| /* |
| * General Purpose functions for the global management of the |
| * Communication Processor Module. |
| * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| * |
| * In addition to the individual control of the communication |
| * channels, there are a few functions that globally affect the |
| * communication processor. |
| * |
| * Buffer descriptors must be allocated from the dual ported memory |
| * space. The allocator for that is here. When the communication |
| * process is reset, we reclaim the memory available. There is |
| * currently no deallocator for this memory. |
| * The amount of space available is platform dependent. On the |
| * MBX, the EPPC software loads additional microcode into the |
| * communication processor, and uses some of the DP ram for this |
| * purpose. Current, the first 512 bytes and the last 256 bytes of |
| * memory are used. Right now I am conservative and only use the |
| * memory that can never be used for microcode. If there are |
| * applications that require more DP ram, we can expand the boundaries |
| * but then we have to be careful of any downloaded microcode. |
| */ |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/module.h> |
| #include <asm/mpc8xx.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/8xx_immap.h> |
| #include <asm/commproc.h> |
| #include <asm/io.h> |
| #include <asm/tlbflush.h> |
| #include <asm/rheap.h> |
| |
| static void m8xx_cpm_dpinit(void); |
| static uint host_buffer; /* One page of host buffer */ |
| static uint host_end; /* end + 1 */ |
| cpm8xx_t *cpmp; /* Pointer to comm processor space */ |
| |
| /* CPM interrupt vector functions. |
| */ |
| struct cpm_action { |
| void (*handler)(void *, struct pt_regs * regs); |
| void *dev_id; |
| }; |
| static struct cpm_action cpm_vecs[CPMVEC_NR]; |
| static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs); |
| static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs * regs); |
| static void alloc_host_memory(void); |
| /* Define a table of names to identify CPM interrupt handlers in |
| * /proc/interrupts. |
| */ |
| const char *cpm_int_name[] = |
| { "error", "PC4", "PC5", "SMC2", |
| "SMC1", "SPI", "PC6", "Timer 4", |
| "", "PC7", "PC8", "PC9", |
| "Timer 3", "", "PC10", "PC11", |
| "I2C", "RISC Timer", "Timer 2", "", |
| "IDMA2", "IDMA1", "SDMA error", "PC12", |
| "PC13", "Timer 1", "PC14", "SCC4", |
| "SCC3", "SCC2", "SCC1", "PC15" |
| }; |
| |
| static void |
| cpm_mask_irq(unsigned int irq) |
| { |
| int cpm_vec = irq - CPM_IRQ_OFFSET; |
| |
| clrbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec)); |
| } |
| |
| static void |
| cpm_unmask_irq(unsigned int irq) |
| { |
| int cpm_vec = irq - CPM_IRQ_OFFSET; |
| |
| setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, (1 << cpm_vec)); |
| } |
| |
| static void |
| cpm_ack(unsigned int irq) |
| { |
| /* We do not need to do anything here. */ |
| } |
| |
| static void |
| cpm_eoi(unsigned int irq) |
| { |
| int cpm_vec = irq - CPM_IRQ_OFFSET; |
| |
| out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr, (1 << cpm_vec)); |
| } |
| |
| struct hw_interrupt_type cpm_pic = { |
| .typename = " CPM ", |
| .enable = cpm_unmask_irq, |
| .disable = cpm_mask_irq, |
| .ack = cpm_ack, |
| .end = cpm_eoi, |
| }; |
| |
| void |
| m8xx_cpm_reset(void) |
| { |
| volatile immap_t *imp; |
| volatile cpm8xx_t *commproc; |
| |
| imp = (immap_t *)IMAP_ADDR; |
| commproc = (cpm8xx_t *)&imp->im_cpm; |
| |
| #ifdef CONFIG_UCODE_PATCH |
| /* Perform a reset. |
| */ |
| commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); |
| |
| /* Wait for it. |
| */ |
| while (commproc->cp_cpcr & CPM_CR_FLG); |
| |
| cpm_load_patch(imp); |
| #endif |
| |
| /* Set SDMA Bus Request priority 5. |
| * On 860T, this also enables FEC priority 6. I am not sure |
| * this is what we realy want for some applications, but the |
| * manual recommends it. |
| * Bit 25, FAM can also be set to use FEC aggressive mode (860T). |
| */ |
| out_be32(&imp->im_siu_conf.sc_sdcr, 1), |
| |
| /* Reclaim the DP memory for our use. */ |
| m8xx_cpm_dpinit(); |
| |
| /* Tell everyone where the comm processor resides. |
| */ |
| cpmp = (cpm8xx_t *)commproc; |
| } |
| |
| /* We used to do this earlier, but have to postpone as long as possible |
| * to ensure the kernel VM is now running. |
| */ |
| static void |
| alloc_host_memory(void) |
| { |
