQ_CFG_REG 0x0F
#define IRQ_BAT_HOT_COLD_HARD_BIT BIT(7)
#define IRQ_BAT_HOT_COLD_SOFT_BIT BIT(6)
#define IRQ_DCIN_UV_BIT BIT(2)
#define IRQ_AICL_DONE_BIT BIT(1)
#define IRQ_INTERNAL_TEMPERATURE_BIT BIT(0)
#define IRQ2_CFG_REG 0x10
#define IRQ2_SAFETY_TIMER_BIT BIT(7)
#define IRQ2_CHG_ERR_BIT BIT(6)
#define IRQ2_CHG_PHASE_CHANGE_BIT BIT(4)
#define IRQ2_POWER_OK_BIT BIT(2)
#define IRQ2_BATT_MISSING_BIT BIT(1)
#define IRQ2_VBAT_LOW_BIT BIT(0)
#define IRQ3_CFG_REG 0x11
#define IRQ3_FG_ACCESS_OK_BIT BIT(6)
#define IRQ3_SOC_CHANGE_BIT BIT(4)
#define IRQ3_SOC_MIN_BIT BIT(3)
#define IRQ3_SOC_MAX_BIT BIT(2)
#define IRQ3_SOC_EMPTY_BIT BIT(1)
#define IRQ3_SOC_FULL_BIT BIT(0)
#define CHG_CURRENT_REG 0x13
#define FASTCHG_CURR_MASK SMB1360_MASK(4, 2)
#define FASTCHG_CURR_SHIFT 2
#define CHG_CMP_CFG 0x14
#define JEITA_COMP_CURR_MASK SMB1360_MASK(3, 0)
#define JEITA_COMP_EN_MASK SMB1360_MASK(7, 4)
#define JEITA_COMP_EN_SHIFT 4
#define JEITA_COMP_EN_BIT SMB1360_MASK(7, 4)
#define BATT_CHG_FLT_VTG_REG 0x15
#define VFLOAT_MASK SMB1360_MASK(6, 0)
#define CFG_FVC_REG 0x16
#define FLT_VTG_COMP_MASK SMB1360_MASK(6, 0)
#define SHDN_CTRL_REG 0x1A
#define SHDN_CMD_USE_BIT BIT(1)
#define SHDN_CMD_POLARITY_BIT BIT(2)
#define CURRENT_GAIN_LSB_REG 0x1D
#define CURRENT_GAIN_MSB_REG 0x1E
/* Command Registers */
#define CMD_I2C_REG 0x40
#define ALLOW_VOLATILE_BIT BIT(6)
#define FG_ACCESS_ENABLED_BIT BIT(5)
#define FG_RESET_BIT BIT(4)
#define CYCLE_STRETCH_CLEAR_BIT BIT(3)
#define CMD_IL_REG 0x41
#define USB_CTRL_MASK SMB1360_MASK(1, 0)
#define USB_100_BIT 0x01
#define USB_500_BIT 0x00
#define USB_AC_BIT 0x02
#define SHDN_CMD_BIT BIT(7)
#define CMD_CHG_REG 0x42
#define CMD_CHG_EN BIT(1)
#define CMD_OTG_EN_BIT BIT(0)
/* Status Registers */
#define STATUS_1_REG 0x48
#define AICL_CURRENT_STATUS_MASK SMB1360_MASK(6, 0)
#define AICL_LIMIT_1500MA 0xF
#define STATUS_3_REG 0x4B
#define CHG_HOLD_OFF_BIT BIT(3)
#define CHG_TYPE_MASK SMB1360_MASK(2, 1)
#define CHG_TYPE_SHIFT 1
#define BATT_NOT_CHG_VAL 0x0
#define BATT_PRE_CHG_VAL 0x1
#define BATT_FAST_CHG_VAL 0x2
#define BATT_TAPER_CHG_VAL 0x3
#define CHG_EN_BIT BIT(0)
#define STATUS_4_REG 0x4C
#define CYCLE_STRETCH_ACTIVE_BIT BIT(5)
#define REVISION_CTRL_REG 0x4F
#define DEVICE_REV_MASK SMB1360_MASK(3, 0)
/* IRQ Status Registers */
#define IRQ_A_REG 0x50
#define IRQ_A_HOT_HARD_BIT BIT(6)
#define IRQ_A_COLD_HARD_BIT BIT(4)
#define IRQ_A_HOT_SOFT_BIT BIT(2)
#define IRQ_A_COLD_SOFT_BIT BIT(0)
#define IRQ_B_REG 0x51
#define IRQ_B_BATT_TERMINAL_BIT BIT(6)
#define IRQ_B_BATT_MISSING_BIT BIT(4)
#define IRQ_C_REG 0x52
#define IRQ_C_CHG_TERM BIT(0)
#define IRQ_D_REG 0x53
#define IRQ_E_REG 0x54
#define IRQ_E_USBIN_UV_BIT BIT(0)
#define IRQ_F_REG 0x55
#define IRQ_G_REG 0x56
#define IRQ_H_REG 0x57
#define IRQ_I_REG 0x58
#define FG_ACCESS_ALLOWED_BIT BIT(0)
#define BATT_ID_RESULT_BIT SMB1360_MASK(6, 4)
#define BATT_ID_SHIFT 4
/* FG registers - IRQ config register */
#define SOC_MAX_REG 0x24
#define SOC_MIN_REG 0x25
#define VTG_EMPTY_REG 0x26
#define SOC_DELTA_REG 0x28
#define JEITA_SOFT_COLD_REG 0x29
#define JEITA_SOFT_HOT_REG 0x2A
#define VTG_MIN_REG 0x2B
/* FG SHADOW registers */
#define SHDW_FG_ESR_ACTUAL 0x20
#define SHDW_FG_BATT_STATUS 0x60
#define BATTERY_PROFILE_BIT BIT(0)
#define SHDW_FG_MSYS_SOC 0x61
#define SHDW_FG_CAPACITY 0x62
#define SHDW_FG_VTG_NOW 0x69
#define SHDW_FG_CURR_NOW 0x6B
#define SHDW_FG_BATT_TEMP 0x6D
#define VOLTAGE_PREDICTED_REG 0x80
#define CC_TO_SOC_COEFF 0xBA
#define NOMINAL_CAPACITY_REG 0xBC
#define ACTUAL_CAPACITY_REG 0xBE
#define FG_AUTO_RECHARGE_SOC 0xD2
#define FG_SYS_CUTOFF_V_REG 0xD3
#define FG_CC_TO_CV_V_REG 0xD5
#define FG_ITERM_REG 0xD9
#define FG_THERM_C1_COEFF_REG 0xDB
#define FG_IBATT_STANDBY_REG 0xCF
#define FG_I2C_CFG_MASK SMB1360_MASK(2, 1)
#define FG_CFG_I2C_ADDR 0x2
#define FG_PROFILE_A_ADDR 0x4
#define FG_PROFILE_B_ADDR 0x6
/* Constants */
#define CURRENT_100_MA 100
#define CURRENT_500_MA 500
#define MAX_8_BITS 255
#define JEITA_WORK_MS 3000
#define FG_RESET_THRESHOLD_MV 15
#define SMB1360_REV_1 0x01
#define SMB1360_POWERON_DELAY_MS 2000
#define SMB1360_FG_RESET_DELAY_MS 1500
enum {
WRKRND_FG_CONFIG_FAIL = BIT(0),
WRKRND_BATT_DET_FAIL = BIT(1),
WRKRND_USB100_FAIL = BIT(2),
WRKRND_HARD_JEITA = BIT(3),
};
enum {
USER = BIT(0),
};
enum {
PARALLEL_USER = BIT(0),
PARALLEL_CURRENT = BIT(1),
PARALLEL_JEITA_SOFT = BIT(2),
PARALLEL_JEITA_HARD = BIT(3),
PARALLEL_EOC = BIT(4),
};
enum fg_i2c_access_type {
FG_ACCESS_CFG = 0x1,
FG_ACCESS_PROFILE_A = 0x2,
FG_ACCESS_PROFILE_B = 0x3
};
enum {
BATTERY_PROFILE_A,
BATTERY_PROFILE_B,
BATTERY_PROFILE_MAX,
};
static int otg_curr_ma[] = {350, 550, 950, 1500};
struct otp_backup_pool {
u8 reg_start;
u8 reg_end;
u8 start_now;
u16 alg_bitmap;
bool initialized;
struct mutex lock;
};
enum otp_backup_alg {
OTP_BACKUP_NOT_USE = 0,
OTP_BACKUP_FG_USE,
OTP_BACKUP_PROF_A_USE,
OTP_BACKUP_PROF_B_USE,
};
struct smb1360_otg_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
};
enum wakeup_src {
WAKEUP_SRC_FG_ACCESS = 0,
WAKEUP_SRC_JEITA_SOFT,
WAKEUP_SRC_PARALLEL,
WAKEUP_SRC_MIN_SOC,
WAKEUP_SRC_EMPTY_SOC,
WAKEUP_SRC_JEITA_HYSTERSIS,
WAKEUP_SRC_MAX,
};
#define WAKEUP_SRC_MASK (~(~0 << WAKEUP_SRC_MAX))
struct smb1360_wakeup_source {
struct wakeup_source source;
unsigned long enabled_bitmap;
spinlock_t ws_lock;
};
static const unsigned int smb1360_extcon_cable[] = {
EXTCON_USB,
EXTCON_USB_HOST,
EXTCON_NONE,
};
struct smb1360_chip {
struct i2c_client *client;
struct device *dev;
u8 revision;
u8 soft_hot_rt_stat;
u8 soft_cold_rt_stat;
struct delayed_work jeita_work;
struct delayed_work delayed_init_work;
unsigned short default_i2c_addr;
unsigned short fg_i2c_addr;
bool pulsed_irq;
struct completion fg_mem_access_granted;
/* wakeup source */
struct smb1360_wakeup_source smb1360_ws;
/* configuration data - charger */
int fake_battery_soc;
bool batt_id_disabled;
bool charging_disabled;
bool recharge_disabled;
bool chg_inhibit_disabled;
bool iterm_disabled;
bool shdn_after_pwroff;
bool config_hard_thresholds;
bool soft_jeita_supported;
bool ov_ends_chg_cycle_disabled;
int iterm_ma;
int vfloat_mv;
int safety_time;
int resume_delta_mv;
u32 default_batt_profile;
unsigned int thermal_levels;
unsigned int therm_lvl_sel;
unsigned int *thermal_mitigation;
int otg_batt_curr_limit;
bool min_icl_usb100;
int cold_bat_decidegc;
int hot_bat_decidegc;
int cool_bat_decidegc;
int warm_bat_decidegc;
int cool_bat_mv;
int warm_bat_mv;
int cool_bat_ma;
int warm_bat_ma;
int soft_cold_thresh;
int soft_hot_thresh;
/* parallel-chg params */
int fastchg_current;
int parallel_chg_disable_status;
int max_parallel_chg_current;
bool parallel_charging;
/* configuration data - fg */
int soc_max;
int soc_min;
int delta_soc;
int voltage_min_mv;
int voltage_empty_mv;
int batt_capacity_mah;
int cc_soc_coeff;
int v_cutoff_mv;
int fg_iterm_ma;
int fg_ibatt_standby_ma;
int fg_thermistor_c1_coeff;
int fg_cc_to_cv_mv;
int fg_auto_recharge_soc;
bool empty_soc_disabled;
int fg_reset_threshold_mv;
bool fg_reset_at_pon;
bool rsense_10mohm;
bool otg_fet_present;
bool fet_gain_enabled;
int otg_fet_enable_gpio;
/* status tracking */
int voltage_now;
int current_now;
int resistance_now;
int temp_now;
int soc_now;
int fcc_mah;
bool usb_present;
bool batt_present;
bool batt_hot;
bool batt_cold;
bool batt_warm;
bool batt_cool;
bool batt_full;
bool resume_completed;
bool irq_waiting;
bool irq_disabled;
bool empty_soc;
bool awake_min_soc;
int workaround_flags;
u8 irq_cfg_mask[3];
int usb_psy_ma;
int charging_disabled_status;
u32 connected_rid;
u32 profile_rid[BATTERY_PROFILE_MAX];
u32 peek_poke_address;
u32 fg_access_type;
u32 fg_peek_poke_address;
int skip_writes;
int skip_reads;
enum power_supply_type usb_supply_type;
struct dentry *debug_root;
struct qpnp_vadc_chip *vadc_dev;
struct power_supply *parallel_psy;
struct power_supply_desc parallel_psy_d;
struct power_supply *usb_psy;
struct power_supply_desc usb_psy_d;
struct power_supply *batt_psy;
struct power_supply_desc batt_psy_d;
struct smb1360_otg_regulator otg_vreg;
struct mutex irq_complete;
struct mutex charging_disable_lock;
struct mutex current_change_lock;
struct mutex read_write_lock;
struct mutex parallel_chg_lock;
struct work_struct parallel_work;
struct mutex otp_gain_lock;
struct mutex fg_access_request_lock;
struct otp_backup_pool otp_backup;
u8 current_gain_otp_reg;
bool otp_hard_jeita_config;
int otp_cold_bat_decidegc;
int otp_hot_bat_decidegc;
u8 hard_jeita_otp_reg;
struct work_struct jeita_hysteresis_work;
int cold_hysteresis;
int hot_hysteresis;
struct extcon_dev *extcon;
};
static int chg_time[] = {
192,
384,
768,
1536,
};
static int input_current_limit[] = {
300, 400, 450, 500, 600, 700, 800, 850, 900,
950, 1000, 1100, 1200, 1300, 1400, 1500,
};
static int fastchg_current[] = {
450, 600, 750, 900, 1050, 1200, 1350, 1500,
};
static void smb1360_stay_awake(struct smb1360_wakeup_source *source,
enum wakeup_src wk_src)
{
unsigned long flags;
spin_lock_irqsave(&source->ws_lock, flags);
if (!__test_and_set_bit(wk_src, &source->enabled_bitmap)) {
__pm_stay_awake(&source->source);
pr_debug("enabled source %s, wakeup_src %d\n",
source->source.name, wk_src);
}
spin_unlock_irqrestore(&source->ws_lock, flags);
}
static void smb1360_relax(struct smb1360_wakeup_source *source,
enum wakeup_src wk_src)
{
unsigned long flags;
spin_lock_irqsave(&source->ws_lock, flags);
if (__test_and_clear_bit(wk_src, &source->enabled_bitmap) &&
!(source->enabled_bitmap & WAKEUP_SRC_MASK)) {
__pm_relax(&source->source);
pr_debug("disabled source %s\n", source->source.name);
}
spin_unlock_irqrestore(&source->ws_lock, flags);
pr_debug("relax source %s, wakeup_src %d\n",
source->source.name, wk_src);
}
static void smb1360_wakeup_src_init(struct smb1360_chip *chip)
{
spin_lock_init(&chip->smb1360_ws.ws_lock);
wakeup_source_init(&chip->smb1360_ws.source, "smb1360");
}
static int is_between(int value, int left, int right)
{
if (left >= right && left >= value && value >= right)
return 1;
if (left <= right && left <= value && value <= right)
return 1;
return 0;
}
static int bound(int val, int min, int max)
{
if (val < min)
return min;
if (val > max)
return max;
return val;
}
static int __smb1360_read(struct smb1360_chip *chip, int reg,
u8 *val)
{
s32 ret;
ret = i2c_smbus_read_byte_data(chip->client, reg);
if (ret < 0) {
dev_err(chip->dev,
"i2c read fail: can't read from %02x: %d\n", reg, ret);
return ret;
}
*val = ret;
pr_debug("Reading 0x%02x=0x%02x\n", reg, *val);
return 0;
}
static int __smb1360_write(struct smb1360_chip *chip, int reg,
u8 val)
{
s32 ret;
ret = i2c_smbus_write_byte_data(chip->client, reg, val);
if (ret < 0) {
dev_err(chip->dev,
"i2c write fail: can't write %02x to %02x: %d\n",
val, reg, ret);
return ret;
}
pr_debug("Writing 0x%02x=0x%02x\n", reg, val);
return 0;
}
static int smb1360_read(struct smb1360_chip *chip, int reg,
u8 *val)
{
int rc;
if (chip->skip_reads) {
*val = 0;
return 0;
}
mutex_lock(&chip->read_write_lock);
rc = __smb1360_read(chip, reg, val);
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb1360_write(struct smb1360_chip *chip, int reg,
u8 val)
{
int rc;
if (chip->skip_writes)
return 0;
mutex_lock(&chip->read_write_lock);
rc = __smb1360_write(chip, reg, val);
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb1360_fg_read(struct smb1360_chip *chip, int reg,
u8 *val)
{
int rc;
if (chip->skip_reads) {
*val = 0;
return 0;
}
mutex_lock(&chip->read_write_lock);
chip->client->addr = chip->fg_i2c_addr;
rc = __smb1360_read(chip, reg, val);
chip->client->addr = chip->default_i2c_addr;
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb1360_fg_write(struct smb1360_chip *chip, int reg,
u8 val)
{
int rc;
if (chip->skip_writes)
return 0;
mutex_lock(&chip->read_write_lock);
chip->client->addr = chip->fg_i2c_addr;
rc = __smb1360_write(chip, reg, val);
chip->client->addr = chip->default_i2c_addr;
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb1360_read_bytes(struct smb1360_chip *chip, int reg,
u8 *val, u8 bytes)
{
s32 rc;
if (chip->skip_reads) {
*val = 0;
return 0;
}
mutex_lock(&chip->read_write_lock);
rc = i2c_smbus_read_i2c_block_data(chip->client, reg, bytes, val);
if (rc < 0)
dev_err(chip->dev,
"i2c read fail: can't read %d bytes from %02x: %d\n",
bytes, reg, rc);
mutex_unlock(&chip->read_write_lock);
return (rc < 0) ? rc : 0;
}
static int smb1360_write_bytes(struct smb1360_chip *chip, int reg,
u8 *val, u8 bytes)
{
s32 rc;
if (chip->skip_writes) {
*val = 0;
return 0;
}
mutex_lock(&chip->read_write_lock);
rc = i2c_smbus_write_i2c_block_data(chip->client, reg, bytes, val);
if (rc < 0)
dev_err(chip->dev,
"i2c write fail: can't read %d bytes from %02x: %d\n",
bytes, reg, rc);
mutex_unlock(&chip->read_write_lock);
return (rc < 0) ? rc : 0;
}
static int smb1360_masked_write(struct smb1360_chip *chip, int reg,
u8 mask, u8 val)
{
s32 rc;
u8 temp;
if (chip->skip_writes || chip->skip_reads)
return 0;
mutex_lock(&chip->read_write_lock);
rc = __smb1360_read(chip, reg, &temp);
if (rc < 0) {
dev_err(chip->dev, "read failed: reg=%03X, rc=%d\n", reg, rc);
goto out;
}
temp &= ~mask;
temp |= val & mask;
rc = __smb1360_write(chip, reg, temp);
if (rc < 0) {
dev_err(chip->dev,
"write failed: reg=%03X, rc=%d\n", reg, rc);
}
out:
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb1360_select_fg_i2c_address(struct smb1360_chip *chip)
{
unsigned short addr = chip->default_i2c_addr << 0x1;
switch (chip->fg_access_type) {
case FG_ACCESS_CFG:
addr = (addr & ~FG_I2C_CFG_MASK) | FG_CFG_I2C_ADDR;
break;
case FG_ACCESS_PROFILE_A:
addr = (addr & ~FG_I2C_CFG_MASK) | FG_PROFILE_A_ADDR;
break;
case FG_ACCESS_PROFILE_B:
addr = (addr & ~FG_I2C_CFG_MASK) | FG_PROFILE_B_ADDR;
break;
default:
pr_err("Invalid FG access type=%d\n", chip->fg_access_type);
return -EINVAL;
}
chip->fg_i2c_addr = addr >> 0x1;
pr_debug("FG_access_type=%d fg_i2c_addr=%x\n", chip->fg_access_type,
chip->fg_i2c_addr);
return 0;
}
#define EXPONENT_MASK 0xF800
#define MANTISSA_MASK 0x3FF
#define SIGN_MASK 0x400
#define EXPONENT_SHIFT 11
#define SIGN_SHIFT 10
#define MICRO_UNIT 1000000ULL
static int64_t float_decode(u16 reg)
{
int64_t final_val, exponent_val, mantissa_val;
int exponent, mantissa, n;
bool sign;
exponent = (reg & EXPONENT_MASK) >> EXPONENT_SHIFT;
mantissa = (reg & MANTISSA_MASK);
sign = !!(reg & SIGN_MASK);
pr_debug("exponent=%d mantissa=%d sign=%d\n", exponent, mantissa, sign);
mantissa_val = mantissa * MICRO_UNIT;
n = exponent - 15;
if (n < 0)
exponent_val = MICRO_UNIT >> -n;
else
exponent_val = MICRO_UNIT << n;
n = n - 10;
if (n < 0)
mantissa_val >>= -n;
else
mantissa_val <<= n;
final_val = exponent_val + mantissa_val;
if (sign)
final_val *= -1;
return final_val;
}
#define MAX_MANTISSA (1023 * 1000000ULL)
static unsigned int float_encode(int64_t float_val)
{
int exponent = 0, sign = 0;
unsigned int final_val = 0;
if (float_val == 0)
return 0;
if (float_val < 0) {
sign = 1;
float_val = -float_val;
}
/* Reduce large mantissa until it fits into 10 bit */
while (float_val >= MAX_MANTISSA) {
exponent++;
float_val >>= 1;
}
/* Increase small mantissa to improve precision */
while (float_val < MAX_MANTISSA && exponent > -25) {
exponent--;
float_val <<= 1;
}
exponent = exponent + 25;
/* Convert mantissa from micro-units to units */
float_val = div_s64((float_val + MICRO_UNIT), (int)MICRO_UNIT);
if (float_val == 1024) {
exponent--;
float_val <<= 1;
}
float_val -= 1024;
/* Ensure that resulting number is within range */
if (float_val > MANTISSA_MASK)
float_val = MANTISSA_MASK;
/* Convert to 5 bit exponent, 11 bit mantissa */
final_val = (float_val & MANTISSA_MASK) | (sign << SIGN_SHIFT) |
((exponent << EXPONENT_SHIFT) & EXPONENT_MASK);
return final_val;
}
/* FG reset could only be done after FG access being granted */
static int smb1360_force_fg_reset(struct smb1360_chip *chip)
{
int rc;
rc = smb1360_masked_write(chip, CMD_I2C_REG, FG_RESET_BIT,
FG_RESET_BIT);
if (rc) {
pr_err("Couldn't reset FG rc=%d\n", rc);
return rc;
}
msleep(SMB1360_FG_RESET_DELAY_MS);
rc = smb1360_masked_write(chip, CMD_I2C_REG, FG_RESET_BIT, 0);
if (rc)
pr_err("Couldn't un-reset FG rc=%d\n", rc);
return rc;
}
/*
* Requesting FG access relys on the FG_ACCESS_ALLOWED IRQ.
