| /* |
| * linux/mm/swapfile.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * Swap reorganised 29.12.95, Stephen Tweedie |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mman.h> |
| #include <linux/slab.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/swap.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/namei.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/blkdev.h> |
| #include <linux/random.h> |
| #include <linux/writeback.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/ksm.h> |
| #include <linux/rmap.h> |
| #include <linux/security.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mutex.h> |
| #include <linux/capability.h> |
| #include <linux/syscalls.h> |
| #include <linux/memcontrol.h> |
| #include <linux/poll.h> |
| #include <linux/oom.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <linux/swapops.h> |
| #include <linux/page_cgroup.h> |
| |
| static bool swap_count_continued(struct swap_info_struct *, pgoff_t, |
| unsigned char); |
| static void free_swap_count_continuations(struct swap_info_struct *); |
| static sector_t map_swap_entry(swp_entry_t, struct block_device**); |
| |
| static DEFINE_SPINLOCK(swap_lock); |
| static unsigned int nr_swapfiles; |
| long nr_swap_pages; |
| long total_swap_pages; |
| static int least_priority; |
| |
| static const char Bad_file[] = "Bad swap file entry "; |
| static const char Unused_file[] = "Unused swap file entry "; |
| static const char Bad_offset[] = "Bad swap offset entry "; |
| static const char Unused_offset[] = "Unused swap offset entry "; |
| |
| static struct swap_list_t swap_list = {-1, -1}; |
| |
| static struct swap_info_struct *swap_info[MAX_SWAPFILES]; |
| |
| static DEFINE_MUTEX(swapon_mutex); |
| |
| static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); |
| /* Activity counter to indicate that a swapon or swapoff has occurred */ |
| static atomic_t proc_poll_event = ATOMIC_INIT(0); |
| |
| static inline unsigned char swap_count(unsigned char ent) |
| { |
| return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ |
| } |
| |
| /* returns 1 if swap entry is freed */ |
| static int |
| __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) |
| { |
| swp_entry_t entry = swp_entry(si->type, offset); |
| struct page *page; |
| int ret = 0; |
| |
| page = find_get_page(&swapper_space, entry.val); |
| if (!page) |
| return 0; |
| /* |
| * This function is called from scan_swap_map() and it's called |
| * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. |
| * We have to use trylock for avoiding deadlock. This is a special |
| * case and you should use try_to_free_swap() with explicit lock_page() |
| * in usual operations. |
| */ |
| if (trylock_page(page)) { |
| ret = try_to_free_swap(page); |
| unlock_page(page); |
| } |
| page_cache_release(page); |
| return ret; |
| } |
| |
| /* |
| * swapon tell device that all the old swap contents can be discarded, |
| * to allow the swap device to optimize its wear-levelling. |
| */ |
| static int discard_swap(struct swap_info_struct *si) |
| { |
| struct swap_extent *se; |
| sector_t start_block; |
| sector_t nr_blocks; |
| int err = 0; |
| |
| /* Do not discard the swap header page! */ |
| se = &si->first_swap_extent; |
| start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); |
| nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); |
| if (nr_blocks) { |
| err = blkdev_issue_discard(si->bdev, start_block, |
| nr_blocks, GFP_KERNEL, 0); |
| if (err) |
| return err; |
| cond_resched(); |
| } |
| |
| list_for_each_entry(se, &si->first_swap_extent.list, list) { |
| start_block = se->start_block << (PAGE_SHIFT - 9); |
| nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); |
| |
| err = blkdev_issue_discard(si->bdev, start_block, |
| nr_blocks, GFP_KERNEL, 0); |
| if (err) |
| break; |
| |
| cond_resched(); |
| } |