| dma_addr_t physaddr; |
| |
| /* Set the host page for allocation. |
| */ |
| host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr, |
| GFP_KERNEL); |
| host_end = host_buffer + PAGE_SIZE; |
| } |
| |
| /* This is called during init_IRQ. We used to do it above, but this |
| * was too early since init_IRQ was not yet called. |
| */ |
| static struct irqaction cpm_error_irqaction = { |
| .handler = cpm_error_interrupt, |
| .mask = CPU_MASK_NONE, |
| }; |
| static struct irqaction cpm_interrupt_irqaction = { |
| .handler = cpm_interrupt, |
| .mask = CPU_MASK_NONE, |
| .name = "CPM cascade", |
| }; |
| |
| void |
| cpm_interrupt_init(void) |
| { |
| int i; |
| |
| /* Initialize the CPM interrupt controller. |
| */ |
| out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr, |
| (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | |
| ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK); |
| out_be32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr, 0); |
| |
| /* install the CPM interrupt controller routines for the CPM |
| * interrupt vectors |
| */ |
| for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ ) |
| irq_desc[i].handler = &cpm_pic; |
| |
| /* Set our interrupt handler with the core CPU. */ |
| if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction)) |
| panic("Could not allocate CPM IRQ!"); |
| |
| /* Install our own error handler. */ |
| cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR]; |
| if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction)) |
| panic("Could not allocate CPM error IRQ!"); |
| |
| setbits32(&((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr, CICR_IEN); |
| } |
| |
| /* |
| * Get the CPM interrupt vector. |
| */ |
| int |
| cpm_get_irq(struct pt_regs *regs) |
| { |
| int cpm_vec; |
| |
| /* Get the vector by setting the ACK bit and then reading |
| * the register. |
| */ |
| out_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr, 1); |
| cpm_vec = in_be16(&((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr); |
| cpm_vec >>= 11; |
| |
| return cpm_vec; |
| } |
| |
| /* CPM interrupt controller cascade interrupt. |
| */ |
| static irqreturn_t |
| cpm_interrupt(int irq, void * dev, struct pt_regs * regs) |
| { |
| /* This interrupt handler never actually gets called. It is |
| * installed only to unmask the CPM cascade interrupt in the SIU |
| * and to make the CPM cascade interrupt visible in /proc/interrupts. |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| /* The CPM can generate the error interrupt when there is a race condition |
| * between generating and masking interrupts. All we have to do is ACK it |
| * and return. This is a no-op function so we don't need any special |
| * tests in the interrupt handler. |
| */ |
| static irqreturn_t |
| cpm_error_interrupt(int irq, void *dev, struct pt_regs *regs) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| /* A helper function to translate the handler prototype required by |
| * request_irq() to the handler prototype required by cpm_install_handler(). |
| */ |
| static irqreturn_t |
| cpm_handler_helper(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| int cpm_vec = irq - CPM_IRQ_OFFSET; |
| |
| (*cpm_vecs[cpm_vec].handler)(dev_id, regs); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Install a CPM interrupt handler. |
| * This routine accepts a CPM interrupt vector in the range 0 to 31. |
| * This routine is retained for backward compatibility. Rather than using |
| * this routine to install a CPM interrupt handler, you can now use |
| * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to |
| * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47). |
| * |
| * Notice that the prototype of the interrupt handler function must be |
| * different depending on whether you install the handler with |
| * request_irq() or cpm_install_handler(). |
| */ |
| void |
| cpm_install_handler(int cpm_vec, void (*handler)(void *, struct pt_regs *regs), |
| void *dev_id) |
| { |
| int err; |
| |
| /* If null handler, assume we are trying to free the IRQ. |
| */ |
| if (!handler) { |
| free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id); |
| return; |
| } |
| |
| if (cpm_vecs[cpm_vec].handler != 0) |
| printk(KERN_INFO "CPM interrupt %x replacing %x\n", |
| (uint)handler, (uint)cpm_vecs[cpm_vec].handler); |
| cpm_vecs[cpm_vec].handler = handler; |