* This function can only be called after interrupt handler
* being installed successfully.
*/
#define SMB1360_FG_ACCESS_TIMEOUT_MS 5000
#define SMB1360_FG_ACCESS_RETRY_COUNT 3
static int smb1360_enable_fg_access(struct smb1360_chip *chip)
{
int rc = 0;
u8 reg, retry = SMB1360_FG_ACCESS_RETRY_COUNT;
pr_debug("request FG memory access\n");
/*
* read the ACCESS_ALLOW status bit firstly to
* check if the access was granted before
*/
mutex_lock(&chip->fg_access_request_lock);
smb1360_stay_awake(&chip->smb1360_ws, WAKEUP_SRC_FG_ACCESS);
rc = smb1360_read(chip, IRQ_I_REG, &reg);
if (rc) {
pr_err("Couldn't read IRQ_I_REG, rc=%d\n", rc);
goto bail_i2c;
} else if (reg & FG_ACCESS_ALLOWED_BIT) {
pr_debug("FG access was granted\n");
goto bail_i2c;
}
/* request FG access */
rc = smb1360_masked_write(chip, CMD_I2C_REG, FG_ACCESS_ENABLED_BIT,
FG_ACCESS_ENABLED_BIT);
if (rc) {
pr_err("Couldn't enable FG access rc=%d\n", rc);
goto bail_i2c;
}
while (retry--) {
rc = wait_for_completion_interruptible_timeout(
&chip->fg_mem_access_granted,
msecs_to_jiffies(SMB1360_FG_ACCESS_TIMEOUT_MS));
if (rc <= 0)
pr_debug("FG access timeout, retry: %d\n", retry);
else
break;
}
if (rc == 0) /* timed out */
rc = -ETIMEDOUT;
else if (rc > 0) /* completed */
rc = 0;
/* Clear the FG access bit if request failed */
if (rc < 0) {
rc = smb1360_masked_write(chip, CMD_I2C_REG,
FG_ACCESS_ENABLED_BIT, 0);
if (rc)
pr_err("Couldn't disable FG access rc=%d\n", rc);
}
bail_i2c:
smb1360_relax(&chip->smb1360_ws, WAKEUP_SRC_FG_ACCESS);
mutex_unlock(&chip->fg_access_request_lock);
return rc;
}
static inline bool is_device_suspended(struct smb1360_chip *chip)
{
return !chip->resume_completed;
}
static int smb1360_disable_fg_access(struct smb1360_chip *chip)
{
int rc;
rc = smb1360_masked_write(chip, CMD_I2C_REG, FG_ACCESS_ENABLED_BIT, 0);
if (rc)
pr_err("Couldn't disable FG access rc=%d\n", rc);
init_completion(&chip->fg_mem_access_granted);
return rc;
}
static int smb1360_enable_volatile_writes(struct smb1360_chip *chip)
{
int rc;
rc = smb1360_masked_write(chip, CMD_I2C_REG,
ALLOW_VOLATILE_BIT, ALLOW_VOLATILE_BIT);
if (rc < 0)
dev_err(chip->dev,
"Couldn't set VOLATILE_W_PERM_BIT rc=%d\n", rc);
return rc;
}
static void smb1360_otp_backup_pool_init(struct smb1360_chip *chip)
{
struct otp_backup_pool *pool = &chip->otp_backup;
pool->reg_start = 0xE0;
pool->reg_end = 0xEF;
pool->start_now = pool->reg_start;
mutex_init(&pool->lock);
}
static int smb1360_alloc_otp_backup_register(struct smb1360_chip *chip,
u8 size, int usage)
{
int rc = 0, i;
u8 inv_pos;
struct otp_backup_pool *pool = &chip->otp_backup;
if (size % 2) {
pr_err("Must be allocated with pairs\n");
return -EINVAL;
}
mutex_lock(&pool->lock);
if (pool->start_now + size > pool->reg_end) {
pr_err("Allocation fail: start = 0x%x, size = %d\n",
pool->start_now, size);
mutex_unlock(&pool->lock);
return -EBUSY;
}
rc = pool->start_now;
inv_pos = pool->reg_end - pool->start_now + 1;
for (i = 0; i < size; i = i + 2) {
inv_pos -= (i ? 2 : 0);
pool->alg_bitmap |= usage << (inv_pos - 2);
}
pr_debug("Allocation success, start = 0x%x, size = %d, alg_bitmap = 0x%x\n",
rc, size, pool->alg_bitmap);
pool->start_now += size;
mutex_unlock(&pool->lock);
return rc;
}
#define OTP_BACKUP_WA_ALG_1 0xF0
#define OTP_BACKUP_WA_ALG_2 0xF1
static int smb1360_otp_backup_alg_update(struct smb1360_chip *chip)
{
int rc = 0;
struct otp_backup_pool *pool = &chip->otp_backup;
mutex_lock(&pool->lock);
rc = smb1360_fg_write(chip, OTP_BACKUP_WA_ALG_1,
(u8)(pool->alg_bitmap >> 8));
rc |= smb1360_fg_write(chip, OTP_BACKUP_WA_ALG_2,
(u8)(pool->alg_bitmap));
if (rc)
pr_err("Write FG address F0/F1 failed, rc = %d\n", rc);
mutex_unlock(&pool->lock);
return rc;
}
#define TRIM_1C_REG 0x1C
#define CHECK_USB100_GOOD_BIT BIT(6)
static bool is_usb100_broken(struct smb1360_chip *chip)
{
int rc;
u8 reg;
rc = smb1360_read(chip, TRIM_1C_REG, &reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read trim 1C reg rc = %d\n", rc);
return rc;
}
return !!(reg & CHECK_USB100_GOOD_BIT);
}
static int read_revision(struct smb1360_chip *chip, u8 *revision)
{
int rc;
*revision = 0;
rc = smb1360_read(chip, REVISION_CTRL_REG, revision);
if (rc)
dev_err(chip->dev, "Couldn't read REVISION_CTRL_REG rc=%d", rc);
*revision &= DEVICE_REV_MASK;
return rc;
}
#define MIN_FLOAT_MV 3460
#define MAX_FLOAT_MV 4730
#define VFLOAT_STEP_MV 10
static int smb1360_float_voltage_set(struct smb1360_chip *chip, int vfloat_mv)
{
u8 temp;
if ((vfloat_mv < MIN_FLOAT_MV) || (vfloat_mv > MAX_FLOAT_MV)) {
dev_err(chip->dev, "bad float voltage mv =%d asked to set\n",
vfloat_mv);
return -EINVAL;
}
temp = (vfloat_mv - MIN_FLOAT_MV) / VFLOAT_STEP_MV;
return smb1360_masked_write(chip, BATT_CHG_FLT_VTG_REG,
VFLOAT_MASK, temp);
}
#define MIN_RECHG_MV 50
#define MAX_RECHG_MV 300
static int smb1360_recharge_threshold_set(struct smb1360_chip *chip,
int resume_mv)
{
u8 temp;
if ((resume_mv < MIN_RECHG_MV) || (resume_mv > MAX_RECHG_MV)) {
dev_err(chip->dev, "bad rechg_thrsh =%d asked to set\n",
resume_mv);
return -EINVAL;
}
temp = resume_mv / 100;
return smb1360_masked_write(chip, CFG_BATT_CHG_REG,
RECHG_MV_MASK, temp << RECHG_MV_SHIFT);
}
static int __smb1360_charging_disable(struct smb1360_chip *chip, bool disable)
{
int rc;
rc = smb1360_masked_write(chip, CMD_CHG_REG,
CMD_CHG_EN, disable ? 0 : CMD_CHG_EN);
if (rc < 0)
pr_err("Couldn't set CHG_ENABLE_BIT disable=%d rc = %d\n",
disable, rc);
else
pr_debug("CHG_EN status=%d\n", !disable);
return rc;
}
static int smb1360_charging_disable(struct smb1360_chip *chip, int reason,
int disable)
{
int rc = 0;
int disabled;
mutex_lock(&chip->charging_disable_lock);
disabled = chip->charging_disabled_status;
pr_debug("reason=%d requested_disable=%d disabled_status=%d\n",
reason, disable, disabled);
if (disable == true)
disabled |= reason;
else
disabled &= ~reason;
if (disabled)
rc = __smb1360_charging_disable(chip, true);
else
rc = __smb1360_charging_disable(chip, false);
if (rc)
pr_err("Couldn't disable charging for reason=%d rc=%d\n",
rc, reason);
else
chip->charging_disabled_status = disabled;
mutex_unlock(&chip->charging_disable_lock);
return rc;
}
static int smb1360_soft_jeita_comp_enable(struct smb1360_chip *chip,
bool enable)
{
int rc = 0;
rc = smb1360_masked_write(chip, CHG_CMP_CFG, JEITA_COMP_EN_MASK,
enable ? JEITA_COMP_EN_BIT : 0);
if (rc)
pr_err("Couldn't %s JEITA compensation\n", enable ?
"enable" : "disable");
return rc;
}
static enum power_supply_property smb1360_battery_properties[] = {
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CHARGING_ENABLED,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_RESISTANCE,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL,
};
static int smb1360_get_prop_batt_present(struct smb1360_chip *chip)
{
return chip->batt_present;
}
static int smb1360_get_prop_batt_status(struct smb1360_chip *chip)
{
int rc;
u8 reg = 0, chg_type;
if (is_device_suspended(chip))
return POWER_SUPPLY_STATUS_UNKNOWN;
if (chip->batt_full)
return POWER_SUPPLY_STATUS_FULL;
rc = smb1360_read(chip, STATUS_3_REG, &reg);
if (rc) {
pr_err("Couldn't read STATUS_3_REG rc=%d\n", rc);
return POWER_SUPPLY_STATUS_UNKNOWN;
}
pr_debug("STATUS_3_REG = %x\n", reg);
if (reg & CHG_HOLD_OFF_BIT)
return POWER_SUPPLY_STATUS_NOT_CHARGING;
chg_type = (reg & CHG_TYPE_MASK) >> CHG_TYPE_SHIFT;
if (chg_type == BATT_NOT_CHG_VAL)
return POWER_SUPPLY_STATUS_DISCHARGING;
else
return POWER_SUPPLY_STATUS_CHARGING;
}
static int smb1360_get_prop_charge_type(struct smb1360_chip *chip)
{
int rc;
u8 reg = 0;
u8 chg_type;
if (is_device_suspended(chip))
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
rc = smb1360_read(chip, STATUS_3_REG, &reg);
if (rc) {
pr_err("Couldn't read STATUS_3_REG rc=%d\n", rc);
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
}
chg_type = (reg & CHG_TYPE_MASK) >> CHG_TYPE_SHIFT;
if (chg_type == BATT_NOT_CHG_VAL)
return POWER_SUPPLY_CHARGE_TYPE_NONE;
else if ((chg_type == BATT_FAST_CHG_VAL) ||
(chg_type == BATT_TAPER_CHG_VAL))
return POWER_SUPPLY_CHARGE_TYPE_FAST;
else if (chg_type == BATT_PRE_CHG_VAL)
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
static int smb1360_get_prop_batt_health(struct smb1360_chip *chip)
{
union power_supply_propval ret = {0, };
if (chip->batt_hot)
ret.intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (chip->batt_cold)
ret.intval = POWER_SUPPLY_HEALTH_COLD;
else if (chip->batt_warm)
ret.intval = POWER_SUPPLY_HEALTH_WARM;
else if (chip->batt_cool)
ret.intval = POWER_SUPPLY_HEALTH_COOL;
else
ret.intval = POWER_SUPPLY_HEALTH_GOOD;
return ret.intval;
}
static int smb1360_get_prop_batt_capacity(struct smb1360_chip *chip)
{
u8 reg;
u32 temp = 0;
int rc, soc = 0;
if (chip->fake_battery_soc >= 0)
return chip->fake_battery_soc;
if (chip->empty_soc) {
pr_debug("empty_soc\n");
return 0;
}
if (is_device_suspended(chip))
return chip->soc_now;
rc = smb1360_read(chip, SHDW_FG_MSYS_SOC, &reg);
if (rc) {
pr_err("Failed to read FG_MSYS_SOC rc=%d\n", rc);
return rc;
}
soc = (100 * reg) / MAX_8_BITS;
temp = (100 * reg) % MAX_8_BITS;
if (temp > (MAX_8_BITS / 2))
soc += 1;
pr_debug("msys_soc_reg=0x%02x, fg_soc=%d batt_full = %d\n", reg,
soc, chip->batt_full);
chip->soc_now = (chip->batt_full ? 100 : bound(soc, 0, 100));
return chip->soc_now;
}
static int smb1360_get_prop_chg_full_design(struct smb1360_chip *chip)
{
u8 reg[2];
int rc, fcc_mah = 0;
if (is_device_suspended(chip))
return chip->fcc_mah;
rc = smb1360_read_bytes(chip, SHDW_FG_CAPACITY, reg, 2);
if (rc) {
pr_err("Failed to read SHDW_FG_CAPACITY rc=%d\n", rc);
return rc;
}
fcc_mah = (reg[1] << 8) | reg[0];
pr_debug("reg[0]=0x%02x reg[1]=0x%02x fcc_mah=%d\n",
reg[0], reg[1], fcc_mah);
chip->fcc_mah = fcc_mah * 1000;
return chip->fcc_mah;
}
static int smb1360_get_prop_batt_temp(struct smb1360_chip *chip)
{
u8 reg[2];
int rc, temp = 0;
if (is_device_suspended(chip))
return chip->temp_now;
rc = smb1360_read_bytes(chip, SHDW_FG_BATT_TEMP, reg, 2);
if (rc) {
pr_err("Failed to read SHDW_FG_BATT_TEMP rc=%d\n", rc);
return rc;
}
temp = (reg[1] << 8) | reg[0];
temp = div_u64(temp * 625, 10000UL); /* temperature in kelvin */
temp = (temp - 273) * 10; /* temperature in decideg */
pr_debug("reg[0]=0x%02x reg[1]=0x%02x temperature=%d\n",
reg[0], reg[1], temp);
chip->temp_now = temp;
return chip->temp_now;
}
static int smb1360_get_prop_voltage_now(struct smb1360_chip *chip)
{
u8 reg[2];
int rc, temp = 0;
if (is_device_suspended(chip))
return chip->voltage_now;
rc = smb1360_read_bytes(chip, SHDW_FG_VTG_NOW, reg, 2);
if (rc) {
pr_err("Failed to read SHDW_FG_VTG_NOW rc=%d\n", rc);
return rc;
}
temp = (reg[1] << 8) | reg[0];
temp = div_u64(temp * 5000, 0x7FFF);
pr_debug("reg[0]=0x%02x reg[1]=0x%02x voltage=%d\n",
reg[0], reg[1], temp * 1000);
chip->voltage_now = temp * 1000;
return chip->voltage_now;
}
static int smb1360_get_prop_batt_resistance(struct smb1360_chip *chip)
{
u8 reg[2];
u16 temp;
int rc;
int64_t resistance;
if (is_device_suspended(chip))
return chip->resistance_now;
rc = smb1360_read_bytes(chip, SHDW_FG_ESR_ACTUAL, reg, 2);
if (rc) {
pr_err("Failed to read FG_ESR_ACTUAL rc=%d\n", rc);
return rc;
}
temp = (reg[1] << 8) | reg[0];
resistance = float_decode(temp) * 2;
pr_debug("reg=0x%02x resistance=%lld\n", temp, resistance);
/* resistance in uohms */
chip->resistance_now = resistance;
return chip->resistance_now;
}
static int smb1360_get_prop_current_now(struct smb1360_chip *chip)
{
u8 reg[2];
int rc, temp = 0;
if (is_device_suspended(chip))
return chip->current_now;
rc = smb1360_read_bytes(chip, SHDW_FG_CURR_NOW, reg, 2);
if (rc) {
pr_err("Failed to read SHDW_FG_CURR_NOW rc=%d\n", rc);
return rc;
}
temp = ((s8)reg[1] << 8) | reg[0];
temp = div_s64(temp * 2500, 0x7FFF);
pr_debug("reg[0]=0x%02x reg[1]=0x%02x current=%d\n",
reg[0], reg[1], temp * 1000);
chip->current_now = temp * 1000;
return chip->current_now;
}
static int smb1360_set_minimum_usb_current(struct smb1360_chip *chip)
{
int rc = 0;
if (chip->min_icl_usb100) {
pr_debug("USB min current set to 100mA\n");
/* set input current limit to minimum (300mA) */
rc = smb1360_masked_write(chip, CFG_BATT_CHG_ICL_REG,
INPUT_CURR_LIM_MASK,
INPUT_CURR_LIM_300MA);
if (rc)
pr_err("Couldn't set ICL mA rc=%d\n", rc);
if (!(chip->workaround_flags & WRKRND_USB100_FAIL))
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_100_BIT);
if (rc)
pr_err("Couldn't configure for USB100 rc=%d\n",
rc);
} else {
pr_debug("USB min current set to 500mA\n");
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_500_BIT);
if (rc)
pr_err("Couldn't configure for USB100 rc=%d\n",
rc);
}
return rc;
}
static struct power_supply *get_parallel_psy(struct smb1360_chip *chip)
{
if (chip->parallel_psy)
return chip->parallel_psy;
chip->parallel_psy = power_supply_get_by_name("usb-parallel");
if (!chip->parallel_psy)
pr_debug("parallel charger not found\n");
return chip->parallel_psy;
}
static int __smb1360_parallel_charger_enable(struct smb1360_chip *chip,
bool enable)
{
struct power_supply *parallel_psy = get_parallel_psy(chip);
union power_supply_propval pval = {0, };
if (!parallel_psy)
return 0;
pval.intval = (enable ? (chip->max_parallel_chg_current * 1000) : 0);
chip->parallel_psy_d.set_property(parallel_psy,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, &pval);
pval.intval = (enable ? 1 : 0);
chip->parallel_psy_d.set_property(parallel_psy,
POWER_SUPPLY_PROP_CHARGING_ENABLED, &pval);
pr_debug("Parallel-charger %s max_chg_current=%d\n",
enable ? "enabled" : "disabled",
enable ? (chip->max_parallel_chg_current * 1000) : 0);
return 0;
}
static int smb1360_parallel_charger_enable(struct smb1360_chip *chip,
int reason, bool enable)
{
int disabled, *disabled_status;
mutex_lock(&chip->parallel_chg_lock);
disabled = chip->parallel_chg_disable_status;
disabled_status = &chip->parallel_chg_disable_status;
pr_debug("reason=0x%x requested=%s disabled_status=0x%x\n",
reason, enable ? "enable" : "disable", disabled);
if (enable == true)
disabled &= ~reason;
else
disabled |= reason;
if (*disabled_status && !disabled)
__smb1360_parallel_charger_enable(chip, true);
if (!(*disabled_status) && disabled)
__smb1360_parallel_charger_enable(chip, false);
*disabled_status = disabled;
pr_debug("disabled_status = %x\n", *disabled_status);
mutex_unlock(&chip->parallel_chg_lock);
return 0;
}
static void smb1360_parallel_work(struct work_struct *work)
{
u8 reg;
int rc, i;
struct smb1360_chip *chip = container_of(work,
struct smb1360_chip, parallel_work);
/* check the AICL settled value */
rc = smb1360_read(chip, STATUS_1_REG, &reg);
if (rc) {
pr_debug("Unable to read AICL status rc=%d\n", rc);
goto exit_work;
}
pr_debug("STATUS_1 (aicl status)=0x%x\n", reg);
if ((reg & AICL_CURRENT_STATUS_MASK) == AICL_LIMIT_1500MA) {
/* Strong Charger - Enable parallel path */
/* find the new fastchg current */
chip->fastchg_current += (chip->max_parallel_chg_current / 2);
for (i = 0; i < ARRAY_SIZE(fastchg_current) - 1; i++) {
if (fastchg_current[i] >= chip->fastchg_current)
break;
}
if (i == ARRAY_SIZE(fastchg_current))
i--;
rc = smb1360_masked_write(chip, CHG_CURRENT_REG,
FASTCHG_CURR_MASK, i << FASTCHG_CURR_SHIFT);
if (rc)
pr_err("Couldn't set fastchg mA rc=%d\n", rc);
pr_debug("fast-chg (parallel-mode) current set to = %d\n",
fastchg_current[i]);
smb1360_parallel_charger_enable(chip, PARALLEL_CURRENT, true);
} else {
/* Weak-charger - Disable parallel path */
smb1360_parallel_charger_enable(chip, PARALLEL_CURRENT, false);
}
exit_work:
smb1360_relax(&chip->smb1360_ws, WAKEUP_SRC_PARALLEL);
}
static int smb1360_set_appropriate_usb_current(struct smb1360_chip *chip)
{
int rc = 0, i, therm_ma, current_ma;
int path_current = chip->usb_psy_ma;
/*
* If battery is absent do not modify the current at all, these
* would be some appropriate values set by the bootloader or default
* configuration and since it is the only source of power we should
* not change it
*/
if (!chip->batt_present) {
pr_debug("ignoring current request since battery is absent\n");
return 0;
}
if (chip->therm_lvl_sel > 0
&& chip->therm_lvl_sel < (chip->thermal_levels - 1))
/*
* consider thermal limit only when it is active and not at
* the highest level
*/
therm_ma = chip->thermal_mitigation[chip->therm_lvl_sel];
else
therm_ma = path_current;
current_ma = min(therm_ma, path_current);
if (chip->workaround_flags & WRKRND_HARD_JEITA) {
if (chip->batt_warm)
current_ma = min(current_ma, chip->warm_bat_ma);
else if (chip->batt_cool)
current_ma = min(current_ma, chip->cool_bat_ma);
}
if (current_ma <= 2) {
/*
* SMB1360 does not support USB suspend -
* so set the current-limit to minimum in suspend.