| return err; /* That will often be -EOPNOTSUPP */ |
| } |
| |
| /* |
| * swap allocation tell device that a cluster of swap can now be discarded, |
| * to allow the swap device to optimize its wear-levelling. |
| */ |
| static void discard_swap_cluster(struct swap_info_struct *si, |
| pgoff_t start_page, pgoff_t nr_pages) |
| { |
| struct swap_extent *se = si->curr_swap_extent; |
| int found_extent = 0; |
| |
| while (nr_pages) { |
| struct list_head *lh; |
| |
| if (se->start_page <= start_page && |
| start_page < se->start_page + se->nr_pages) { |
| pgoff_t offset = start_page - se->start_page; |
| sector_t start_block = se->start_block + offset; |
| sector_t nr_blocks = se->nr_pages - offset; |
| |
| if (nr_blocks > nr_pages) |
| nr_blocks = nr_pages; |
| start_page += nr_blocks; |
| nr_pages -= nr_blocks; |
| |
| if (!found_extent++) |
| si->curr_swap_extent = se; |
| |
| start_block <<= PAGE_SHIFT - 9; |
| nr_blocks <<= PAGE_SHIFT - 9; |
| if (blkdev_issue_discard(si->bdev, start_block, |
| nr_blocks, GFP_NOIO, 0)) |
| break; |
| } |
| |
| lh = se->list.next; |
| se = list_entry(lh, struct swap_extent, list); |
| } |
| } |
| |
| static int wait_for_discard(void *word) |
| { |
| schedule(); |
| return 0; |
| } |
| |
| #define SWAPFILE_CLUSTER 256 |
| #define LATENCY_LIMIT 256 |
| |
| static unsigned long scan_swap_map(struct swap_info_struct *si, |
| unsigned char usage) |
| { |
| unsigned long offset; |
| unsigned long scan_base; |
| unsigned long last_in_cluster = 0; |
| int latency_ration = LATENCY_LIMIT; |
| int found_free_cluster = 0; |
| |
| /* |
| * We try to cluster swap pages by allocating them sequentially |
| * in swap. Once we've allocated SWAPFILE_CLUSTER pages this |
| * way, however, we resort to first-free allocation, starting |
| * a new cluster. This prevents us from scattering swap pages |
| * all over the entire swap partition, so that we reduce |
| * overall disk seek times between swap pages. -- sct |
| * But we do now try to find an empty cluster. -Andrea |
| * And we let swap pages go all over an SSD partition. Hugh |
| */ |
| |
| si->flags += SWP_SCANNING; |
| scan_base = offset = si->cluster_next; |
| |
| if (unlikely(!si->cluster_nr--)) { |
| if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { |
| si->cluster_nr = SWAPFILE_CLUSTER - 1; |
| goto checks; |
| } |
| if (si->flags & SWP_DISCARDABLE) { |
| /* |
| * Start range check on racing allocations, in case |
| * they overlap the cluster we eventually decide on |
| * (we scan without swap_lock to allow preemption). |
| * It's hardly conceivable that cluster_nr could be |
| * wrapped during our scan, but don't depend on it. |
| */ |
| if (si->lowest_alloc) |
| goto checks; |
| si->lowest_alloc = si->max; |
| si->highest_alloc = 0; |
| } |
| spin_unlock(&swap_lock); |
| |
| /* |
| * If seek is expensive, start searching for new cluster from |
| * start of partition, to minimize the span of allocated swap. |
| * But if seek is cheap, search from our current position, so |
| * that swap is allocated from all over the partition: if the |
| * Flash Translation Layer only remaps within limited zones, |
| * we don't want to wear out the first zone too quickly. |
| */ |
| if (!(si->flags & SWP_SOLIDSTATE)) |
| scan_base = offset = si->lowest_bit; |
| last_in_cluster = offset + SWAPFILE_CLUSTER - 1; |
| |
| /* Locate the first empty (unaligned) cluster */ |
| for (; last_in_cluster <= si->highest_bit; offset++) { |
| if (si->swap_map[offset]) |
| last_in_cluster = offset + SWAPFILE_CLUSTER; |
| else if (offset == last_in_cluster) { |
| spin_lock(&swap_lock); |
| offset -= SWAPFILE_CLUSTER - 1; |
| si->cluster_next = offset; |
| si->cluster_nr = SWAPFILE_CLUSTER - 1; |
| found_free_cluster = 1; |
| goto checks; |
| } |
| if (unlikely(--latency_ration < 0)) { |
| cond_resched(); |
| latency_ration = LATENCY_LIMIT; |