| cpm_vecs[cpm_vec].dev_id = dev_id; |
| |
| if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper, |
| 0, cpm_int_name[cpm_vec], dev_id))) |
| printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n", |
| err, cpm_vec); |
| } |
| |
| /* Free a CPM interrupt handler. |
| * This routine accepts a CPM interrupt vector in the range 0 to 31. |
| * This routine is retained for backward compatibility. |
| */ |
| void |
| cpm_free_handler(int cpm_vec) |
| { |
| request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0, |
| cpm_vecs[cpm_vec].dev_id); |
| |
| cpm_vecs[cpm_vec].handler = NULL; |
| cpm_vecs[cpm_vec].dev_id = NULL; |
| } |
| |
| /* We also own one page of host buffer space for the allocation of |
| * UART "fifos" and the like. |
| */ |
| uint |
| m8xx_cpm_hostalloc(uint size) |
| { |
| uint retloc; |
| |
| if (host_buffer == 0) |
| alloc_host_memory(); |
| |
| if ((host_buffer + size) >= host_end) |
| return(0); |
| |
| retloc = host_buffer; |
| host_buffer += size; |
| |
| return(retloc); |
| } |
| |
| /* Set a baud rate generator. This needs lots of work. There are |
| * four BRGs, any of which can be wired to any channel. |
| * The internal baud rate clock is the system clock divided by 16. |
| * This assumes the baudrate is 16x oversampled by the uart. |
| */ |
| #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq) |
| #define BRG_UART_CLK (BRG_INT_CLK/16) |
| #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) |
| |
| void |
| cpm_setbrg(uint brg, uint rate) |
| { |
| volatile uint *bp; |
| |
| /* This is good enough to get SMCs running..... |
| */ |
| bp = (uint *)&cpmp->cp_brgc1; |
| bp += brg; |
| /* The BRG has a 12-bit counter. For really slow baud rates (or |
| * really fast processors), we may have to further divide by 16. |
| */ |
| if (((BRG_UART_CLK / rate) - 1) < 4096) |
| *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; |
| else |
| *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | |
| CPM_BRG_EN | CPM_BRG_DIV16; |
| } |
| |
| /* |
| * dpalloc / dpfree bits. |
| */ |
| static spinlock_t cpm_dpmem_lock; |
| /* |
| * 16 blocks should be enough to satisfy all requests |
| * until the memory subsystem goes up... |
| */ |
| static rh_block_t cpm_boot_dpmem_rh_block[16]; |
| static rh_info_t cpm_dpmem_info; |
| |
| #define CPM_DPMEM_ALIGNMENT 8 |
| |
| void m8xx_cpm_dpinit(void) |
| { |
| spin_lock_init(&cpm_dpmem_lock); |
| |
| /* Initialize the info header */ |
| rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, |
| sizeof(cpm_boot_dpmem_rh_block) / |
| sizeof(cpm_boot_dpmem_rh_block[0]), |
| cpm_boot_dpmem_rh_block); |
| |
| /* |
| * Attach the usable dpmem area. |
| * XXX: This is actually crap. CPM_DATAONLY_BASE and |
| * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies |
| * with the processor and the microcode patches applied / activated. |
| * But the following should be at least safe. |
| */ |
| rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); |
| } |
| |
| /* |
| * Allocate the requested size worth of DP memory. |
| * This function returns an offset into the DPRAM area. |
| * Use cpm_dpram_addr() to get the virtual address of the area. |
| */ |
| uint cpm_dpalloc(uint size, uint align) |
| { |
| void *start; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| cpm_dpmem_info.alignment = align; |
| start = rh_alloc(&cpm_dpmem_info, size, "commproc"); |
| spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| |
| return (uint)start; |
| } |
| EXPORT_SYMBOL(cpm_dpalloc); |
| |
| int cpm_dpfree(uint offset) |
| { |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| ret = rh_free(&cpm_dpmem_info, (void *)offset); |
| spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(cpm_dpfree); |
| |
| uint cpm_dpalloc_fixed(uint offset, uint size, uint align) |
| { |
| void *start; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| cpm_dpmem_info.alignment = align; |
| start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); |
| spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| |
| return (uint)start; |
| } |
| EXPORT_SYMBOL(cpm_dpalloc_fixed); |
| |
| void cpm_dpdump(void) |
| { |
| rh_dump(&cpm_dpmem_info); |
| } |
| EXPORT_SYMBOL(cpm_dpdump); |
| |
| void *cpm_dpram_addr(uint offset) |
| { |
| return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset; |
| } |
| EXPORT_SYMBOL(cpm_dpram_addr); |