*/
pr_debug("current_ma=%d <= 2 set USB current to minimum\n",
current_ma);
rc = smb1360_set_minimum_usb_current(chip);
if (rc < 0)
pr_err("Couldn't to set minimum USB current rc = %d\n",
rc);
/* disable parallel charger */
if (chip->parallel_charging)
smb1360_parallel_charger_enable(chip,
PARALLEL_CURRENT, false);
return rc;
}
for (i = ARRAY_SIZE(input_current_limit) - 1; i >= 0; i--) {
if (input_current_limit[i] <= current_ma)
break;
}
if (i < 0) {
pr_debug("Couldn't find ICL mA rc=%d\n", rc);
i = 0;
}
/* set input current limit */
rc = smb1360_masked_write(chip, CFG_BATT_CHG_ICL_REG,
INPUT_CURR_LIM_MASK, i);
if (rc)
pr_err("Couldn't set ICL mA rc=%d\n", rc);
pr_debug("ICL set to = %d\n", input_current_limit[i]);
if ((current_ma <= CURRENT_100_MA) &&
((chip->workaround_flags & WRKRND_USB100_FAIL) ||
!chip->min_icl_usb100)) {
pr_debug("usb100 not supported: usb100_wrkrnd=%d min_icl_100=%d\n",
!!(chip->workaround_flags & WRKRND_USB100_FAIL),
chip->min_icl_usb100);
current_ma = CURRENT_500_MA;
}
if (current_ma <= CURRENT_100_MA) {
/* USB 100 */
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_100_BIT);
if (rc)
pr_err("Couldn't configure for USB100 rc=%d\n", rc);
pr_debug("Setting USB 100\n");
} else if (current_ma <= CURRENT_500_MA) {
/* USB 500 */
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_500_BIT);
if (rc)
pr_err("Couldn't configure for USB500 rc=%d\n", rc);
pr_debug("Setting USB 500\n");
} else {
/* USB AC */
if (chip->rsense_10mohm)
current_ma /= 2;
for (i = ARRAY_SIZE(fastchg_current) - 1; i >= 0; i--) {
if (fastchg_current[i] <= current_ma)
break;
}
if (i < 0) {
pr_debug("Couldn't find fastchg mA rc=%d\n", rc);
i = 0;
}
chip->fastchg_current = fastchg_current[i];
/* set fastchg limit */
rc = smb1360_masked_write(chip, CHG_CURRENT_REG,
FASTCHG_CURR_MASK, i << FASTCHG_CURR_SHIFT);
if (rc)
pr_err("Couldn't set fastchg mA rc=%d\n", rc);
/*
* To move to a new (higher) input-current setting,
* first set USB500 and then USBAC. This makes sure
* that the new ICL setting takes affect.
*/
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_500_BIT);
if (rc)
pr_err("Couldn't configure for USB500 rc=%d\n", rc);
rc = smb1360_masked_write(chip, CMD_IL_REG,
USB_CTRL_MASK, USB_AC_BIT);
if (rc)
pr_err("Couldn't configure for USB AC rc=%d\n", rc);
pr_debug("fast-chg current set to = %d\n", fastchg_current[i]);
}
return rc;
}
static int smb1360_set_jeita_comp_curr(struct smb1360_chip *chip,
int current_ma)
{
int i;
int rc = 0;
for (i = ARRAY_SIZE(fastchg_current) - 1; i >= 0; i--) {
if (fastchg_current[i] <= current_ma)
break;
}
if (i < 0) {
pr_debug("Couldn't find fastchg_current %dmA\n", current_ma);
i = 0;
}
rc = smb1360_masked_write(chip, CHG_CMP_CFG,
JEITA_COMP_CURR_MASK, i);
if (rc)
pr_err("Couldn't configure for Icomp, rc = %d\n", rc);
return rc;
}
#define TEMP_THRE_SET(x) ((x + 300) / 10)
#define TEMP_THRE_GET(x) ((x * 10) - 300)
static int smb1360_set_soft_jeita_threshold(struct smb1360_chip *chip,
int cold_threshold, int hot_threshold)
{
int rc = 0;
rc = smb1360_write(chip, JEITA_SOFT_COLD_REG,
TEMP_THRE_SET(cold_threshold));
if (rc) {
pr_err("Couldn't set soft cold threshold, rc = %d\n", rc);
return rc;
}
chip->soft_cold_thresh = cold_threshold;
rc = smb1360_write(chip, JEITA_SOFT_HOT_REG,
TEMP_THRE_SET(hot_threshold));
if (rc) {
pr_err("Couldn't set soft hot threshold, rc = %d\n", rc);
return rc;
}
chip->soft_hot_thresh = hot_threshold;
return rc;
}
static int smb1360_get_soft_jeita_threshold(struct smb1360_chip *chip,
int *cold_threshold, int *hot_threshold)
{
int rc = 0;
u8 value;
rc = smb1360_read(chip, JEITA_SOFT_COLD_REG, &value);
if (rc) {
pr_err("Couldn't get soft cold threshold, rc = %d\n", rc);
return rc;
}
*cold_threshold = TEMP_THRE_GET(value);
rc = smb1360_read(chip, JEITA_SOFT_HOT_REG, &value);
if (rc) {
pr_err("Couldn't get soft hot threshold, rc = %d\n", rc);
return rc;
}
*hot_threshold = TEMP_THRE_GET(value);
return rc;
}
#define OTP_HARD_COLD_REG_ADDR 0x12
#define OTP_HARD_HOT_REG_ADDR 0x13
static int smb1360_set_otp_hard_jeita_threshold(struct smb1360_chip *chip,
int cold_threshold, int hot_threshold)
{
int rc = 0, i;
u8 reg[4] = { 0 };
u8 otp_reg = 0;
int temp_code;
if (cold_threshold > chip->cool_bat_decidegc ||
chip->cool_bat_decidegc >= chip->warm_bat_decidegc ||
chip->warm_bat_decidegc > hot_threshold) {
pr_err("cold:%d, cool:%d, warm:%d, hot:%d should be ordered in size\n",
cold_threshold, chip->cool_bat_decidegc,
chip->warm_bat_decidegc, hot_threshold);
return -EINVAL;
}
pr_debug("cold:%d, cool:%d, warm:%d, hot:%d\n",
cold_threshold, chip->cool_bat_decidegc,
chip->warm_bat_decidegc, hot_threshold);
if (!chip->hard_jeita_otp_reg) {
otp_reg = smb1360_alloc_otp_backup_register(chip,
ARRAY_SIZE(reg), OTP_BACKUP_FG_USE);
if (otp_reg <= 0) {
pr_err("OTP reg allocation failed for hard JEITA\n");
return otp_reg;
}
chip->hard_jeita_otp_reg = otp_reg;
} else {
otp_reg = chip->hard_jeita_otp_reg;
}
pr_debug("hard_jeita_otp_reg = 0x%x\n", chip->hard_jeita_otp_reg);
reg[0] = (u8)OTP_HARD_HOT_REG_ADDR;
temp_code = TEMP_THRE_SET(hot_threshold);
if (temp_code < 0) {
pr_err("hard hot temp encode failed\n");
return temp_code;
}
reg[1] = (u8)temp_code;
reg[2] = (u8)OTP_HARD_COLD_REG_ADDR;
temp_code = TEMP_THRE_SET(cold_threshold);
if (temp_code < 0) {
pr_err("hard cold temp encode failed\n");
return temp_code;
}
reg[3] = (u8)temp_code;
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("Couldn't request FG access rc = %d\n", rc);
return rc;
}
chip->fg_access_type = FG_ACCESS_CFG;
rc = smb1360_select_fg_i2c_address(chip);
if (rc) {
pr_err("Unable to set FG access I2C address\n");
goto restore_fg;
}
for (i = 0; i < ARRAY_SIZE(reg); i++) {
rc = smb1360_fg_write(chip, (otp_reg + i), reg[i]);
if (rc) {
pr_err("Write FG address 0x%x: 0x%x failed, rc = %d\n",
otp_reg + i, reg[i], rc);
goto restore_fg;
}
pr_debug("Write FG addr=0x%x, value=0x%x\n",
otp_reg + i, reg[i]);
}
rc = smb1360_otp_backup_alg_update(chip);
if (rc) {
pr_err("Update OTP backup algorithm failed\n");
goto restore_fg;
}
rc = smb1360_masked_write(chip, CFG_FG_BATT_CTRL_REG,
CFG_FG_OTP_BACK_UP_ENABLE, CFG_FG_OTP_BACK_UP_ENABLE);
if (rc) {
pr_err("Write reg 0x0E failed, rc = %d\n", rc);
goto restore_fg;
}
restore_fg:
rc = smb1360_disable_fg_access(chip);
if (rc) {
pr_err("Couldn't disable FG access rc = %d\n", rc);
return rc;
}
return rc;
}
static int smb1360_hard_jeita_otp_init(struct smb1360_chip *chip)
{
int rc = 0;
if (!chip->otp_hard_jeita_config)
return rc;
rc = smb1360_set_otp_hard_jeita_threshold(chip,
chip->otp_cold_bat_decidegc, chip->otp_hot_bat_decidegc);
if (rc) {
dev_err(chip->dev,
"Couldn't set OTP hard jeita threshold,rc = %d\n", rc);
return rc;
}
return rc;
}
static int smb1360_system_temp_level_set(struct smb1360_chip *chip,
int lvl_sel)
{
int rc = 0;
int prev_therm_lvl;
if (!chip->thermal_mitigation) {
pr_err("Thermal mitigation not supported\n");
return -EINVAL;
}
if (lvl_sel < 0) {
pr_err("Unsupported level selected %d\n", lvl_sel);
return -EINVAL;
}
if (lvl_sel >= chip->thermal_levels) {
pr_err("Unsupported level selected %d forcing %d\n", lvl_sel,
chip->thermal_levels - 1);
lvl_sel = chip->thermal_levels - 1;
}
if (lvl_sel == chip->therm_lvl_sel)
return 0;
mutex_lock(&chip->current_change_lock);
prev_therm_lvl = chip->therm_lvl_sel;
chip->therm_lvl_sel = lvl_sel;
if (chip->therm_lvl_sel == (chip->thermal_levels - 1)) {
rc = smb1360_set_minimum_usb_current(chip);
if (rc)
pr_err("Couldn't set USB current to minimum rc = %d\n",
rc);
} else {
rc = smb1360_set_appropriate_usb_current(chip);
if (rc)
pr_err("Couldn't set USB current rc = %d\n", rc);
}
mutex_unlock(&chip->current_change_lock);
return rc;
}
static enum power_supply_property smb1360_usb_properties[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_TYPE,
POWER_SUPPLY_PROP_REAL_TYPE,
POWER_SUPPLY_PROP_SDP_CURRENT_MAX,
};
static int smb1360_usb_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int is_battery_charging = 0;
struct smb1360_chip *chip = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_SDP_CURRENT_MAX:
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = chip->usb_psy_ma * 1000;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = chip->usb_present;
break;
case POWER_SUPPLY_PROP_ONLINE:
is_battery_charging = smb1360_get_prop_batt_status(chip);
val->intval = chip->usb_present &&
(is_battery_charging == POWER_SUPPLY_STATUS_CHARGING);
break;
case POWER_SUPPLY_PROP_REAL_TYPE:
val->intval = POWER_SUPPLY_TYPE_UNKNOWN;
if (chip->usb_present &&
(chip->usb_supply_type != POWER_SUPPLY_TYPE_UNKNOWN))
val->intval = chip->usb_supply_type;
break;
case POWER_SUPPLY_PROP_TYPE:
val->intval = POWER_SUPPLY_TYPE_USB;
if (chip->usb_present &&
(chip->usb_supply_type != POWER_SUPPLY_TYPE_UNKNOWN))
val->intval = chip->usb_supply_type;
break;
default:
return -EINVAL;
}
return 0;
}
static int smb1360_usb_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct smb1360_chip *chip = power_supply_get_drvdata(psy);
int rc = 0;
switch (psp) {
case POWER_SUPPLY_PROP_SDP_CURRENT_MAX:
case POWER_SUPPLY_PROP_CURRENT_MAX:
chip->usb_psy_ma = val->intval / 1000;
rc = smb1360_set_appropriate_usb_current(chip);
break;
case POWER_SUPPLY_PROP_TYPE:
case POWER_SUPPLY_PROP_REAL_TYPE:
chip->usb_supply_type = val->intval;
break;
default:
return -EINVAL;
}
power_supply_changed(psy);
return 0;
}
static int smb1360_usb_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_MAX:
return 1;
default:
break;
}
return 0;
}
static int smb1360_battery_set_property(struct power_supply *psy,
enum power_supply_property prop,
const union power_supply_propval *val)
{
struct smb1360_chip *chip = power_supply_get_drvdata(psy);
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
smb1360_charging_disable(chip, USER, !val->intval);
if (chip->parallel_charging)
smb1360_parallel_charger_enable(chip,
PARALLEL_USER, val->intval);
power_supply_changed(chip->batt_psy);
power_supply_changed(chip->usb_psy);
break;
case POWER_SUPPLY_PROP_CAPACITY:
chip->fake_battery_soc = val->intval;
pr_info("fake_soc set to %d\n", chip->fake_battery_soc);
power_supply_changed(chip->batt_psy);
break;
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
smb1360_system_temp_level_set(chip, val->intval);
break;
default:
return -EINVAL;
}
return 0;
}
static int smb1360_battery_is_writeable(struct power_supply *psy,
enum power_supply_property prop)
{
int rc;
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
case POWER_SUPPLY_PROP_CAPACITY:
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
rc = 1;
break;
default:
rc = 0;
break;
}
return rc;
}
static int smb1360_battery_get_property(struct power_supply *psy,
enum power_supply_property prop,
union power_supply_propval *val)
{
struct smb1360_chip *chip = power_supply_get_drvdata(psy);
switch (prop) {
case POWER_SUPPLY_PROP_HEALTH:
val->intval = smb1360_get_prop_batt_health(chip);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = smb1360_get_prop_batt_present(chip);
break;
case POWER_SUPPLY_PROP_STATUS:
val->intval = smb1360_get_prop_batt_status(chip);
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
val->intval = !chip->charging_disabled_status;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = smb1360_get_prop_charge_type(chip);
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = smb1360_get_prop_batt_capacity(chip);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = smb1360_get_prop_chg_full_design(chip);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = smb1360_get_prop_voltage_now(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = smb1360_get_prop_current_now(chip);
break;
case POWER_SUPPLY_PROP_RESISTANCE:
val->intval = smb1360_get_prop_batt_resistance(chip);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = smb1360_get_prop_batt_temp(chip);
break;
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
val->intval = chip->therm_lvl_sel;
break;
default:
return -EINVAL;
}
return 0;
}
static int hot_hard_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("rt_stat = 0x%02x\n", rt_stat);
chip->batt_hot = !!rt_stat;
if (chip->parallel_charging) {
pr_debug("%s parallel-charging\n", chip->batt_hot ?