| } |
| } |
| |
| offset = si->lowest_bit; |
| last_in_cluster = offset + SWAPFILE_CLUSTER - 1; |
| |
| /* Locate the first empty (unaligned) cluster */ |
| for (; last_in_cluster < scan_base; offset++) { |
| if (si->swap_map[offset]) |
| last_in_cluster = offset + SWAPFILE_CLUSTER; |
| else if (offset == last_in_cluster) { |
| spin_lock(&swap_lock); |
| offset -= SWAPFILE_CLUSTER - 1; |
| si->cluster_next = offset; |
| si->cluster_nr = SWAPFILE_CLUSTER - 1; |
| found_free_cluster = 1; |
| goto checks; |
| } |
| if (unlikely(--latency_ration < 0)) { |
| cond_resched(); |
| latency_ration = LATENCY_LIMIT; |
| } |
| } |
| |
| offset = scan_base; |
| spin_lock(&swap_lock); |
| si->cluster_nr = SWAPFILE_CLUSTER - 1; |
| si->lowest_alloc = 0; |
| } |
| |
| checks: |
| if (!(si->flags & SWP_WRITEOK)) |
| goto no_page; |
| if (!si->highest_bit) |
| goto no_page; |
| if (offset > si->highest_bit) |
| scan_base = offset = si->lowest_bit; |
| |
| /* reuse swap entry of cache-only swap if not busy. */ |
| if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
| int swap_was_freed; |
| spin_unlock(&swap_lock); |
| swap_was_freed = __try_to_reclaim_swap(si, offset); |
| spin_lock(&swap_lock); |
| /* entry was freed successfully, try to use this again */ |
| if (swap_was_freed) |
| goto checks; |
| goto scan; /* check next one */ |
| } |
| |
| if (si->swap_map[offset]) |
| goto scan; |
| |
| if (offset == si->lowest_bit) |
| si->lowest_bit++; |
| if (offset == si->highest_bit) |
| si->highest_bit--; |
| si->inuse_pages++; |
| if (si->inuse_pages == si->pages) { |
| si->lowest_bit = si->max; |
| si->highest_bit = 0; |
| } |
| si->swap_map[offset] = usage; |
| si->cluster_next = offset + 1; |
| si->flags -= SWP_SCANNING; |
| |
| if (si->lowest_alloc) { |
| /* |
| * Only set when SWP_DISCARDABLE, and there's a scan |
| * for a free cluster in progress or just completed. |
| */ |
| if (found_free_cluster) { |
| /* |
| * To optimize wear-levelling, discard the |
| * old data of the cluster, taking care not to |
| * discard any of its pages that have already |
| * been allocated by racing tasks (offset has |
| * already stepped over any at the beginning). |
| */ |
| if (offset < si->highest_alloc && |
| si->lowest_alloc <= last_in_cluster) |
| last_in_cluster = si->lowest_alloc - 1; |
| si->flags |= SWP_DISCARDING; |
| spin_unlock(&swap_lock); |
| |
| if (offset < last_in_cluster) |
| discard_swap_cluster(si, offset, |
| last_in_cluster - offset + 1); |
| |
| spin_lock(&swap_lock); |
| si->lowest_alloc = 0; |
| si->flags &= ~SWP_DISCARDING; |
| |
| smp_mb(); /* wake_up_bit advises this */ |
| wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); |
| |
| } else if (si->flags & SWP_DISCARDING) { |
| /* |
| * Delay using pages allocated by racing tasks |
| * until the whole discard has been issued. We |
| * could defer that delay until swap_writepage, |
| * but it's easier to keep this self-contained. |
| */ |
| spin_unlock(&swap_lock); |
| wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), |
| wait_for_discard, TASK_UNINTERRUPTIBLE); |
| spin_lock(&swap_lock); |
| } else { |
| /* |
| * Note pages allocated by racing tasks while |
| * scan for a free cluster is in progress, so |
| * that its final discard can exclude them. |
| */ |
| if (offset < si->lowest_alloc) |
| si->lowest_alloc = offset; |
| if (offset > si->highest_alloc) |
| si->highest_alloc = offset; |
| } |
| } |
| return offset; |
| |
| scan: |
| spin_unlock(&swap_lock); |
| while (++offset <= si->highest_bit) { |
| if (!si->swap_map[offset]) { |
| spin_lock(&swap_lock); |
| goto checks; |
| } |
| if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
| spin_lock(&swap_lock); |
| goto checks; |
| } |
| if (unlikely(--latency_ration < 0)) { |
| cond_resched(); |
| latency_ration = LATENCY_LIMIT; |
| } |
| } |