"Disable" : "Enable");
smb1360_parallel_charger_enable(chip,
PARALLEL_JEITA_HARD, !chip->batt_hot);
}
if (chip->hot_hysteresis) {
smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_JEITA_HYSTERSIS);
schedule_work(&chip->jeita_hysteresis_work);
}
return 0;
}
static int cold_hard_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("rt_stat = 0x%02x\n", rt_stat);
chip->batt_cold = !!rt_stat;
if (chip->parallel_charging) {
pr_debug("%s parallel-charging\n", chip->batt_cold ?
"Disable" : "Enable");
smb1360_parallel_charger_enable(chip,
PARALLEL_JEITA_HARD, !chip->batt_cold);
}
if (chip->cold_hysteresis) {
smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_JEITA_HYSTERSIS);
schedule_work(&chip->jeita_hysteresis_work);
}
return 0;
}
static void smb1360_jeita_hysteresis_work(struct work_struct *work)
{
int rc = 0;
int hard_hot, hard_cold;
struct smb1360_chip *chip = container_of(work,
struct smb1360_chip, jeita_hysteresis_work);
/* disable hard JEITA IRQ first */
rc = smb1360_masked_write(chip, IRQ_CFG_REG,
IRQ_BAT_HOT_COLD_HARD_BIT, 0);
if (rc) {
pr_err("disable hard JEITA IRQ failed, rc = %d\n", rc);
goto exit_worker;
}
hard_hot = chip->otp_hot_bat_decidegc;
hard_cold = chip->otp_cold_bat_decidegc;
if (chip->batt_hot)
hard_hot -= chip->hot_hysteresis;
else if (chip->batt_cold)
hard_cold += chip->cold_hysteresis;
rc = smb1360_set_otp_hard_jeita_threshold(chip, hard_cold, hard_hot);
if (rc) {
pr_err("set hard JEITA threshold failed\n");
goto exit_worker;
}
pr_debug("hard cold: %d, hard hot: %d reprogramed\n",
hard_cold, hard_hot);
/* enable hard JEITA IRQ at the end */
rc = smb1360_masked_write(chip, IRQ_CFG_REG,
IRQ_BAT_HOT_COLD_HARD_BIT, IRQ_BAT_HOT_COLD_HARD_BIT);
if (rc)
pr_err("enable hard JEITA IRQ failed\n");
exit_worker:
smb1360_relax(&chip->smb1360_ws, WAKEUP_SRC_JEITA_HYSTERSIS);
}
/*
* This worker thread should only be called when WRKRND_HARD_JEITA
* is set.
* It is needed to re-program JEITA soft thresholds, compensate
* target voltage and charging current manually.
* The function is required as JEITA hard thresholds can't be programmed.
*/
static void smb1360_jeita_work_fn(struct work_struct *work)
{
int temp;
int rc = 0;
struct smb1360_chip *chip = container_of(work,
struct smb1360_chip, jeita_work.work);
temp = smb1360_get_prop_batt_temp(chip);
if (temp > chip->hot_bat_decidegc) {
/* battery status is hot, only config thresholds */
rc = smb1360_set_soft_jeita_threshold(chip,
chip->warm_bat_decidegc, chip->hot_bat_decidegc);
if (rc) {
dev_err(chip->dev, "Couldn't set jeita threshold\n");
goto end;
}
} else if (temp > chip->warm_bat_decidegc ||
(temp == chip->warm_bat_decidegc && !!chip->soft_hot_rt_stat)) {
/* battery status is warm, do compensation manually */
chip->batt_warm = true;
chip->batt_cool = false;
rc = smb1360_float_voltage_set(chip, chip->warm_bat_mv);
if (rc) {
dev_err(chip->dev, "Couldn't set float voltage\n");
goto end;
}
rc = smb1360_set_appropriate_usb_current(chip);
if (rc)
pr_err("Couldn't set USB current\n");
rc = smb1360_set_soft_jeita_threshold(chip,
chip->warm_bat_decidegc, chip->hot_bat_decidegc);
if (rc) {
dev_err(chip->dev, "Couldn't set jeita threshold\n");
goto end;
}
} else if (temp > chip->cool_bat_decidegc ||
(temp == chip->cool_bat_decidegc && !chip->soft_cold_rt_stat)) {
/* battery status is good, do the normal charging */
chip->batt_warm = false;
chip->batt_cool = false;
rc = smb1360_float_voltage_set(chip, chip->vfloat_mv);
if (rc) {
dev_err(chip->dev, "Couldn't set float voltage\n");
goto end;
}
rc = smb1360_set_appropriate_usb_current(chip);
if (rc)
pr_err("Couldn't set USB current\n");
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cool_bat_decidegc, chip->warm_bat_decidegc);
if (rc) {
dev_err(chip->dev, "Couldn't set jeita threshold\n");
goto end;
}
} else if (temp > chip->cold_bat_decidegc) {
/* battery status is cool, do compensation manually */
chip->batt_cool = true;
chip->batt_warm = false;
rc = smb1360_float_voltage_set(chip, chip->cool_bat_mv);
if (rc) {
dev_err(chip->dev, "Couldn't set float voltage\n");
goto end;
}
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cold_bat_decidegc, chip->cool_bat_decidegc);
if (rc) {
dev_err(chip->dev, "Couldn't set jeita threshold\n");
goto end;
}
} else {
/* battery status is cold, only config thresholds */
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cold_bat_decidegc, chip->cool_bat_decidegc);
if (rc) {
dev_err(chip->dev, "Couldn't set jeita threshold\n");
goto end;
}
}
pr_debug("warm %d, cool %d, soft_cold_rt_sts %d, soft_hot_rt_sts %d, jeita supported %d, threshold_now %d %d\n",
chip->batt_warm, chip->batt_cool, !!chip->soft_cold_rt_stat,
!!chip->soft_hot_rt_stat, chip->soft_jeita_supported,
chip->soft_cold_thresh, chip->soft_hot_thresh);
end:
smb1360_relax(&chip->smb1360_ws, WAKEUP_SRC_JEITA_SOFT);
}
static int hot_soft_handler(struct smb1360_chip *chip, u8 rt_stat)
{
chip->soft_hot_rt_stat = rt_stat;
pr_debug("rt_stat = 0x%02x\n", rt_stat);
if (!chip->config_hard_thresholds)
chip->batt_warm = !!rt_stat;
if (chip->workaround_flags & WRKRND_HARD_JEITA) {
cancel_delayed_work_sync(&chip->jeita_work);
schedule_delayed_work(&chip->jeita_work,
msecs_to_jiffies(JEITA_WORK_MS));
smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_JEITA_SOFT);
}
if (chip->parallel_charging) {
pr_debug("%s parallel-charging\n", chip->batt_warm ?
"Disable" : "Enable");
smb1360_parallel_charger_enable(chip,
PARALLEL_JEITA_SOFT, !chip->batt_warm);
}
return 0;
}
static int cold_soft_handler(struct smb1360_chip *chip, u8 rt_stat)
{
chip->soft_cold_rt_stat = rt_stat;
pr_debug("rt_stat = 0x%02x\n", rt_stat);
if (!chip->config_hard_thresholds)
chip->batt_cool = !!rt_stat;
if (chip->workaround_flags & WRKRND_HARD_JEITA) {
cancel_delayed_work_sync(&chip->jeita_work);
schedule_delayed_work(&chip->jeita_work,
msecs_to_jiffies(JEITA_WORK_MS));
smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_JEITA_SOFT);
}
if (chip->parallel_charging) {
pr_debug("%s parallel-charging\n", chip->batt_cool ?
"Disable" : "Enable");
smb1360_parallel_charger_enable(chip,
PARALLEL_JEITA_SOFT, !chip->batt_cool);
}
return 0;
}
static int battery_missing_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("rt_stat = 0x%02x\n", rt_stat);
chip->batt_present = !rt_stat;
return 0;
}
static int vbat_low_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("vbat low\n");
return 0;
}
static int chg_hot_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_warn_ratelimited("chg hot\n");
return 0;
}
static int chg_term_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("rt_stat = 0x%02x\n", rt_stat);
chip->batt_full = !!rt_stat;
if (chip->parallel_charging) {
pr_debug("%s parallel-charging\n", chip->batt_full ?
"Disable" : "Enable");
smb1360_parallel_charger_enable(chip,
PARALLEL_EOC, !chip->batt_full);
}
return 0;
}
static int chg_fastchg_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("rt_stat = 0x%02x\n", rt_stat);
return 0;
}
static int usbin_uv_handler(struct smb1360_chip *chip, u8 rt_stat)
{
bool usb_present = !rt_stat;
pr_debug("chip->usb_present = %d usb_present = %d\n",
chip->usb_present, usb_present);
if (chip->usb_present && !usb_present) {
/* USB removed */
chip->usb_present = usb_present;
extcon_set_cable_state_(chip->extcon, EXTCON_USB, false);
chip->usb_supply_type = POWER_SUPPLY_TYPE_UNKNOWN;
}
if (!chip->usb_present && usb_present) {
/* USB inserted */
chip->usb_present = usb_present;
extcon_set_cable_state_(chip->extcon, EXTCON_USB, true);
}
power_supply_changed(chip->usb_psy);
return 0;
}
static int aicl_done_handler(struct smb1360_chip *chip, u8 rt_stat)
{
bool aicl_done = !!rt_stat;
pr_debug("AICL done=%d\n", aicl_done);
if (chip->parallel_charging && aicl_done) {
cancel_work_sync(&chip->parallel_work);
smb1360_stay_awake(&chip->smb1360_ws, WAKEUP_SRC_PARALLEL);
schedule_work(&chip->parallel_work);
}
return 0;
}
static int chg_inhibit_handler(struct smb1360_chip *chip, u8 rt_stat)
{
/*
* charger is inserted when the battery voltage is high
* so h/w won't start charging just yet. Treat this as
* battery full
*/
pr_debug("rt_stat = 0x%02x\n", rt_stat);
chip->batt_full = !!rt_stat;
return 0;
}
static int delta_soc_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("SOC changed! - rt_stat = 0x%02x\n", rt_stat);
return 0;
}
static int min_soc_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("SOC dropped below min SOC, rt_stat = 0x%02x\n", rt_stat);
if (chip->awake_min_soc)
rt_stat ? smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_MIN_SOC) :
smb1360_relax(&chip->smb1360_ws,
WAKEUP_SRC_MIN_SOC);
return 0;
}
static int empty_soc_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("SOC empty! rt_stat = 0x%02x\n", rt_stat);
if (!chip->empty_soc_disabled) {
if (rt_stat) {
chip->empty_soc = true;
smb1360_stay_awake(&chip->smb1360_ws,
WAKEUP_SRC_EMPTY_SOC);
pr_warn_ratelimited("SOC is 0\n");
} else {
chip->empty_soc = false;
smb1360_relax(&chip->smb1360_ws,
WAKEUP_SRC_EMPTY_SOC);
}
}
return 0;
}
static int full_soc_handler(struct smb1360_chip *chip, u8 rt_stat)
{
if (rt_stat)
pr_debug("SOC is 100\n");
return 0;
}
static int fg_access_allowed_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("stat=%d\n", !!rt_stat);
if (rt_stat & FG_ACCESS_ALLOWED_BIT) {
pr_debug("FG access granted\n");
complete_all(&chip->fg_mem_access_granted);
}
return 0;
}
static int batt_id_complete_handler(struct smb1360_chip *chip, u8 rt_stat)
{
pr_debug("batt_id = %x\n", (rt_stat & BATT_ID_RESULT_BIT)
>> BATT_ID_SHIFT);
return 0;
}
static int smb1360_adjust_current_gain(struct smb1360_chip *chip,
int gain_factor)
{
int i, rc;
int64_t current_gain, new_current_gain;
u16 reg_value1 = 0, reg_value2 = 0;
u8 reg[4] = {0x1D, 0x00, 0x1E, 0x00};
u8 otp_reg = 0;
if (!chip->current_gain_otp_reg) {
otp_reg = smb1360_alloc_otp_backup_register(chip,
ARRAY_SIZE(reg), OTP_BACKUP_FG_USE);
if (otp_reg <= 0) {
pr_err("OTP reg allocation fail for adjusting current gain\n");
return otp_reg;
}
chip->current_gain_otp_reg = otp_reg;
} else {
otp_reg = chip->current_gain_otp_reg;
}
pr_debug("current_gain_otp_reg = 0x%x\n", chip->current_gain_otp_reg);
if (gain_factor) {
rc = smb1360_fg_read(chip, CURRENT_GAIN_LSB_REG, &reg[1]);
if (rc) {
pr_err("Unable to set FG access I2C address rc=%d\n",
rc);
return rc;
}
rc = smb1360_fg_read(chip, CURRENT_GAIN_MSB_REG, &reg[3]);
if (rc) {
pr_err("Unable to set FG access I2C address rc=%d\n",
rc);
return rc;
}
reg_value1 = (reg[3] << 8) | reg[1];
current_gain = float_decode(reg_value1);
new_current_gain = MICRO_UNIT + (gain_factor * current_gain);
reg_value2 = float_encode(new_current_gain);
reg[1] = reg_value2 & 0xFF;
reg[3] = (reg_value2 & 0xFF00) >> 8;
pr_debug("current_gain_reg=0x%x current_gain_decoded=%lld new_current_gain_decoded=%lld new_current_gain_reg=0x%x\n",
reg_value1, current_gain, new_current_gain, reg_value2);
for (i = 0; i < ARRAY_SIZE(reg); i++) {
pr_debug("Writing reg_add=%x value=%x\n",
otp_reg + i, reg[i]);
rc = smb1360_fg_write(chip, (otp_reg + i), reg[i]);
if (rc) {
pr_err("Write FG address 0x%x failed, rc = %d\n",
otp_reg + i, rc);
return rc;
}
}
rc = smb1360_otp_backup_alg_update(chip);
if (rc) {
pr_err("Update OTP backup algorithm failed\n");
return rc;
}
} else {
pr_debug("Disabling gain correction\n");
rc = smb1360_fg_write(chip, 0xF0, 0x00);
if (rc) {
pr_err("Write fg address 0x%x failed, rc = %d\n",
0xF0, rc);
return rc;
}
}
return 0;
}
static int smb1360_otp_gain_config(struct smb1360_chip *chip, int gain_factor)
{
int rc = 0;
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("Couldn't request FG access rc = %d\n", rc);
return rc;
}
chip->fg_access_type = FG_ACCESS_CFG;
rc = smb1360_select_fg_i2c_address(chip);
if (rc) {
pr_err("Unable to set FG access I2C address\n");
goto restore_fg;
}
rc = smb1360_adjust_current_gain(chip, gain_factor);
if (rc) {
pr_err("Unable to modify current gain rc=%d\n", rc);
goto restore_fg;
}
rc = smb1360_masked_write(chip, CFG_FG_BATT_CTRL_REG,
CFG_FG_OTP_BACK_UP_ENABLE, CFG_FG_OTP_BACK_UP_ENABLE);
if (rc) {
pr_err("Write reg 0x0E failed, rc = %d\n", rc);
goto restore_fg;
}
restore_fg:
rc = smb1360_disable_fg_access(chip);
if (rc) {
pr_err("Couldn't disable FG access rc = %d\n", rc);
return rc;
}
return rc;
}
static int smb1360_otg_disable(struct smb1360_chip *chip)
{
int rc;
rc = smb1360_masked_write(chip, CMD_CHG_REG, CMD_OTG_EN_BIT, 0);
if (rc) {
pr_err("Couldn't disable OTG mode rc=%d\n", rc);
return rc;
}
mutex_lock(&chip->otp_gain_lock);
/* Disable current gain configuration */
if (chip->otg_fet_present && chip->fet_gain_enabled) {
/* Disable FET */
gpio_set_value(chip->otg_fet_enable_gpio, 1);
rc = smb1360_otp_gain_config(chip, 0);
if (rc < 0)
pr_err("Couldn't config OTP gain config rc=%d\n", rc);
else
chip->fet_gain_enabled = false;
}
mutex_unlock(&chip->otp_gain_lock);
return rc;
}
static int otg_fail_handler(struct smb1360_chip *chip, u8 rt_stat)
{
int rc;
pr_debug("OTG Failed stat=%d\n", rt_stat);
rc = smb1360_otg_disable(chip);
if (rc)
pr_err("Couldn't disable OTG mode rc=%d\n", rc);
return 0;
}
static int otg_oc_handler(struct smb1360_chip *chip, u8 rt_stat)
{
int rc;
pr_debug("OTG over-current stat=%d\n", rt_stat);
rc = smb1360_otg_disable(chip);
if (rc)
pr_err("Couldn't disable OTG mode rc=%d\n", rc);
return 0;
}
struct smb_irq_info {
const char *name;
int (*smb_irq)(struct smb1360_chip *chip,
u8 rt_stat);
int high;
int low;
};
struct irq_handler_info {
u8 stat_reg;
u8 val;
u8 prev_val;
struct smb_irq_info irq_info[4];
};
static struct irq_handler_info handlers[] = {
{IRQ_A_REG, 0, 0,
{
{
.name = "cold_soft",
.smb_irq = cold_soft_handler,
},
{
.name = "hot_soft",
.smb_irq = hot_soft_handler,
},
{
.name = "cold_hard",
.smb_irq = cold_hard_handler,
},
{
.name = "hot_hard",
.smb_irq = hot_hard_handler,
},
},
},
{IRQ_B_REG, 0, 0,
{
{
.name = "chg_hot",
.smb_irq = chg_hot_handler,
},
{
.name = "vbat_low",
.smb_irq = vbat_low_handler,
},
{
.name = "battery_missing",
.smb_irq = battery_missing_handler,
},
{
.name = "battery_missing",
.smb_irq = battery_missing_handler,
},
},
},
{IRQ_C_REG, 0, 0,
{
{
.name = "chg_term",
.smb_irq = chg_term_handler,
},
{
.name = "taper",
},
{
.name = "recharge",
},
{
.name = "fast_chg",
.smb_irq = chg_fastchg_handler,
},
},
},
{IRQ_D_REG, 0, 0,
{
{
.name = "prechg_timeout",
},
{
.name = "safety_timeout",
},
{
.name = "aicl_done",
.smb_irq = aicl_done_handler,
},
{
.name = "battery_ov",
},
},
},
{IRQ_E_REG, 0, 0,
{
{
.name = "usbin_uv",
.smb_irq = usbin_uv_handler,
},
{
.name = "usbin_ov",
},
{
.name = "unused",
},
{
.name = "chg_inhibit",
.smb_irq = chg_inhibit_handler,
},
},
},
{IRQ_F_REG, 0, 0,
{
{
.name = "power_ok",
},
{
.name = "unused",
},
{
.name = "otg_fail",
.smb_irq = otg_fail_handler,
},
{
.name = "otg_oc",
.smb_irq = otg_oc_handler,
},
},
},
{IRQ_G_REG, 0, 0,
{
{
.name = "delta_soc",
.smb_irq = delta_soc_handler,
},
{
.name = "chg_error",
},
{
.name = "wd_timeout",
},
{
.name = "unused",
},
},
},
{IRQ_H_REG, 0, 0,
{
{
.name = "min_soc",
.smb_irq = min_soc_handler,
},
{
.name = "max_soc",
},
{
.name = "empty_soc",
.smb_irq = empty_soc_handler,
},
{
.name = "full_soc",