| offset = si->lowest_bit; |
| while (++offset < scan_base) { |
| if (!si->swap_map[offset]) { |
| spin_lock(&swap_lock); |
| goto checks; |
| } |
| if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
| spin_lock(&swap_lock); |
| goto checks; |
| } |
| if (unlikely(--latency_ration < 0)) { |
| cond_resched(); |
| latency_ration = LATENCY_LIMIT; |
| } |
| } |
| spin_lock(&swap_lock); |
| |
| no_page: |
| si->flags -= SWP_SCANNING; |
| return 0; |
| } |
| |
| swp_entry_t get_swap_page(void) |
| { |
| struct swap_info_struct *si; |
| pgoff_t offset; |
| int type, next; |
| int wrapped = 0; |
| |
| spin_lock(&swap_lock); |
| if (nr_swap_pages <= 0) |
| goto noswap; |
| nr_swap_pages--; |
| |
| for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { |
| si = swap_info[type]; |
| next = si->next; |
| if (next < 0 || |
| (!wrapped && si->prio != swap_info[next]->prio)) { |
| next = swap_list.head; |
| wrapped++; |
| } |
| |
| if (!si->highest_bit) |
| continue; |
| if (!(si->flags & SWP_WRITEOK)) |
| continue; |
| |
| swap_list.next = next; |
| /* This is called for allocating swap entry for cache */ |
| offset = scan_swap_map(si, SWAP_HAS_CACHE); |
| if (offset) { |
| spin_unlock(&swap_lock); |
| return swp_entry(type, offset); |
| } |
| next = swap_list.next; |
| } |
| |
| nr_swap_pages++; |
| noswap: |
| spin_unlock(&swap_lock); |
| return (swp_entry_t) {0}; |
| } |
| |
| /* The only caller of this function is now susupend routine */ |
| swp_entry_t get_swap_page_of_type(int type) |
| { |
| struct swap_info_struct *si; |
| pgoff_t offset; |
| |
| spin_lock(&swap_lock); |
| si = swap_info[type]; |
| if (si && (si->flags & SWP_WRITEOK)) { |
| nr_swap_pages--; |
| /* This is called for allocating swap entry, not cache */ |
| offset = scan_swap_map(si, 1); |
| if (offset) { |
| spin_unlock(&swap_lock); |
| return swp_entry(type, offset); |
| } |
| nr_swap_pages++; |
| } |
| spin_unlock(&swap_lock); |
| return (swp_entry_t) {0}; |
| } |
| |
| static struct swap_info_struct *swap_info_get(swp_entry_t entry) |
| { |
| struct swap_info_struct *p; |
| unsigned long offset, type; |
| |
| if (!entry.val) |
| goto out; |
| type = swp_type(entry); |
| if (type >= nr_swapfiles) |
| goto bad_nofile; |
| p = swap_info[type]; |
| if (!(p->flags & SWP_USED)) |
| goto bad_device; |
| offset = swp_offset(entry); |
| if (offset >= p->max) |
| goto bad_offset; |
| if (!p->swap_map[offset]) |
| goto bad_free; |
| spin_lock(&swap_lock); |
| return p; |
| |
| bad_free: |
| printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); |
| goto out; |
| bad_offset: |
| printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); |
| goto out; |
| bad_device: |
| printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); |
| goto out; |
| bad_nofile: |
| printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); |
| out: |
| return NULL; |
| } |
| |
| static unsigned char swap_entry_free(struct swap_info_struct *p, |
| swp_entry_t entry, unsigned char usage) |
| { |
| unsigned long offset = swp_offset(entry); |
| unsigned char count; |
| unsigned char has_cache; |
| |
| count = p->swap_map[offset]; |
| has_cache = count & SWAP_HAS_CACHE; |
| count &= ~SWAP_HAS_CACHE; |
| |
| if (usage == SWAP_HAS_CACHE) { |
| VM_BUG_ON(!has_cache); |
| has_cache = 0; |
| } else if (count == SWAP_MAP_SHMEM) { |
| /* |
| * Or we could insist on shmem.c using a special |
| * swap_shmem_free() and free_shmem_swap_and_cache()... |
| */ |
| count = 0; |
| } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { |
| if (count == COUNT_CONTINUED) { |
| if (swap_count_continued(p, offset, count)) |
| count = SWAP_MAP_MAX | COUNT_CONTINUED; |
| else |
| count = SWAP_MAP_MAX; |
| } else |
| count--; |
| } |
| |
| if (!count) |
| mem_cgroup_uncharge_swap(entry); |
| |
| usage = count | has_cache; |
| p->swap_map[offset] = usage; |
| |