.smb_irq = full_soc_handler,
},
},
},
{IRQ_I_REG, 0, 0,
{
{
.name = "fg_access_allowed",
.smb_irq = fg_access_allowed_handler,
},
{
.name = "fg_data_recovery",
},
{
.name = "batt_id_complete",
.smb_irq = batt_id_complete_handler,
},
},
},
};
#define IRQ_LATCHED_MASK 0x02
#define IRQ_STATUS_MASK 0x01
#define BATT_ID_LATCHED_MASK 0x08
#define BATT_ID_STATUS_MASK 0x07
#define BITS_PER_IRQ 2
static irqreturn_t smb1360_stat_handler(int irq, void *dev_id)
{
struct smb1360_chip *chip = dev_id;
int i, j;
u8 triggered;
u8 changed;
u8 rt_stat, prev_rt_stat, irq_latched_mask, irq_status_mask;
int rc;
int handler_count = 0;
mutex_lock(&chip->irq_complete);
chip->irq_waiting = true;
if (!chip->resume_completed) {
dev_dbg(chip->dev, "IRQ triggered before device-resume\n");
if (!chip->irq_disabled) {
disable_irq_nosync(irq);
chip->irq_disabled = true;
}
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
chip->irq_waiting = false;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
rc = smb1360_read(chip, handlers[i].stat_reg,
&handlers[i].val);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read %d rc = %d\n",
handlers[i].stat_reg, rc);
continue;
}
for (j = 0; j < ARRAY_SIZE(handlers[i].irq_info); j++) {
if (handlers[i].stat_reg == IRQ_I_REG && j == 2) {
irq_latched_mask = BATT_ID_LATCHED_MASK;
irq_status_mask = BATT_ID_STATUS_MASK;
} else {
irq_latched_mask = IRQ_LATCHED_MASK;
irq_status_mask = IRQ_STATUS_MASK;
}
triggered = handlers[i].val
& (irq_latched_mask << (j * BITS_PER_IRQ));
rt_stat = handlers[i].val
& (irq_status_mask << (j * BITS_PER_IRQ));
prev_rt_stat = handlers[i].prev_val
& (irq_status_mask << (j * BITS_PER_IRQ));
changed = prev_rt_stat ^ rt_stat;
if (triggered || changed)
rt_stat ? handlers[i].irq_info[j].high++ :
handlers[i].irq_info[j].low++;
if ((triggered || changed)
&& handlers[i].irq_info[j].smb_irq != NULL) {
handler_count++;
rc = handlers[i].irq_info[j].smb_irq(chip,
rt_stat);
if (rc < 0)
dev_err(chip->dev,
"Couldn't handle %d irq for reg 0x%02x rc = %d\n",
j, handlers[i].stat_reg, rc);
}
}
handlers[i].prev_val = handlers[i].val;
}
pr_debug("handler count = %d\n", handler_count);
if (handler_count)
power_supply_changed(chip->batt_psy);
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
static int show_irq_count(struct seq_file *m, void *data)
{
int i, j, total = 0;
for (i = 0; i < ARRAY_SIZE(handlers); i++)
for (j = 0; j < 4; j++) {
if (!handlers[i].irq_info[j].name)
continue;
seq_printf(m, "%s=%d\t(high=%d low=%d)\n",
handlers[i].irq_info[j].name,
handlers[i].irq_info[j].high
+ handlers[i].irq_info[j].low,
handlers[i].irq_info[j].high,
handlers[i].irq_info[j].low);
total += (handlers[i].irq_info[j].high
+ handlers[i].irq_info[j].low);
}
seq_printf(m, "\n\tTotal = %d\n", total);
return 0;
}
static int irq_count_debugfs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_irq_count, chip);
}
static const struct file_operations irq_count_debugfs_ops = {
.owner = THIS_MODULE,
.open = irq_count_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int get_reg(void *data, u64 *val)
{
struct smb1360_chip *chip = data;
int rc;
u8 temp;
rc = smb1360_read(chip, chip->peek_poke_address, &temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't read reg %x rc = %d\n",
chip->peek_poke_address, rc);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
struct smb1360_chip *chip = data;
int rc;
u8 temp;
temp = (u8) val;
rc = smb1360_write(chip, chip->peek_poke_address, temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't write 0x%02x to 0x%02x rc= %d\n",
chip->peek_poke_address, temp, rc);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(poke_poke_debug_ops, get_reg, set_reg, "0x%02llx\n");
static int fg_get_reg(void *data, u64 *val)
{
struct smb1360_chip *chip = data;
int rc;
u8 temp;
rc = smb1360_select_fg_i2c_address(chip);
if (rc) {
pr_err("Unable to set FG access I2C address\n");
return -EINVAL;
}
rc = smb1360_fg_read(chip, chip->fg_peek_poke_address, &temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't read reg %x rc = %d\n",
chip->fg_peek_poke_address, rc);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int fg_set_reg(void *data, u64 val)
{
struct smb1360_chip *chip = data;
int rc;
u8 temp;
rc = smb1360_select_fg_i2c_address(chip);
if (rc) {
pr_err("Unable to set FG access I2C address\n");
return -EINVAL;
}
temp = (u8) val;
rc = smb1360_fg_write(chip, chip->fg_peek_poke_address, temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't write 0x%02x to 0x%02x rc= %d\n",
chip->fg_peek_poke_address, temp, rc);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fg_poke_poke_debug_ops, fg_get_reg,
fg_set_reg, "0x%02llx\n");
#define LAST_CNFG_REG 0x17
static int show_cnfg_regs(struct seq_file *m, void *data)
{
struct smb1360_chip *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = 0; addr <= LAST_CNFG_REG; addr++) {
rc = smb1360_read(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int cnfg_debugfs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_cnfg_regs, chip);
}
static const struct file_operations cnfg_debugfs_ops = {
.owner = THIS_MODULE,
.open = cnfg_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define FIRST_CMD_REG 0x40
#define LAST_CMD_REG 0x42
static int show_cmd_regs(struct seq_file *m, void *data)
{
struct smb1360_chip *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = FIRST_CMD_REG; addr <= LAST_CMD_REG; addr++) {
rc = smb1360_read(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int cmd_debugfs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_cmd_regs, chip);
}
static const struct file_operations cmd_debugfs_ops = {
.owner = THIS_MODULE,
.open = cmd_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define FIRST_STATUS_REG 0x48
#define LAST_STATUS_REG 0x4B
static int show_status_regs(struct seq_file *m, void *data)
{
struct smb1360_chip *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = FIRST_STATUS_REG; addr <= LAST_STATUS_REG; addr++) {
rc = smb1360_read(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int status_debugfs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_status_regs, chip);
}
static const struct file_operations status_debugfs_ops = {
.owner = THIS_MODULE,
.open = status_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define FIRST_IRQ_REG 0x50
#define LAST_IRQ_REG 0x58
static int show_irq_stat_regs(struct seq_file *m, void *data)
{
struct smb1360_chip *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = FIRST_IRQ_REG; addr <= LAST_IRQ_REG; addr++) {
rc = smb1360_read(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int irq_stat_debugfs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_irq_stat_regs, chip);
}
static const struct file_operations irq_stat_debugfs_ops = {
.owner = THIS_MODULE,
.open = irq_stat_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int data_8(u8 *reg)
{
return reg[0];
}
static int data_16(u8 *reg)
{
return (reg[1] << 8) | reg[0];
}
static int data_24(u8 *reg)
{
return (reg[2] << 16) | (reg[1] << 8) | reg[0];
}
static int data_28(u8 *reg)
{
return ((reg[3] & 0xF) << 24) | (reg[2] << 16) |
(reg[1] << 8) | reg[0];
}
static int data_32(u8 *reg)
{
return (reg[3] << 24) | (reg[2] << 16) |
(reg[1] << 8) | reg[0];
}
struct fg_regs {
int index;
int length;
char *param_name;
int (*calc_func)(u8 *);
};
static struct fg_regs fg_scratch_pad[] = {
{0, 2, "v_current_predicted", data_16},
{2, 2, "v_cutoff_predicted", data_16},
{4, 2, "v_full_predicted", data_16},
{6, 2, "ocv_estimate", data_16},
{8, 2, "rslow_drop", data_16},
{10, 2, "voltage_old", data_16},
{12, 2, "current_old", data_16},
{14, 4, "current_average_full", data_32},
{18, 2, "temperature", data_16},
{20, 2, "temp_last_track", data_16},
{22, 2, "ESR_nominal", data_16},
{26, 2, "Rslow", data_16},
{28, 2, "counter_imptr", data_16},
{30, 2, "counter_pulse", data_16},
{32, 1, "IRQ_delta_prev", data_8},
{33, 1, "cap_learning_counter", data_8},
{34, 4, "Vact_int_error", data_32},
{38, 3, "SOC_cutoff", data_24},
{41, 3, "SOC_full", data_24},
{44, 3, "SOC_auto_rechrge_temp", data_24},
{47, 3, "Battery_SOC", data_24},
{50, 4, "CC_SOC", data_28},
{54, 2, "SOC_filtered", data_16},
{56, 2, "SOC_Monotonic", data_16},
{58, 2, "CC_SOC_coeff", data_16},
{60, 2, "nominal_capacity", data_16},
{62, 2, "actual_capacity", data_16},
{68, 1, "temperature_counter", data_8},
{69, 3, "Vbatt_filtered", data_24},
{72, 3, "Ibatt_filtered", data_24},
{75, 2, "Current_CC_shadow", data_16},
{79, 2, "Ibatt_standby", data_16},
{82, 1, "Auto_recharge_SOC_threshold", data_8},
{83, 2, "System_cutoff_voltage", data_16},
{85, 2, "System_CC_to_CV_voltage", data_16},
{87, 2, "System_term_current", data_16},
{89, 2, "System_fake_term_current", data_16},
{91, 2, "thermistor_c1_coeff", data_16},
};
static struct fg_regs fg_cfg[] = {
{0, 2, "ESR_actual", data_16},
{4, 1, "IRQ_SOC_max", data_8},
{5, 1, "IRQ_SOC_min", data_8},
{6, 1, "IRQ_volt_empty", data_8},
{7, 1, "Temp_external", data_8},
{8, 1, "IRQ_delta_threshold", data_8},
{9, 1, "JIETA_soft_cold", data_8},
{10, 1, "JIETA_soft_hot", data_8},
{11, 1, "IRQ_volt_min", data_8},
{14, 2, "ESR_sys_replace", data_16},
};
static struct fg_regs fg_shdw[] = {
{0, 1, "Latest_battery_info", data_8},
{1, 1, "Latest_Msys_SOC", data_8},
{2, 2, "Battery_capacity", data_16},
{4, 2, "Rslow_drop", data_16},
{6, 1, "Latest_SOC", data_8},
{7, 1, "Latest_Cutoff_SOC", data_8},
{8, 1, "Latest_full_SOC", data_8},
{9, 2, "Voltage_shadow", data_16},
{11, 2, "Current_shadow", data_16},
{13, 2, "Latest_temperature", data_16},
{15, 1, "Latest_system_sbits", data_8},
};
#define FIRST_FG_CFG_REG 0x20
#define LAST_FG_CFG_REG 0x2F
#define FIRST_FG_SHDW_REG 0x60
#define LAST_FG_SHDW_REG 0x6F
#define FG_SCRATCH_PAD_MAX 93
#define FG_SCRATCH_PAD_BASE_REG 0x80
#define SMB1360_I2C_READ_LENGTH 32
static int smb1360_check_cycle_stretch(struct smb1360_chip *chip)
{
int rc = 0;
u8 reg;
rc = smb1360_read(chip, STATUS_4_REG, &reg);
if (rc) {
pr_err("Unable to read status regiseter\n");
} else if (reg & CYCLE_STRETCH_ACTIVE_BIT) {
/* clear cycle stretch */
rc = smb1360_masked_write(chip, CMD_I2C_REG,
CYCLE_STRETCH_CLEAR_BIT, CYCLE_STRETCH_CLEAR_BIT);
if (rc)
pr_err("Unable to clear cycle stretch\n");
}
return rc;
}
static int show_fg_regs(struct seq_file *m, void *data)
{
struct smb1360_chip *chip = m->private;
int rc, i, j, rem_length;
u8 reg[FG_SCRATCH_PAD_MAX];
rc = smb1360_check_cycle_stretch(chip);
if (rc)
pr_err("Unable to check cycle-stretch\n");
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("Couldn't request FG access rc=%d\n", rc);
return rc;
}
for (i = 0; i < (FG_SCRATCH_PAD_MAX / SMB1360_I2C_READ_LENGTH); i++) {
j = i * SMB1360_I2C_READ_LENGTH;
rc = smb1360_read_bytes(chip, FG_SCRATCH_PAD_BASE_REG + j,
&reg[j], SMB1360_I2C_READ_LENGTH);
if (rc) {
pr_err("Couldn't read scratch registers rc=%d\n", rc);
break;
}
}
j = i * SMB1360_I2C_READ_LENGTH;
rem_length = (FG_SCRATCH_PAD_MAX % SMB1360_I2C_READ_LENGTH);
if (rem_length) {
rc = smb1360_read_bytes(chip, FG_SCRATCH_PAD_BASE_REG + j,
&reg[j], rem_length);
if (rc)
pr_err("Couldn't read scratch registers rc=%d\n", rc);
}
rc = smb1360_disable_fg_access(chip);
if (rc) {
pr_err("Couldn't disable FG access rc=%d\n", rc);
return rc;
}
rc = smb1360_check_cycle_stretch(chip);
if (rc)
pr_err("Unable to check cycle-stretch\n");
seq_puts(m, "FG scratch-pad registers\n");
for (i = 0; i < ARRAY_SIZE(fg_scratch_pad); i++)
seq_printf(m, "\t%s = %x\n", fg_scratch_pad[i].param_name,
fg_scratch_pad[i].calc_func(&reg[fg_scratch_pad[i].index]));
rem_length = LAST_FG_CFG_REG - FIRST_FG_CFG_REG + 1;
rc = smb1360_read_bytes(chip, FIRST_FG_CFG_REG,
&reg[0], rem_length);
if (rc)
pr_err("Couldn't read config registers rc=%d\n", rc);
seq_puts(m, "FG config registers\n");
for (i = 0; i < ARRAY_SIZE(fg_cfg); i++)
seq_printf(m, "\t%s = %x\n", fg_cfg[i].param_name,
fg_cfg[i].calc_func(&reg[fg_cfg[i].index]));
rem_length = LAST_FG_SHDW_REG - FIRST_FG_SHDW_REG + 1;
rc = smb1360_read_bytes(chip, FIRST_FG_SHDW_REG,
&reg[0], rem_length);
if (rc)
pr_err("Couldn't read shadow registers rc=%d\n", rc);
seq_puts(m, "FG shadow registers\n");
for (i = 0; i < ARRAY_SIZE(fg_shdw); i++)
seq_printf(m, "\t%s = %x\n", fg_shdw[i].param_name,
fg_shdw[i].calc_func(&reg[fg_shdw[i].index]));
return rc;
}
static int fg_regs_open(struct inode *inode, struct file *file)
{
struct smb1360_chip *chip = inode->i_private;
return single_open(file, show_fg_regs, chip);
}
static const struct file_operations fg_regs_debugfs_ops = {
.owner = THIS_MODULE,
.open = fg_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smb1360_otg_regulator_enable(struct regulator_dev *rdev)
{
int rc = 0;
struct smb1360_chip *chip = rdev_get_drvdata(rdev);
rc = smb1360_masked_write(chip, CMD_CHG_REG, CMD_OTG_EN_BIT,
CMD_OTG_EN_BIT);
if (rc) {
pr_err("Couldn't enable OTG mode rc=%d\n", rc);
return rc;
}
pr_debug("OTG mode enabled\n");
/* Enable current gain configuration */
mutex_lock(&chip->otp_gain_lock);
if (chip->otg_fet_present) {
/* Enable FET */
gpio_set_value(chip->otg_fet_enable_gpio, 0);
rc = smb1360_otp_gain_config(chip, 3);
if (rc < 0)
pr_err("Couldn't config OTP gain config rc=%d\n", rc);
else
chip->fet_gain_enabled = true;
}
mutex_unlock(&chip->otp_gain_lock);
return rc;
}
static int smb1360_otg_regulator_disable(struct regulator_dev *rdev)
{
int rc = 0;
struct smb1360_chip *chip = rdev_get_drvdata(rdev);
rc = smb1360_otg_disable(chip);
if (rc)
pr_err("Couldn't disable OTG regulator rc=%d\n", rc);
pr_debug("OTG mode disabled\n");
return rc;
}
static int smb1360_otg_regulator_is_enable(struct regulator_dev *rdev)
{
u8 reg = 0;
int rc = 0;
struct smb1360_chip *chip = rdev_get_drvdata(rdev);
rc = smb1360_read(chip, CMD_CHG_REG, &reg);
if (rc) {
pr_err("Couldn't read OTG enable bit rc=%d\n", rc);
return rc;
}
return (reg & CMD_OTG_EN_BIT) ? 1 : 0;
}
static struct regulator_ops smb1360_otg_reg_ops = {
.enable = smb1360_otg_regulator_enable,
.disable = smb1360_otg_regulator_disable,
.is_enabled = smb1360_otg_regulator_is_enable,
};
static int smb1360_regulator_init(struct smb1360_chip *chip)
{
int rc = 0;
struct regulator_config cfg = {};
chip->otg_vreg.rdesc.owner = THIS_MODULE;
chip->otg_vreg.rdesc.type = REGULATOR_VOLTAGE;
chip->otg_vreg.rdesc.ops = &smb1360_otg_reg_ops;
chip->otg_vreg.rdesc.of_match = chip->dev->of_node->name;
chip->otg_vreg.rdesc.name = chip->dev->of_node->name;
cfg.dev = chip->dev;
cfg.driver_data = chip;
cfg.of_node = chip->dev->of_node;
chip->otg_vreg.rdev = regulator_register(
&chip->otg_vreg.rdesc, &cfg);
if (IS_ERR(chip->otg_vreg.rdev)) {
rc = PTR_ERR(chip->otg_vreg.rdev);
chip->otg_vreg.rdev = NULL;
if (rc != -EPROBE_DEFER)
dev_err(chip->dev,
"OTG reg failed, rc=%d\n", rc);
}
return rc;
}
static int smb1360_check_batt_profile(struct smb1360_chip *chip)
{
int rc, i, timeout = 50;
u8 reg = 0, loaded_profile, new_profile = 0, bid_mask;
if (!chip->connected_rid) {
pr_debug("Skip batt-profile loading connected_rid=%d\n",
chip->connected_rid);
return 0;
}
rc = smb1360_read(chip, SHDW_FG_BATT_STATUS, &reg);
if (rc) {
pr_err("Couldn't read FG_BATT_STATUS rc=%d\n", rc);
return rc;
}
loaded_profile = !!(reg & BATTERY_PROFILE_BIT) ?