| /* free if no reference */ |
| if (!usage) { |
| struct gendisk *disk = p->bdev->bd_disk; |
| if (offset < p->lowest_bit) |
| p->lowest_bit = offset; |
| if (offset > p->highest_bit) |
| p->highest_bit = offset; |
| if (swap_list.next >= 0 && |
| p->prio > swap_info[swap_list.next]->prio) |
| swap_list.next = p->type; |
| nr_swap_pages++; |
| p->inuse_pages--; |
| if ((p->flags & SWP_BLKDEV) && |
| disk->fops->swap_slot_free_notify) |
| disk->fops->swap_slot_free_notify(p->bdev, offset); |
| } |
| |
| return usage; |
| } |
| |
| /* |
| * Caller has made sure that the swapdevice corresponding to entry |
| * is still around or has not been recycled. |
| */ |
| void swap_free(swp_entry_t entry) |
| { |
| struct swap_info_struct *p; |
| |
| p = swap_info_get(entry); |
| if (p) { |
| swap_entry_free(p, entry, 1); |
| spin_unlock(&swap_lock); |
| } |
| } |
| |
| /* |
| * Called after dropping swapcache to decrease refcnt to swap entries. |
| */ |
| void swapcache_free(swp_entry_t entry, struct page *page) |
| { |
| struct swap_info_struct *p; |
| unsigned char count; |
| |
| p = swap_info_get(entry); |
| if (p) { |
| count = swap_entry_free(p, entry, SWAP_HAS_CACHE); |
| if (page) |
| mem_cgroup_uncharge_swapcache(page, entry, count != 0); |
| spin_unlock(&swap_lock); |
| } |
| } |
| |
| /* |
| * How many references to page are currently swapped out? |
| * This does not give an exact answer when swap count is continued, |
| * but does include the high COUNT_CONTINUED flag to allow for that. |
| */ |
| static inline int page_swapcount(struct page *page) |
| { |
| int count = 0; |
| struct swap_info_struct *p; |
| swp_entry_t entry; |
| |
| entry.val = page_private(page); |
| p = swap_info_get(entry); |
| if (p) { |
| count = swap_count(p->swap_map[swp_offset(entry)]); |
| spin_unlock(&swap_lock); |
| } |
| return count; |
| } |
| |
| /* |
| * We can write to an anon page without COW if there are no other references |
| * to it. And as a side-effect, free up its swap: because the old content |
| * on disk will never be read, and seeking back there to write new content |
| * later would only waste time away from clustering. |
| */ |
| int reuse_swap_page(struct page *page) |
| { |
| int count; |
| |
| VM_BUG_ON(!PageLocked(page)); |
| if (unlikely(PageKsm(page))) |
| return 0; |
| count = page_mapcount(page); |
| if (count <= 1 && PageSwapCache(page)) { |
| count += page_swapcount(page); |
| if (count == 1 && !PageWriteback(page)) { |
| delete_from_swap_cache(page); |
| SetPageDirty(page); |
| } |
| } |
| return count <= 1; |
| } |
| |
| /* |
| * If swap is getting full, or if there are no more mappings of this page, |
| * then try_to_free_swap is called to free its swap space. |
| */ |
| int try_to_free_swap(struct page *page) |
| { |
| VM_BUG_ON(!PageLocked(page)); |
| |
| if (!PageSwapCache(page)) |
| return 0; |
| if (PageWriteback(page)) |
| return 0; |
| if (page_swapcount(page)) |
| return 0; |
| |
| /* |
| * Once hibernation has begun to create its image of memory, |
| * there's a danger that one of the calls to try_to_free_swap() |
| * - most probably a call from __try_to_reclaim_swap() while |
| * hibernation is allocating its own swap pages for the image, |
| * but conceivably even a call from memory reclaim - will free |
| * the swap from a page which has already been recorded in the |
| * image as a clean swapcache page, and then reuse its swap for |
| * another page of the image. On waking from hibernation, the |
| * original page might be freed under memory pressure, then |
| * later read back in from swap, now with the wrong data. |
| * |
| * Hibration suspends storage while it is writing the image |
| * to disk so check that here. |
| */ |
| if (pm_suspended_storage()) |
| return 0; |
| |
| delete_from_swap_cache(page); |
| SetPageDirty(page); |
| return 1; |
| } |