BATTERY_PROFILE_B : BATTERY_PROFILE_A;
pr_debug("fg_batt_status=%x loaded_profile=%d\n", reg, loaded_profile);
for (i = 0; i < BATTERY_PROFILE_MAX; i++) {
pr_debug("profile=%d profile_rid=%d connected_rid=%d\n", i,
chip->profile_rid[i],
chip->connected_rid);
if (abs(chip->profile_rid[i] - chip->connected_rid) <
(div_u64(chip->connected_rid, 10)))
break;
}
if (i == BATTERY_PROFILE_MAX) {
pr_err("None of the battery-profiles match the connected-RID\n");
return 0;
}
if (i == loaded_profile) {
pr_debug("Loaded Profile-RID == connected-RID\n");
return 0;
}
new_profile = (loaded_profile == BATTERY_PROFILE_A) ?
BATTERY_PROFILE_B : BATTERY_PROFILE_A;
bid_mask = (new_profile == BATTERY_PROFILE_A) ?
BATT_PROFILEA_MASK : BATT_PROFILEB_MASK;
pr_info("Loaded Profile-RID != connected-RID, switch-profile old_profile=%d new_profile=%d\n",
loaded_profile, new_profile);
/* set the BID mask */
rc = smb1360_masked_write(chip, CFG_FG_BATT_CTRL_REG,
BATT_PROFILE_SELECT_MASK, bid_mask);
if (rc) {
pr_err("Couldn't reset battery-profile rc=%d\n", rc);
return rc;
}
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("FG access timed-out, rc = %d\n", rc);
return rc;
}
/* delay after handshaking for profile-switch to continue */
msleep(1500);
rc = smb1360_force_fg_reset(chip);
if (rc) {
pr_err("Couldn't reset FG rc=%d\n", rc);
goto restore_fg;
}
rc = smb1360_disable_fg_access(chip);
if (rc) {
pr_err("disable FG access failed, rc = %d\n", rc);
return rc;
}
timeout = 10;
while (timeout) {
/* delay for profile to change */
msleep(500);
rc = smb1360_read(chip, SHDW_FG_BATT_STATUS, &reg);
if (rc) {
pr_err("Could't read FG_BATT_STATUS rc=%d\n", rc);
return rc;
}
reg = !!(reg & BATTERY_PROFILE_BIT);
if (reg == new_profile) {
pr_info("New profile=%d loaded\n", new_profile);
break;
}
timeout--;
}
if (!timeout) {
pr_err("New profile could not be loaded\n");
return -EBUSY;
}
return 0;
restore_fg:
smb1360_disable_fg_access(chip);
return rc;
}
#define UPDATE_IRQ_STAT(irq_reg, value) \
handlers[irq_reg - IRQ_A_REG].prev_val = value
static int determine_initial_status(struct smb1360_chip *chip)
{
int rc;
u8 reg = 0;
/*
* It is okay to read the IRQ status as the irq's are
* not registered yet.
*/
chip->batt_present = true;
rc = smb1360_read(chip, IRQ_B_REG, &reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read IRQ_B_REG rc = %d\n", rc);
return rc;
}
UPDATE_IRQ_STAT(IRQ_B_REG, reg);
if (reg & IRQ_B_BATT_TERMINAL_BIT || reg & IRQ_B_BATT_MISSING_BIT)
chip->batt_present = false;
rc = smb1360_read(chip, IRQ_C_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read IRQ_C_REG rc = %d\n", rc);
return rc;
}
UPDATE_IRQ_STAT(IRQ_C_REG, reg);
if (reg & IRQ_C_CHG_TERM)
chip->batt_full = true;
rc = smb1360_read(chip, IRQ_A_REG, &reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read irq A rc = %d\n", rc);
return rc;
}
UPDATE_IRQ_STAT(IRQ_A_REG, reg);
if (chip->workaround_flags & WRKRND_HARD_JEITA) {
schedule_delayed_work(&chip->jeita_work, 0);
} else {
if (reg & IRQ_A_HOT_HARD_BIT)
chip->batt_hot = true;
if (reg & IRQ_A_COLD_HARD_BIT)
chip->batt_cold = true;
if (!chip->config_hard_thresholds) {
if (reg & IRQ_A_HOT_SOFT_BIT)
chip->batt_warm = true;
if (reg & IRQ_A_COLD_SOFT_BIT)
chip->batt_cool = true;
}
}
rc = smb1360_read(chip, IRQ_E_REG, &reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read irq E rc = %d\n", rc);
return rc;
}
UPDATE_IRQ_STAT(IRQ_E_REG, reg);
/* Check usb charger presence and notify */
chip->usb_present = (reg & IRQ_E_USBIN_UV_BIT) ? false : true;
/* USB removed */
if (!chip->usb_present)
extcon_set_cable_state_(chip->extcon, EXTCON_USB, false);
/* USB inserted */
else
extcon_set_cable_state_(chip->extcon, EXTCON_USB, true);
power_supply_changed(chip->usb_psy);
return 0;
}
static int smb1360_fg_config(struct smb1360_chip *chip)
{
int rc = 0, temp, fcc_mah;
u8 reg = 0, reg2[2];
if (chip->fg_reset_at_pon) {
int v_predicted, v_now;
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("Couldn't enable FG access rc=%d\n", rc);
return rc;
}
rc = smb1360_read_bytes(chip, VOLTAGE_PREDICTED_REG, reg2, 2);
if (rc) {
pr_err("Failed to read VOLTAGE_PREDICTED rc=%d\n", rc);
goto disable_fg_reset;
}
v_predicted = (reg2[1] << 8) | reg2[0];
v_predicted = div_u64(v_predicted * 5000, 0x7FFF);
rc = smb1360_read_bytes(chip, SHDW_FG_VTG_NOW, reg2, 2);
if (rc) {
pr_err("Failed to read SHDW_FG_VTG_NOW rc=%d\n", rc);
goto disable_fg_reset;
}
v_now = (reg2[1] << 8) | reg2[0];
v_now = div_u64(v_now * 5000, 0x7FFF);
pr_debug("v_predicted=%d v_now=%d reset_threshold=%d\n",
v_predicted, v_now, chip->fg_reset_threshold_mv);
/*
* Reset FG if the predicted voltage is off wrt
* the real-time voltage.
*/
temp = abs(v_predicted - v_now);
if (temp >= chip->fg_reset_threshold_mv) {
pr_info("Resetting FG - v_delta=%d threshold=%d\n",
temp, chip->fg_reset_threshold_mv);
/* delay for the FG access to settle */
msleep(1500);
rc = smb1360_force_fg_reset(chip);
if (rc) {
pr_err("Couldn't reset FG rc=%d\n", rc);
goto disable_fg_reset;
}
}
disable_fg_reset:
smb1360_disable_fg_access(chip);
}
/*
* The below IRQ thresholds are not accessible in REV_1
* of SMB1360.
*/
if (!(chip->workaround_flags & WRKRND_FG_CONFIG_FAIL)) {
if (chip->delta_soc != -EINVAL) {
reg = abs(((chip->delta_soc * MAX_8_BITS) / 100) - 1);
pr_debug("delta_soc=%d reg=%x\n", chip->delta_soc, reg);
rc = smb1360_write(chip, SOC_DELTA_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to SOC_DELTA_REG rc=%d\n",
rc);
return rc;
}
}
if (chip->soc_min != -EINVAL) {
if (is_between(chip->soc_min, 0, 100)) {
reg = DIV_ROUND_UP(chip->soc_min * MAX_8_BITS,
100);
pr_debug("soc_min=%d reg=%x\n",
chip->soc_min, reg);
rc = smb1360_write(chip, SOC_MIN_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to SOC_MIN_REG rc=%d\n",
rc);
return rc;
}
}
}
if (chip->soc_max != -EINVAL) {
if (is_between(chip->soc_max, 0, 100)) {
reg = DIV_ROUND_UP(chip->soc_max * MAX_8_BITS,
100);
pr_debug("soc_max=%d reg=%x\n",
chip->soc_max, reg);
rc = smb1360_write(chip, SOC_MAX_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to SOC_MAX_REG rc=%d\n",
rc);
return rc;
}
}
}
if (chip->voltage_min_mv != -EINVAL) {
temp = (chip->voltage_min_mv - 2500) * MAX_8_BITS;
reg = DIV_ROUND_UP(temp, 2500);
pr_debug("voltage_min=%d reg=%x\n",
chip->voltage_min_mv, reg);
rc = smb1360_write(chip, VTG_MIN_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to VTG_MIN_REG rc=%d\n",
rc);
return rc;
}
}
if (chip->voltage_empty_mv != -EINVAL) {
temp = (chip->voltage_empty_mv - 2500) * MAX_8_BITS;
reg = DIV_ROUND_UP(temp, 2500);
pr_debug("voltage_empty=%d reg=%x\n",
chip->voltage_empty_mv, reg);
rc = smb1360_write(chip, VTG_EMPTY_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to VTG_EMPTY_REG rc=%d\n",
rc);
return rc;
}
}
}
/* scratch-pad register config */
if (chip->batt_capacity_mah != -EINVAL
|| chip->v_cutoff_mv != -EINVAL
|| chip->fg_iterm_ma != -EINVAL
|| chip->fg_ibatt_standby_ma != -EINVAL
|| chip->fg_thermistor_c1_coeff != -EINVAL
|| chip->fg_cc_to_cv_mv != -EINVAL
|| chip->fg_auto_recharge_soc != -EINVAL) {
rc = smb1360_enable_fg_access(chip);
if (rc) {
pr_err("Couldn't enable FG access rc=%d\n", rc);
return rc;
}
/* Update battery capacity */
if (chip->batt_capacity_mah != -EINVAL) {
rc = smb1360_read_bytes(chip, ACTUAL_CAPACITY_REG,
reg2, 2);
if (rc) {
pr_err("Failed to read ACTUAL CAPACITY rc=%d\n",
rc);
goto disable_fg;
}
fcc_mah = (reg2[1] << 8) | reg2[0];
if (fcc_mah == chip->batt_capacity_mah) {
pr_debug("battery capacity correct\n");
} else {
/* Update the battery capacity */
reg2[1] =
(chip->batt_capacity_mah & 0xFF00) >> 8;
reg2[0] = (chip->batt_capacity_mah & 0xFF);
rc = smb1360_write_bytes(chip,
ACTUAL_CAPACITY_REG, reg2, 2);
if (rc) {
pr_err("Couldn't write batt-capacity rc=%d\n",
rc);
goto disable_fg;
}
rc = smb1360_write_bytes(chip,
NOMINAL_CAPACITY_REG, reg2, 2);
if (rc) {
pr_err("Couldn't write batt-capacity rc=%d\n",
rc);
goto disable_fg;
}
/* Update CC to SOC COEFF */
if (chip->cc_soc_coeff != -EINVAL) {
reg2[1] =
(chip->cc_soc_coeff & 0xFF00) >> 8;
reg2[0] = (chip->cc_soc_coeff & 0xFF);
rc = smb1360_write_bytes(chip,
CC_TO_SOC_COEFF, reg2, 2);
if (rc) {
pr_err("Couldn't write cc_soc_coeff rc=%d\n",
rc);
goto disable_fg;
}
}
}
}
/* Update cutoff voltage for SOC = 0 */
if (chip->v_cutoff_mv != -EINVAL) {
temp = (u16) div_u64(chip->v_cutoff_mv * 0x7FFF, 5000);
reg2[1] = (temp & 0xFF00) >> 8;
reg2[0] = temp & 0xFF;
rc = smb1360_write_bytes(chip, FG_SYS_CUTOFF_V_REG,
reg2, 2);
if (rc) {
pr_err("Couldn't write cutoff_mv rc=%d\n", rc);
goto disable_fg;
}
}
/*
* Update FG iterm for SOC = 100, this value is always assumed
* to be -ve
*/
if (chip->fg_iterm_ma != -EINVAL) {
int iterm = chip->fg_iterm_ma * -1;
temp = (s16) div_s64(iterm * 0x7FFF, 2500);
reg2[1] = (temp & 0xFF00) >> 8;
reg2[0] = temp & 0xFF;
rc = smb1360_write_bytes(chip, FG_ITERM_REG,
reg2, 2);
if (rc) {
pr_err("Couldn't write fg_iterm rc=%d\n", rc);
goto disable_fg;
}
}
/*
* Update FG iterm standby for SOC = 0, this value is always
* assumed to be +ve
*/
if (chip->fg_ibatt_standby_ma != -EINVAL) {
int iterm = chip->fg_ibatt_standby_ma;
temp = (u16) div_u64(iterm * 0x7FFF, 2500);
reg2[1] = (temp & 0xFF00) >> 8;
reg2[0] = temp & 0xFF;
rc = smb1360_write_bytes(chip, FG_IBATT_STANDBY_REG,
reg2, 2);
if (rc) {
pr_err("Couldn't write fg_iterm rc=%d\n", rc);
goto disable_fg;
}
}
/* Update CC_to_CV voltage threshold */
if (chip->fg_cc_to_cv_mv != -EINVAL) {
temp = (u16) div_u64(chip->fg_cc_to_cv_mv * 0x7FFF,
5000);
reg2[1] = (temp & 0xFF00) >> 8;
reg2[0] = temp & 0xFF;
rc = smb1360_write_bytes(chip, FG_CC_TO_CV_V_REG,
reg2, 2);
if (rc) {
pr_err("Couldn't write cc_to_cv_mv rc=%d\n",
rc);
goto disable_fg;
}
}
/* Update the thermistor c1 coefficient */
if (chip->fg_thermistor_c1_coeff != -EINVAL) {
reg2[1] = (chip->fg_thermistor_c1_coeff & 0xFF00) >> 8;
reg2[0] = (chip->fg_thermistor_c1_coeff & 0xFF);
rc = smb1360_write_bytes(chip, FG_THERM_C1_COEFF_REG,
reg2, 2);
if (rc) {
pr_err("Couldn't write thermistor_c1_coeff rc=%d\n",
rc);
goto disable_fg;
}
}
/* Update SoC based resume charging threshold */
if (chip->fg_auto_recharge_soc != -EINVAL) {
rc = smb1360_masked_write(chip, CFG_CHG_FUNC_CTRL_REG,
CHG_RECHG_THRESH_FG_SRC_BIT,
CHG_RECHG_THRESH_FG_SRC_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't write to CFG_CHG_FUNC_CTRL_REG rc=%d\n",
rc);
goto disable_fg;
}
reg = DIV_ROUND_UP(chip->fg_auto_recharge_soc *
MAX_8_BITS, 100);
pr_debug("fg_auto_recharge_soc=%d reg=%x\n",
chip->fg_auto_recharge_soc, reg);
rc = smb1360_write(chip, FG_AUTO_RECHARGE_SOC, reg);
if (rc) {
dev_err(chip->dev, "Couldn't write to FG_AUTO_RECHARGE_SOC rc=%d\n",
rc);
goto disable_fg;
}
}
disable_fg:
/* disable FG access */
smb1360_disable_fg_access(chip);
}
return rc;
}
static void smb1360_check_feature_support(struct smb1360_chip *chip)
{
if (is_usb100_broken(chip)) {
pr_debug("USB100 is not supported\n");
chip->workaround_flags |= WRKRND_USB100_FAIL;
}
/*
* FG Configuration
*
* The REV_1 of the chip does not allow access to
* FG config registers (20-2FH). Set the workaround flag.
* Also, the battery detection does not work when the DCIN is absent,
* add a workaround flag for it.
*/
if (chip->revision == SMB1360_REV_1) {
pr_debug("FG config and Battery detection is not supported\n");
chip->workaround_flags |=
WRKRND_FG_CONFIG_FAIL | WRKRND_BATT_DET_FAIL;
}
}
static int smb1360_enable(struct smb1360_chip *chip, bool enable)
{
int rc = 0;
u8 val = 0, shdn_cmd_polar;
rc = smb1360_read(chip, SHDN_CTRL_REG, &val);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read 0x1A reg rc = %d\n", rc);
return rc;
}
/* Ignore if a CMD based shutdown is not enabled */
if (!(val & SHDN_CMD_USE_BIT)) {
pr_debug("SMB not configured for CMD based shutdown\n");
return 0;
}
shdn_cmd_polar = !!(val & SHDN_CMD_POLARITY_BIT);
val = (shdn_cmd_polar ^ enable) ? SHDN_CMD_BIT : 0;
pr_debug("enable=%d shdn_polarity=%d value=%d\n", enable,
shdn_cmd_polar, val);
rc = smb1360_masked_write(chip, CMD_IL_REG, SHDN_CMD_BIT, val);
if (rc < 0)
pr_err("Couldn't shutdown smb1360 rc = %d\n", rc);
return rc;
}
static inline int smb1360_poweroff(struct smb1360_chip *chip)
{
pr_debug("power off smb1360\n");
return smb1360_enable(chip, false);
}
static inline int smb1360_poweron(struct smb1360_chip *chip)
{
pr_debug("power on smb1360\n");
return smb1360_enable(chip, true);
}
static int smb1360_jeita_init(struct smb1360_chip *chip)
{
int rc = 0;
int temp;
if (chip->config_hard_thresholds) {
if (chip->soft_jeita_supported) {
chip->workaround_flags |= WRKRND_HARD_JEITA;
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cool_bat_decidegc, chip->warm_bat_decidegc);
if (rc) {
dev_err(chip->dev,
"Couldn't set jeita threshold\n");
return rc;
}
} else {
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cold_bat_decidegc, chip->hot_bat_decidegc);
if (rc) {
dev_err(chip->dev,
"Couldn't set jeita threshold\n");
return rc;
}
}
} else {
if (chip->soft_jeita_supported) {
temp = min(chip->warm_bat_ma, chip->cool_bat_ma);
rc = smb1360_set_jeita_comp_curr(chip, temp);
if (rc) {
dev_err(chip->dev, "Couldn't set comp current\n");
return rc;
}
temp = (chip->vfloat_mv - chip->warm_bat_mv) / 10;
rc = smb1360_masked_write(chip, CFG_FVC_REG,
FLT_VTG_COMP_MASK, temp);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set VFLT compensation = %d",
rc);
return rc;
}
rc = smb1360_set_soft_jeita_threshold(chip,
chip->cool_bat_decidegc, chip->warm_bat_decidegc);
if (rc) {
dev_err(chip->dev,
"Couldn't set jeita threshold\n");
return rc;
}
rc = smb1360_soft_jeita_comp_enable(chip, true);
if (rc) {
dev_err(chip->dev, "Couldn't enable jeita\n");
return rc;
}
}
}
return rc;
}
static int smb1360_otp_gain_init(struct smb1360_chip *chip)
{
int rc = 0, gain_factor;
bool otp_gain_config = false;
if (chip->rsense_10mohm) {
gain_factor = 2;
otp_gain_config = true;
}
mutex_lock(&chip->otp_gain_lock);
if (chip->otg_fet_present) {
/*
* Reset current gain to the default value if OTG
* is not enabled
*/
if (!chip->fet_gain_enabled) {
otp_gain_config = true;
gain_factor = 0;
}
}
if (otp_gain_config) {
rc = smb1360_otp_gain_config(chip, gain_factor);
if (rc < 0)
pr_err("Couldn't config OTP gain rc=%d\n", rc);
}
mutex_unlock(&chip->otp_gain_lock);
return rc;
}
static int smb1360_hw_init(struct smb1360_chip *chip)
{
int rc;
int i;
u8 reg, mask;
smb1360_check_feature_support(chip);
rc = smb1360_enable_volatile_writes(chip);
if (rc < 0) {
dev_err(chip->dev, "Couldn't configure for volatile rc = %d\n",
rc);
return rc;
}
/* Bring SMB1360 out of shutdown, if it was enabled by default */
rc = smb1360_poweron(chip);
if (rc < 0) {
pr_err("smb1360 power on failed\n");
return rc;
}
/*
* A 2 seconds delay is mandatory after bringing the chip out
* of shutdown. This guarantees that FG is in a proper state.