| |
| /* |
| * Free the swap entry like above, but also try to |
| * free the page cache entry if it is the last user. |
| */ |
| int free_swap_and_cache(swp_entry_t entry) |
| { |
| struct swap_info_struct *p; |
| struct page *page = NULL; |
| |
| if (non_swap_entry(entry)) |
| return 1; |
| |
| p = swap_info_get(entry); |
| if (p) { |
| if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { |
| page = find_get_page(&swapper_space, entry.val); |
| if (page && !trylock_page(page)) { |
| page_cache_release(page); |
| page = NULL; |
| } |
| } |
| spin_unlock(&swap_lock); |
| } |
| if (page) { |
| /* |
| * Not mapped elsewhere, or swap space full? Free it! |
| * Also recheck PageSwapCache now page is locked (above). |
| */ |
| if (PageSwapCache(page) && !PageWriteback(page) && |
| (!page_mapped(page) || vm_swap_full())) { |
| delete_from_swap_cache(page); |
| SetPageDirty(page); |
| } |
| unlock_page(page); |
| page_cache_release(page); |
| } |
| return p != NULL; |
| } |
| |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| /** |
| * mem_cgroup_count_swap_user - count the user of a swap entry |
| * @ent: the swap entry to be checked |
| * @pagep: the pointer for the swap cache page of the entry to be stored |
| * |
| * Returns the number of the user of the swap entry. The number is valid only |
| * for swaps of anonymous pages. |
| * If the entry is found on swap cache, the page is stored to pagep with |
| * refcount of it being incremented. |
| */ |
| int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) |
| { |
| struct page *page; |
| struct swap_info_struct *p; |
| int count = 0; |
| |
| page = find_get_page(&swapper_space, ent.val); |
| if (page) |
| count += page_mapcount(page); |
| p = swap_info_get(ent); |
| if (p) { |
| count += swap_count(p->swap_map[swp_offset(ent)]); |
| spin_unlock(&swap_lock); |
| } |
| |
| *pagep = page; |
| return count; |
| } |
| #endif |
| |
| #ifdef CONFIG_HIBERNATION |
| /* |
| * Find the swap type that corresponds to given device (if any). |
| * |
| * @offset - number of the PAGE_SIZE-sized block of the device, starting |
| * from 0, in which the swap header is expected to be located. |
| * |
| * This is needed for the suspend to disk (aka swsusp). |
| */ |
| int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) |
| { |
| struct block_device *bdev = NULL; |
| int type; |
| |
| if (device) |
| bdev = bdget(device); |
| |
| spin_lock(&swap_lock); |
| for (type = 0; type < nr_swapfiles; type++) { |
| struct swap_info_struct *sis = swap_info[type]; |
| |
| if (!(sis->flags & SWP_WRITEOK)) |
| continue; |
| |
| if (!bdev) { |
| if (bdev_p) |
| *bdev_p = bdgrab(sis->bdev); |
| |
| spin_unlock(&swap_lock); |
| return type; |
| } |
| if (bdev == sis->bdev) { |
| struct swap_extent *se = &sis->first_swap_extent; |
| |
| if (se->start_block == offset) { |
| if (bdev_p) |
| *bdev_p = bdgrab(sis->bdev); |
| |
| spin_unlock(&swap_lock); |
| bdput(bdev); |
| return type; |
| } |
| } |
| } |
| spin_unlock(&swap_lock); |
| if (bdev) |
| bdput(bdev); |
| |
| return -ENODEV; |
| } |
| |
| /* |
| * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev |
| * corresponding to given index in swap_info (swap type). |
| */ |
| sector_t swapdev_block(int type, pgoff_t offset) |
| { |
| struct block_device *bdev; |
| |
| if ((unsigned int)type >= nr_swapfiles) |
| return 0; |
| if (!(swap_info[type]->flags & SWP_WRITEOK)) |
| return 0; |
| return map_swap_entry(swp_entry(type, offset), &bdev); |
| } |
| |
| /* |
| * Return either the total number of swap pages of given type, or the number |
| * of free pages of that type (depending on @free) |
| * |
| * This is needed for software suspend |
| */ |
| unsigned int count_swap_pages(int type, int free) |
| { |
| unsigned int n = 0; |
| |
| spin_lock(&swap_lock); |
| if ((unsigned int)type < nr_swapfiles) { |