*/
schedule_delayed_work(&chip->delayed_init_work,
msecs_to_jiffies(SMB1360_POWERON_DELAY_MS));
/*
* set chg en by cmd register, set chg en by writing bit 1,
* enable auto pre to fast
*/
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CHG_EN_BY_PIN_BIT
| CHG_EN_ACTIVE_LOW_BIT
| PRE_TO_FAST_REQ_CMD_BIT,
0);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set CFG_CHG_MISC_REG rc=%d\n", rc);
return rc;
}
/* USB/AC pin settings */
rc = smb1360_masked_write(chip, CFG_BATT_CHG_ICL_REG,
AC_INPUT_ICL_PIN_BIT
| AC_INPUT_PIN_HIGH_BIT
| RESET_STATE_USB_500,
AC_INPUT_PIN_HIGH_BIT
| RESET_STATE_USB_500);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set CFG_BATT_CHG_ICL_REG rc=%d\n",
rc);
return rc;
}
/* AICL enable and set input-uv glitch flt to 20ms*/
reg = AICL_ENABLED_BIT | INPUT_UV_GLITCH_FLT_20MS_BIT;
rc = smb1360_masked_write(chip, CFG_GLITCH_FLT_REG, reg, reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set CFG_GLITCH_FLT_REG rc=%d\n",
rc);
return rc;
}
/* set the float voltage */
if (chip->vfloat_mv != -EINVAL) {
rc = smb1360_float_voltage_set(chip, chip->vfloat_mv);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't set float voltage rc = %d\n", rc);
return rc;
}
}
/* set iterm */
if (chip->iterm_ma != -EINVAL) {
if (chip->iterm_disabled) {
dev_err(chip->dev, "Error: Both iterm_disabled and iterm_ma set\n");
return -EINVAL;
}
if (chip->rsense_10mohm)
chip->iterm_ma /= 2;
if (chip->iterm_ma < 25)
reg = CHG_ITERM_25MA;
else if (chip->iterm_ma > 200)
reg = CHG_ITERM_200MA;
else
reg = DIV_ROUND_UP(chip->iterm_ma, 25) - 1;
rc = smb1360_masked_write(chip, CFG_BATT_CHG_REG,
CHG_ITERM_MASK, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set iterm rc = %d\n", rc);
return rc;
}
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CHG_CURR_TERM_DIS_BIT, 0);
if (rc) {
dev_err(chip->dev,
"Couldn't enable iterm rc = %d\n", rc);
return rc;
}
} else if (chip->iterm_disabled) {
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CHG_CURR_TERM_DIS_BIT,
CHG_CURR_TERM_DIS_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set iterm rc = %d\n",
rc);
return rc;
}
}
/* set the safety time voltage */
if (chip->safety_time != -EINVAL) {
if (chip->safety_time == 0) {
/* safety timer disabled */
rc = smb1360_masked_write(chip, CFG_SFY_TIMER_CTRL_REG,
SAFETY_TIME_DISABLE_BIT, SAFETY_TIME_DISABLE_BIT);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't disable safety timer rc = %d\n",
rc);
return rc;
}
} else {
for (i = 0; i < ARRAY_SIZE(chg_time); i++) {
if (chip->safety_time <= chg_time[i]) {
reg = i << SAFETY_TIME_MINUTES_SHIFT;
break;
}
}
rc = smb1360_masked_write(chip, CFG_SFY_TIMER_CTRL_REG,
SAFETY_TIME_DISABLE_BIT | SAFETY_TIME_MINUTES_MASK,
reg);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't set safety timer rc = %d\n", rc);
return rc;
}
}
}
/* configure resume threshold, auto recharge and charge inhibit */
if (chip->resume_delta_mv != -EINVAL) {
if (chip->recharge_disabled && chip->chg_inhibit_disabled) {
dev_err(chip->dev,
"Error: Both recharge_disabled and recharge_mv set\n");
return -EINVAL;
}
rc = smb1360_recharge_threshold_set(chip,
chip->resume_delta_mv);
if (rc) {
dev_err(chip->dev,
"Couldn't set rechg thresh rc = %d\n", rc);
return rc;
}
}
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CFG_AUTO_RECHG_DIS_BIT,
chip->recharge_disabled ?
CFG_AUTO_RECHG_DIS_BIT : 0);
if (rc) {
dev_err(chip->dev, "Couldn't set rechg-cfg rc = %d\n", rc);
return rc;
}
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CFG_CHG_INHIBIT_EN_BIT,
chip->chg_inhibit_disabled ?
0 : CFG_CHG_INHIBIT_EN_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set chg_inhibit rc = %d\n", rc);
return rc;
}
rc = smb1360_masked_write(chip, CFG_CHG_MISC_REG,
CFG_BAT_OV_ENDS_CHG_CYC,
chip->ov_ends_chg_cycle_disabled ?
0 : CFG_BAT_OV_ENDS_CHG_CYC);
if (rc) {
dev_err(chip->dev, "Couldn't set bat_ov_ends_charge rc = %d\n"
, rc);
return rc;
}
/* battery missing detection */
rc = smb1360_masked_write(chip, CFG_BATT_MISSING_REG,
BATT_MISSING_SRC_THERM_BIT,
BATT_MISSING_SRC_THERM_BIT);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set batt_missing config = %d\n",
rc);
return rc;
}
rc = smb1360_jeita_init(chip);
if (rc < 0) {
dev_err(chip->dev, "Couldn't init jeita, rc = %d\n", rc);
return rc;
}
/* interrupt enabling - active low */
if (chip->client->irq) {
mask = CHG_STAT_IRQ_ONLY_BIT
| CHG_STAT_ACTIVE_HIGH_BIT
| CHG_STAT_DISABLE_BIT
| CHG_TEMP_CHG_ERR_BLINK_BIT;
if (!chip->pulsed_irq)
reg = CHG_STAT_IRQ_ONLY_BIT;
else
reg = CHG_TEMP_CHG_ERR_BLINK_BIT;
rc = smb1360_masked_write(chip, CFG_STAT_CTRL_REG, mask, reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set irq config rc = %d\n",
rc);
return rc;
}
/* enabling only interesting interrupts */
rc = smb1360_write(chip, IRQ_CFG_REG,
IRQ_BAT_HOT_COLD_HARD_BIT
| IRQ_BAT_HOT_COLD_SOFT_BIT
| IRQ_INTERNAL_TEMPERATURE_BIT
| IRQ_DCIN_UV_BIT
| IRQ_AICL_DONE_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set irq1 config rc = %d\n",
rc);
return rc;
}
rc = smb1360_write(chip, IRQ2_CFG_REG,
IRQ2_SAFETY_TIMER_BIT
| IRQ2_CHG_ERR_BIT
| IRQ2_CHG_PHASE_CHANGE_BIT
| IRQ2_POWER_OK_BIT
| IRQ2_BATT_MISSING_BIT
| IRQ2_VBAT_LOW_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set irq2 config rc = %d\n",
rc);
return rc;
}
rc = smb1360_write(chip, IRQ3_CFG_REG,
IRQ3_FG_ACCESS_OK_BIT
| IRQ3_SOC_CHANGE_BIT
| IRQ3_SOC_MIN_BIT
| IRQ3_SOC_MAX_BIT
| IRQ3_SOC_EMPTY_BIT
| IRQ3_SOC_FULL_BIT);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set irq3 enable rc = %d\n",
rc);
return rc;
}
}
/* batt-id configuration */
if (chip->batt_id_disabled) {
mask = BATT_ID_ENABLED_BIT | CHG_BATT_ID_FAIL;
reg = CHG_BATT_ID_FAIL;
rc = smb1360_masked_write(chip, CFG_FG_BATT_CTRL_REG,
mask, reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't set batt_id_reg rc = %d\n",
rc);
return rc;
}
}
/* USB OTG current limit configuration */
if (chip->otg_batt_curr_limit != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(otg_curr_ma); i++) {
if (otg_curr_ma[i] >= chip->otg_batt_curr_limit)
break;
}
if (i == ARRAY_SIZE(otg_curr_ma))
i = i - 1;
rc = smb1360_masked_write(chip, CFG_BATT_CHG_REG,
OTG_CURRENT_MASK,
i << OTG_CURRENT_SHIFT);
if (rc)
pr_err("Couldn't set OTG current limit, rc = %d\n", rc);
}
rc = smb1360_charging_disable(chip, USER, !!chip->charging_disabled);
if (rc)
dev_err(chip->dev, "Couldn't '%s' charging rc = %d\n",
chip->charging_disabled ? "disable" : "enable", rc);
if (chip->parallel_charging) {
rc = smb1360_parallel_charger_enable(chip, PARALLEL_USER,
!chip->charging_disabled);
if (rc)
dev_err(chip->dev, "Couldn't '%s' parallel-charging rc = %d\n",
chip->charging_disabled ? "disable" : "enable", rc);
}
return rc;
}
static int smb1360_delayed_hw_init(struct smb1360_chip *chip)
{
int rc;
pr_debug("delayed hw init start!\n");
if (chip->otp_hard_jeita_config) {
rc = smb1360_hard_jeita_otp_init(chip);
if (rc) {
pr_err("Unable to change the OTP hard jeita, rc=%d\n",
rc);
return rc;
}
}
rc = smb1360_check_batt_profile(chip);
if (rc) {
pr_err("Unable to modify battery profile, rc=%d\n", rc);
return rc;
}
rc = smb1360_otp_gain_init(chip);
if (rc) {
pr_err("Unable to config otp gain, rc=%d\n", rc);
return rc;
}
rc = smb1360_fg_config(chip);
if (rc) {
pr_err("Couldn't configure FG rc=%d\n", rc);
return rc;
}
rc = smb1360_check_cycle_stretch(chip);
if (rc) {
pr_err("Unable to check cycle-stretch\n");
return rc;
}
pr_debug("delayed hw init complete!\n");
return rc;
}
static void smb1360_delayed_init_work_fn(struct work_struct *work)
{
int rc = 0;
struct smb1360_chip *chip = container_of(work, struct smb1360_chip,
delayed_init_work.work);
rc = smb1360_delayed_hw_init(chip);
if (!rc) {
/*
* If the delayed hw init successfully, update battery
* power_supply to make sure the correct SoC reported
* timely.
*/
power_supply_changed(chip->batt_psy);
} else if (rc == -ETIMEDOUT) {
/*
* If the delayed hw init failed causing by waiting for
* FG access timed-out, force a FG reset and queue the
* worker again to retry the initialization.
*/
pr_debug("delayed hw init timed-out, retry!");
rc = smb1360_force_fg_reset(chip);
if (rc) {
pr_err("couldn't reset FG, rc = %d\n", rc);
return;
}
schedule_delayed_work(&chip->delayed_init_work, 0);
} else {
pr_err("delayed hw init failed, rc=%d\n", rc);
}
}
static int smb_parse_batt_id(struct smb1360_chip *chip)
{
int rc = 0, rpull = 0, vref = 0;
int64_t denom, batt_id_uv;
struct device_node *node = chip->dev->of_node;
struct qpnp_vadc_result result;
chip->vadc_dev = qpnp_get_vadc(chip->dev, "smb1360");
if (IS_ERR(chip->vadc_dev)) {
rc = PTR_ERR(chip->vadc_dev);
if (rc == -EPROBE_DEFER)
pr_err("vadc not found - defer rc=%d\n", rc);
else
pr_err("vadc property missing, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,profile-a-rid-kohm",
&chip->profile_rid[0]);
if (rc < 0) {
pr_err("Couldn't read profile-a-rid-kohm rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,profile-b-rid-kohm",
&chip->profile_rid[1]);
if (rc < 0) {
pr_err("Couldn't read profile-b-rid-kohm rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,batt-id-vref-uv", &vref);
if (rc < 0) {
pr_err("Couldn't read batt-id-vref-uv rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,batt-id-rpullup-kohm", &rpull);
if (rc < 0) {
pr_err("Couldn't read batt-id-rpullup-kohm rc=%d\n", rc);
return rc;
}
/* read battery ID */
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX2_BAT_ID, &result);
if (rc) {
pr_err("error reading batt id channel = %d, rc = %d\n",
LR_MUX2_BAT_ID, rc);
return rc;
}
batt_id_uv = result.physical;
if (batt_id_uv == 0) {
/* vadc not correct or batt id line grounded, report 0 kohms */
pr_err("batt_id_uv = 0, batt-id grounded using same profile\n");
return 0;
}
denom = div64_s64(vref * 1000000LL, batt_id_uv) - 1000000LL;
if (denom == 0) {
/* batt id connector might be open, return 0 kohms */
return 0;
}
chip->connected_rid = div64_s64(rpull * 1000000LL + denom/2, denom);
pr_debug("batt_id_voltage = %lld, connected_rid = %d\n",
batt_id_uv, chip->connected_rid);
return 0;
}
/*
* Note the below:
* 1. if both qcom,soft-jeita-supported and qcom,config-hard-thresholds
* are not defined, SMB continues with default OTP configuration.
* 2. if both are enabled, the hard thresholds are modified.
* 3. if only qcom,config-hard-thresholds is defined, the soft JEITA is disabled
* 4. if only qcom,soft-jeita-supported is defined, the soft JEITA thresholds
* are modified.
*/
static int smb1360_parse_jeita_params(struct smb1360_chip *chip)
{
int rc = 0;
struct device_node *node = chip->dev->of_node;
int temp[2];
if (of_property_read_bool(node, "qcom,config-hard-thresholds")) {
rc = of_property_read_u32(node,
"qcom,cold-bat-decidegc", &chip->cold_bat_decidegc);
if (rc) {
pr_err("cold_bat_decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32(node,
"qcom,hot-bat-decidegc", &chip->hot_bat_decidegc);
if (rc) {
pr_err("hot_bat_decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
chip->config_hard_thresholds = true;
pr_debug("config_hard_thresholds = %d, cold_bat_decidegc = %d, hot_bat_decidegc = %d\n",
chip->config_hard_thresholds, chip->cold_bat_decidegc,
chip->hot_bat_decidegc);
} else if (of_property_read_bool(node, "qcom,otp-hard-jeita-config")) {
rc = of_property_read_u32(node, "qcom,otp-cold-bat-decidegc",
&chip->otp_cold_bat_decidegc);
if (rc) {
pr_err("otp-cold-bat-decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,otp-hot-bat-decidegc",
&chip->otp_hot_bat_decidegc);
if (rc) {
pr_err("otp-hot-bat-decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
chip->otp_hard_jeita_config = true;
rc = of_property_read_u32_array(node,
"qcom,otp-hard-jeita-hysteresis", temp, 2);
if (rc) {
if (rc != -EINVAL) {
pr_err("read otp-hard-jeita-hysteresis failed, rc = %d\n",
rc);
return rc;
}
} else {
chip->cold_hysteresis = temp[0];
chip->hot_hysteresis = temp[1];
}
pr_debug("otp_hard_jeita_config = %d, otp_cold_bat_decidegc = %d\n"
"otp_hot_bat_decidegc = %d, cold_hysteresis = %d\n"
"hot_hysteresis = %d\n",
chip->otp_hard_jeita_config,
chip->otp_cold_bat_decidegc,
chip->otp_hot_bat_decidegc, chip->cold_hysteresis,
chip->hot_hysteresis);
}
if (of_property_read_bool(node, "qcom,soft-jeita-supported")) {
rc = of_property_read_u32(node, "qcom,warm-bat-decidegc",
&chip->warm_bat_decidegc);
if (rc) {
pr_err("warm_bat_decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,cool-bat-decidegc",
&chip->cool_bat_decidegc);
if (rc) {
pr_err("cool_bat_decidegc property error, rc = %d\n",
rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,cool-bat-mv",
&chip->cool_bat_mv);
if (rc) {
pr_err("cool_bat_mv property error, rc = %d\n", rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,warm-bat-mv",
&chip->warm_bat_mv);
if (rc) {
pr_err("warm_bat_mv property error, rc = %d\n", rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,cool-bat-ma",
&chip->cool_bat_ma);
if (rc) {
pr_err("cool_bat_ma property error, rc = %d\n", rc);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,warm-bat-ma",
&chip->warm_bat_ma);
if (rc) {
pr_err("warm_bat_ma property error, rc = %d\n", rc);
return -EINVAL;
}
chip->soft_jeita_supported = true;
} else {
/*
* If no soft JEITA configuration required from devicetree,
* read the default soft JEITA setting for hard JEITA
* configuration sanity check.
*/
rc = smb1360_get_soft_jeita_threshold(chip,
&chip->cool_bat_decidegc,
&chip->warm_bat_decidegc);
if (rc) {
pr_err("get default soft JEITA threshold failed, rc=%d\n",
rc);
return rc;
}
}
pr_debug("soft-jeita-enabled = %d, warm-bat-decidegc = %d, cool-bat-decidegc = %d, cool-bat-mv = %d, warm-bat-mv = %d, cool-bat-ma = %d, warm-bat-ma = %d\n",
chip->soft_jeita_supported, chip->warm_bat_decidegc,
chip->cool_bat_decidegc, chip->cool_bat_mv, chip->warm_bat_mv,
chip->cool_bat_ma, chip->warm_bat_ma);
return rc;
}
#define MAX_PARALLEL_CURRENT 540
static int smb1360_parse_parallel_charging_params(struct smb1360_chip *chip)
{
struct device_node *node = chip->dev->of_node;
if (of_property_read_bool(node, "qcom,parallel-charging-enabled")) {
if (!chip->rsense_10mohm) {
pr_err("10mohm-rsense configuration not enabled - parallel-charging disabled\n");
return 0;
}
chip->parallel_charging = true;
chip->max_parallel_chg_current = MAX_PARALLEL_CURRENT;
of_property_read_u32(node, "qcom,max-parallel-current-ma",
&chip->max_parallel_chg_current);
pr_debug("Max parallel charger current = %dma\n",
chip->max_parallel_chg_current);
/* mark the parallel-charger as disabled */
chip->parallel_chg_disable_status |= PARALLEL_CURRENT;
}
return 0;
}
static int smb_parse_dt(struct smb1360_chip *chip)
{
int rc;
struct device_node *node = chip->dev->of_node;
if (!node) {
dev_err(chip->dev, "device tree info. missing\n");
return -EINVAL;
}
chip->rsense_10mohm = of_property_read_bool(node, "qcom,rsense-10mhom");
if (of_property_read_bool(node, "qcom,batt-profile-select")) {
rc = smb_parse_batt_id(chip);
if (rc < 0) {
if (rc != -EPROBE_DEFER)
pr_err("Unable to parse batt-id rc=%d\n", rc);
return rc;
}
}
chip->otg_fet_present = of_property_read_bool(node,
"qcom,otg-fet-present");
if (chip->otg_fet_present) {
chip->otg_fet_enable_gpio = of_get_named_gpio(node,
"qcom,otg-fet-enable-gpio", 0);
if (!gpio_is_valid(chip->otg_fet_enable_gpio)) {
if (chip->otg_fet_enable_gpio != -EPROBE_DEFER)
pr_err("Unable to get OTG FET enable gpio=%d\n",
chip->otg_fet_enable_gpio);
return chip->otg_fet_enable_gpio;
}
/* Configure OTG FET control gpio */
rc = devm_gpio_request_one(chip->dev,
chip->otg_fet_enable_gpio,
GPIOF_OPEN_DRAIN | GPIOF_INIT_HIGH,
"smb1360_otg_fet_gpio");
if (rc) {
pr_err("Unable to request gpio rc=%d\n", rc);
return rc;
}
}
chip->pulsed_irq = of_property_read_bool(node, "qcom,stat-pulsed-irq");
rc = of_property_read_u32(node, "qcom,float-voltage-mv",
&chip->vfloat_mv);
if (rc < 0)
chip->vfloat_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,charging-timeout",
&chip->safety_time);
if (rc < 0)
chip->safety_time = -EINVAL;
if (!rc && (chip->safety_time > chg_time[ARRAY_SIZE(chg_time) - 1])) {
dev_err(chip->dev, "Bad charging-timeout %d\n",
chip->safety_time);
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,recharge-thresh-mv",
&chip->resume_delta_mv);
if (rc < 0)
chip->resume_delta_mv = -EINVAL;
chip->recharge_disabled = of_property_read_bool(node,
"qcom,recharge-disabled");
rc = of_property_read_u32(node, "qcom,iterm-ma", &chip->iterm_ma);
if (rc < 0)
chip->iterm_ma = -EINVAL;
chip->iterm_disabled = of_property_read_bool(node,
"qcom,iterm-disabled");
chip->chg_inhibit_disabled = of_property_read_bool(node,
"qcom,chg-inhibit-disabled");
chip->charging_disabled = of_property_read_bool(node,
"qcom,charging-disabled");
chip->batt_id_disabled = of_property_read_bool(node,
"qcom,batt-id-disabled");
chip->shdn_after_pwroff = of_property_read_bool(node,
"qcom,shdn-after-pwroff");
chip->min_icl_usb100 = of_property_read_bool(node,
"qcom,min-icl-100ma");
chip->ov_ends_chg_cycle_disabled = of_property_read_bool(node,
"qcom,disable-ov-ends-chg-cycle");
rc = smb1360_parse_parallel_charging_params(chip);
if (rc) {
pr_err("Couldn't parse parallel charginng params rc=%d\n", rc);
return rc;
}
if (of_find_property(node, "qcom,thermal-mitigation",
&chip->thermal_levels)) {
chip->thermal_mitigation = devm_kzalloc(chip->dev,
chip->thermal_levels,
GFP_KERNEL);
if (chip->thermal_mitigation == NULL) {
pr_err("thermal mitigation kzalloc() failed.\n");
return -ENOMEM;
}
chip->thermal_levels /= sizeof(int);
rc = of_property_read_u32_array(node,
"qcom,thermal-mitigation",
chip->thermal_mitigation, chip->thermal_levels);
if (rc) {
pr_err("Couldn't read threm limits rc = %d\n", rc);
return rc;
}
}
rc = smb1360_parse_jeita_params(chip);
if (rc < 0) {
pr_err("Couldn't parse jeita params, rc = %d\n", rc);
return rc;
}
/* fg params */
chip->empty_soc_disabled = of_property_read_bool(node,
"qcom,empty-soc-disabled");
rc = of_property_read_u32(node, "qcom,fg-delta-soc", &chip->delta_soc);
if (rc < 0)
chip->delta_soc = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-soc-max", &chip->soc_max);
if (rc < 0)
chip->soc_max = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-soc-min", &chip->soc_min);
if (rc < 0)
chip->soc_min = -EINVAL;
chip->awake_min_soc = of_property_read_bool(node,
"qcom,awake-min-soc");
rc = of_property_read_u32(node, "qcom,fg-voltage-min-mv",
&chip->voltage_min_mv);
if (rc < 0)
chip->voltage_min_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-voltage-empty-mv",
&chip->voltage_empty_mv);
if (rc < 0)
chip->voltage_empty_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-batt-capacity-mah",
&chip->batt_capacity_mah);
if (rc < 0)
chip->batt_capacity_mah = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-cc-soc-coeff",
&chip->cc_soc_coeff);
if (rc < 0)
chip->cc_soc_coeff = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-cutoff-voltage-mv",
&chip->v_cutoff_mv);
if (rc < 0)
chip->v_cutoff_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-iterm-ma",
&chip->fg_iterm_ma);
if (rc < 0)
chip->fg_iterm_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-ibatt-standby-ma",
&chip->fg_ibatt_standby_ma);
if (rc < 0)
chip->fg_ibatt_standby_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,thermistor-c1-coeff",
&chip->fg_thermistor_c1_coeff);
if (rc < 0)
chip->fg_thermistor_c1_coeff = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-cc-to-cv-mv",
&chip->fg_cc_to_cv_mv);
if (rc < 0)
chip->fg_cc_to_cv_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,otg-batt-curr-limit",
&chip->otg_batt_curr_limit);
if (rc < 0)
chip->otg_batt_curr_limit = -EINVAL;
rc = of_property_read_u32(node, "qcom,fg-auto-recharge-soc",
&chip->fg_auto_recharge_soc);
if (rc < 0)
chip->fg_auto_recharge_soc = -EINVAL;
if (of_property_read_bool(node, "qcom,fg-reset-at-pon")) {
chip->fg_reset_at_pon = true;
rc = of_property_read_u32(node, "qcom,fg-reset-thresold-mv",
&chip->fg_reset_threshold_mv);
if (rc) {
pr_debug("FG reset voltage threshold not specified using 50mV\n");
chip->fg_reset_threshold_mv = FG_RESET_THRESHOLD_MV;
}
}
return 0;
}
static int smb1360_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
u8 reg;
int rc;
struct smb1360_chip *chip;
struct power_supply_config batt_psy_cfg = {};
struct power_supply_config usb_psy_cfg = {};
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->resume_completed = true;
chip->client = client;
chip->dev = &client->dev;
chip->fake_battery_soc = -EINVAL;
chip->usb_supply_type = POWER_SUPPLY_TYPE_UNKNOWN;
chip->extcon = devm_extcon_dev_allocate(chip->dev,
smb1360_extcon_cable);
if (IS_ERR(chip->extcon)) {
pr_err("failed to allocate extcon device\n");
rc = PTR_ERR(chip->extcon);
return rc;
}
rc = devm_extcon_dev_register(chip->dev, chip->extcon);
if (rc) {
pr_err("failed to register extcon device\n");
return rc;
}
mutex_init(&chip->read_write_lock);
mutex_init(&chip->parallel_chg_lock);
mutex_init(&chip->otp_gain_lock);
mutex_init(&chip->fg_access_request_lock);
mutex_init(&chip->irq_complete);
mutex_init(&chip->charging_disable_lock);
mutex_init(&chip->current_change_lock);
INIT_DELAYED_WORK(&chip->jeita_work, smb1360_jeita_work_fn);
INIT_DELAYED_WORK(&chip->delayed_init_work,
smb1360_delayed_init_work_fn);
init_completion(&chip->fg_mem_access_granted);
smb1360_wakeup_src_init(chip);
chip->usb_psy_d.name = "usb";
chip->usb_psy_d.type = POWER_SUPPLY_TYPE_USB;
chip->usb_psy_d.get_property = smb1360_usb_get_property;
chip->usb_psy_d.set_property = smb1360_usb_set_property;
chip->usb_psy_d.properties = smb1360_usb_properties;
chip->usb_psy_d.num_properties = ARRAY_SIZE(smb1360_usb_properties);
chip->usb_psy_d.property_is_writeable = smb1360_usb_is_writeable;
usb_psy_cfg.drv_data = chip;
usb_psy_cfg.num_supplicants = 0;
chip->usb_psy = devm_power_supply_register(chip->dev,
&chip->usb_psy_d, &usb_psy_cfg);
if (IS_ERR(chip->usb_psy)) {
dev_err(chip->dev, "Unable to register usb_psy rc = %ld\n",
PTR_ERR(chip->usb_psy));
rc = PTR_ERR(chip->usb_psy);
return rc;
}
/* probe the device to check if its actually connected */
rc = smb1360_read(chip, CFG_BATT_CHG_REG, &reg);
if (rc) {
pr_err("Failed to detect SMB1360, device may be absent\n");
goto destroy_mutex;
}
rc = read_revision(chip, &chip->revision);
if (rc)
dev_err(chip->dev, "Couldn't read revision rc = %d\n", rc);
rc = smb_parse_dt(chip);
if (rc < 0) {
dev_err(&client->dev, "Unable to parse DT nodes\n");
goto destroy_mutex;
}
device_init_wakeup(chip->dev, 1);
i2c_set_clientdata(client, chip);
chip->default_i2c_addr = client->addr;
INIT_WORK(&chip->parallel_work, smb1360_parallel_work);
if (chip->cold_hysteresis || chip->hot_hysteresis)
INIT_WORK(&chip->jeita_hysteresis_work,
smb1360_jeita_hysteresis_work);
pr_debug("default_i2c_addr=%x\n", chip->default_i2c_addr);
smb1360_otp_backup_pool_init(chip);
rc = smb1360_hw_init(chip);
if (rc < 0) {
dev_err(&client->dev,
"Unable to initialize hardware rc = %d\n", rc);
goto destroy_mutex;
}
rc = smb1360_regulator_init(chip);
if (rc) {
dev_err(&client->dev,
"Couldn't initialize smb1360 ragulator rc=%d\n", rc);
goto fail_hw_init;
}
rc = determine_initial_status(chip);
if (rc < 0) {
dev_err(&client->dev,
"Unable to determine init status rc = %d\n", rc);
goto fail_hw_init;
}
chip->batt_psy_d.name = "battery";
chip->batt_psy_d.type = POWER_SUPPLY_TYPE_BATTERY;
chip->batt_psy_d.get_property = smb1360_battery_get_property;
chip->batt_psy_d.set_property = smb1360_battery_set_property;
chip->batt_psy_d.properties = smb1360_battery_properties;
chip->batt_psy_d.num_properties =
ARRAY_SIZE(smb1360_battery_properties);
chip->batt_psy_d.property_is_writeable = smb1360_battery_is_writeable;
batt_psy_cfg.drv_data = chip;
batt_psy_cfg.num_supplicants = 0;
chip->batt_psy = devm_power_supply_register(chip->dev,
&chip->batt_psy_d, &batt_psy_cfg);
if (IS_ERR(chip->batt_psy)) {
dev_err(&client->dev, "Unable to register batt_psy rc = %ld\n",
PTR_ERR(chip->batt_psy));
goto unregister_batt_psy;
}
/* STAT irq configuration */
if (client->irq) {
rc = devm_request_threaded_irq(&client->dev, client->irq, NULL,
smb1360_stat_handler, IRQF_ONESHOT,
"smb1360_stat_irq", chip);
if (rc < 0) {
dev_err(&client->dev,
"request_irq for irq=%d failed rc = %d\n",
client->irq, rc);
goto unregister_batt_psy;
}
enable_irq_wake(client->irq);
}
chip->debug_root = debugfs_create_dir("smb1360", NULL);
if (!chip->debug_root)
dev_err(chip->dev, "Couldn't create debug dir\n");
if (chip->debug_root) {
struct dentry *ent;
ent = debugfs_create_file("config_registers", S_IFREG | 0444,
chip->debug_root, chip,
&cnfg_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create cnfg debug file rc = %d\n",
rc);
ent = debugfs_create_file("status_registers", S_IFREG | 0444,
chip->debug_root, chip,
&status_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create status debug file rc = %d\n",
rc);
ent = debugfs_create_file("irq_status", S_IFREG | 0444,
chip->debug_root, chip,
&irq_stat_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create irq_stat debug file rc = %d\n",
rc);
ent = debugfs_create_file("cmd_registers", S_IFREG | 0444,
chip->debug_root, chip,
&cmd_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create cmd debug file rc = %d\n",
rc);
ent = debugfs_create_file("fg_regs",
S_IFREG | 0444, chip->debug_root, chip,
&fg_regs_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create fg_scratch_pad debug file rc = %d\n",
rc);
ent = debugfs_create_x32("address", S_IFREG | 0644,
chip->debug_root,
&(chip->peek_poke_address));
if (!ent)
dev_err(chip->dev,
"Couldn't create address debug file rc = %d\n",
rc);
ent = debugfs_create_file("data", S_IFREG | 0644,
chip->debug_root, chip,
&poke_poke_debug_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
ent = debugfs_create_x32("fg_address",
S_IFREG | 0644,
chip->debug_root,
&(chip->fg_peek_poke_address));
if (!ent)
dev_err(chip->dev,
"Couldn't create address debug file rc = %d\n",
rc);
ent = debugfs_create_file("fg_data",
S_IFREG | 0644,
chip->debug_root, chip,
&fg_poke_poke_debug_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
ent = debugfs_create_x32("fg_access_type",
S_IFREG | 0644,
chip->debug_root,
&(chip->fg_access_type));
if (!ent)
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
ent = debugfs_create_x32("skip_writes",
S_IFREG | 0644,
chip->debug_root,
&(chip->skip_writes));
if (!ent)
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
ent = debugfs_create_x32("skip_reads",
S_IFREG | 0644,
chip->debug_root,
&(chip->skip_reads));
if (!ent)
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
ent = debugfs_create_file("irq_count", S_IFREG | 0444,
chip->debug_root, chip,
&irq_count_debugfs_ops);
if (!ent)
dev_err(chip->dev,
"Couldn't create count debug file rc = %d\n",
rc);
}
dev_info(chip->dev, "SMB1360 revision=0x%x probe success! batt=%d usb=%d soc=%d\n",
chip->revision,
smb1360_get_prop_batt_present(chip),
chip->usb_present,
smb1360_get_prop_batt_capacity(chip));
return 0;
unregister_batt_psy:
power_supply_unregister(chip->batt_psy);
fail_hw_init:
regulator_unregister(chip->otg_vreg.rdev);
destroy_mutex:
power_supply_unregister(chip->usb_psy);
wakeup_source_trash(&chip->smb1360_ws.source);
mutex_destroy(&chip->read_write_lock);
mutex_destroy(&chip->parallel_chg_lock);
mutex_destroy(&chip->otp_gain_lock);
mutex_destroy(&chip->fg_access_request_lock);
mutex_destroy(&chip->irq_complete);
mutex_destroy(&chip->charging_disable_lock);
mutex_destroy(&chip->current_change_lock);
return rc;
}
static int smb1360_remove(struct i2c_client *client)
{
struct smb1360_chip *chip = i2c_get_clientdata(client);
regulator_unregister(chip->otg_vreg.rdev);
power_supply_unregister(chip->usb_psy);
power_supply_unregister(chip->batt_psy);
wakeup_source_trash(&chip->smb1360_ws.source);
mutex_destroy(&chip->charging_disable_lock);
mutex_destroy(&chip->current_change_lock);
mutex_destroy(&chip->read_write_lock);
mutex_destroy(&chip->parallel_chg_lock);
mutex_destroy(&chip->irq_complete);
mutex_destroy(&chip->otp_gain_lock);
mutex_destroy(&chip->fg_access_request_lock);
debugfs_remove_recursive(chip->debug_root);
return 0;
}
static int smb1360_suspend(struct device *dev)
{
int i, rc;
struct i2c_client *client = to_i2c_client(dev);
struct smb1360_chip *chip = i2c_get_clientdata(client);
/* Save the current IRQ config */
for (i = 0; i < 3; i++) {
rc = smb1360_read(chip, IRQ_CFG_REG + i,
&chip->irq_cfg_mask[i]);
if (rc)
pr_err("Couldn't save irq cfg regs rc=%d\n", rc);
}
/* enable only important IRQs */
rc = smb1360_write(chip, IRQ_CFG_REG, IRQ_DCIN_UV_BIT
| IRQ_AICL_DONE_BIT
| IRQ_BAT_HOT_COLD_SOFT_BIT
| IRQ_BAT_HOT_COLD_HARD_BIT);
if (rc < 0)
pr_err("Couldn't set irq_cfg rc=%d\n", rc);
rc = smb1360_write(chip, IRQ2_CFG_REG, IRQ2_BATT_MISSING_BIT
| IRQ2_VBAT_LOW_BIT
| IRQ2_POWER_OK_BIT);
if (rc < 0)
pr_err("Couldn't set irq2_cfg rc=%d\n", rc);
rc = smb1360_write(chip, IRQ3_CFG_REG, IRQ3_SOC_FULL_BIT
| IRQ3_SOC_MIN_BIT
| IRQ3_SOC_EMPTY_BIT);
if (rc < 0)
pr_err("Couldn't set irq3_cfg rc=%d\n", rc);
mutex_lock(&chip->irq_complete);
chip->resume_completed = false;
mutex_unlock(&chip->irq_complete);
return 0;
}
static int smb1360_suspend_noirq(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct smb1360_chip *chip = i2c_get_clientdata(client);
if (chip->irq_waiting) {
pr_err_ratelimited("Aborting suspend, an interrupt was detected while suspending\n");
return -EBUSY;
}
return 0;
}
static int smb1360_resume(struct device *dev)
{
int i, rc;
struct i2c_client *client = to_i2c_client(dev);
struct smb1360_chip *chip = i2c_get_clientdata(client);
/* Restore the IRQ config */
for (i = 0; i < 3; i++) {
rc = smb1360_write(chip, IRQ_CFG_REG + i,
chip->irq_cfg_mask[i]);
if (rc)
pr_err("Couldn't restore irq cfg regs rc=%d\n", rc);
}
mutex_lock(&chip->irq_complete);
chip->resume_completed = true;
if (chip->irq_waiting) {
chip->irq_disabled = false;
enable_irq(client->irq);
mutex_unlock(&chip->irq_complete);
smb1360_stat_handler(client->irq, chip);
} else {
mutex_unlock(&chip->irq_complete);
}
power_supply_changed(chip->batt_psy);
return 0;
}
static void smb1360_shutdown(struct i2c_client *client)
{
int rc;
struct smb1360_chip *chip = i2c_get_clientdata(client);
rc = smb1360_otg_disable(chip);
if (rc)
pr_err("Couldn't disable OTG mode rc=%d\n", rc);
if (chip->shdn_after_pwroff) {
rc = smb1360_poweroff(chip);
if (rc)
pr_err("Couldn't shutdown smb1360, rc = %d\n", rc);
pr_info("smb1360 power off\n");
}
}
static const struct dev_pm_ops smb1360_pm_ops = {
.resume = smb1360_resume,
.suspend_noirq = smb1360_suspend_noirq,
.suspend = smb1360_suspend,
};
static const struct of_device_id smb1360_match_table[] = {
{ .compatible = "qcom,smb1360-chg-fg",},
{ },
};
static const struct i2c_device_id smb1360_id[] = {
{"smb1360-chg-fg", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, smb1360_id);
static struct i2c_driver smb1360_driver = {
.driver = {
.name = "smb1360-chg-fg",
.owner = THIS_MODULE,
.of_match_table = smb1360_match_table,
.pm = &smb1360_pm_ops,
},
.probe = smb1360_probe,
.remove = smb1360_remove,
.shutdown = smb1360_shutdown,
.id_table = smb1360_id,
};
module_i2c_driver(smb1360_driver);
MODULE_DESCRIPTION("SMB1360 Charger and Fuel Gauge");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:smb1360-chg-fg");