| struct swap_info_struct *sis = swap_info[type]; |
| |
| if (sis->flags & SWP_WRITEOK) { |
| n = sis->pages; |
| if (free) |
| n -= sis->inuse_pages; |
| } |
| } |
| spin_unlock(&swap_lock); |
| return n; |
| } |
| #endif /* CONFIG_HIBERNATION */ |
| |
| /* |
| * No need to decide whether this PTE shares the swap entry with others, |
| * just let do_wp_page work it out if a write is requested later - to |
| * force COW, vm_page_prot omits write permission from any private vma. |
| */ |
| static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long addr, swp_entry_t entry, struct page *page) |
| { |
| struct mem_cgroup *memcg; |
| spinlock_t *ptl; |
| pte_t *pte; |
| int ret = 1; |
| |
| if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, |
| GFP_KERNEL, &memcg)) { |
| ret = -ENOMEM; |
| goto out_nolock; |
| } |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { |
| if (ret > 0) |
| mem_cgroup_cancel_charge_swapin(memcg); |
| ret = 0; |
| goto out; |
| } |
| |
| dec_mm_counter(vma->vm_mm, MM_SWAPENTS); |
| inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
| get_page(page); |
| set_pte_at(vma->vm_mm, addr, pte, |
| pte_mkold(mk_pte(page, vma->vm_page_prot))); |
| page_add_anon_rmap(page, vma, addr); |
| mem_cgroup_commit_charge_swapin(page, memcg); |
| swap_free(entry); |
| /* |
| * Move the page to the active list so it is not |
| * immediately swapped out again after swapon. |
| */ |
| activate_page(page); |
| out: |
| pte_unmap_unlock(pte, ptl); |
| out_nolock: |
| return ret; |
| } |
| |
| static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long addr, unsigned long end, |
| swp_entry_t entry, struct page *page) |
| { |
| pte_t swp_pte = swp_entry_to_pte(entry); |
| pte_t *pte; |
| int ret = 0; |
| |
| /* |
| * We don't actually need pte lock while scanning for swp_pte: since |
| * we hold page lock and mmap_sem, swp_pte cannot be inserted into the |
| * page table while we're scanning; though it could get zapped, and on |
| * some architectures (e.g. x86_32 with PAE) we might catch a glimpse |
| * of unmatched parts which look like swp_pte, so unuse_pte must |
| * recheck under pte lock. Scanning without pte lock lets it be |
| * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. |
| */ |
| pte = pte_offset_map(pmd, addr); |
| do { |
| /* |
| * swapoff spends a _lot_ of time in this loop! |
| * Test inline before going to call unuse_pte. |
| */ |
| if (unlikely(pte_same(*pte, swp_pte))) { |
| pte_unmap(pte); |
| ret = unuse_pte(vma, pmd, addr, entry, page); |
| if (ret) |
| goto out; |
| pte = pte_offset_map(pmd, addr); |
| } |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| pte_unmap(pte - 1); |
| out: |
| return ret; |
| } |
| |
| static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
| unsigned long addr, unsigned long end, |
| swp_entry_t entry, struct page *page) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| int ret; |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (unlikely(pmd_trans_huge(*pmd))) |
| continue; |
| if (pmd_none_or_clear_bad(pmd)) |
| continue; |
| ret = unuse_pte_range(vma, pmd, addr, next, entry, page); |
| if (ret) |
| return ret; |
| } while (pmd++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
| unsigned long addr, unsigned long end, |
| swp_entry_t entry, struct page *page) |
| { |
| pud_t *pud; |
| unsigned long next; |
| int ret; |
| |
| pud = pud_offset(pgd, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| ret = unuse_pmd_range(vma, pud, addr, next, entry, page); |
| if (ret) |
| return ret; |
| } while (pud++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static int unuse_vma(struct vm_area_struct *vma, |
| swp_entry_t entry, struct page *page) |
| { |
| pgd_t *pgd; |
| unsigned long addr, end, next; |
| int ret; |
| |
| if (page_anon_vma(page)) { |
| addr = page_address_in_vma(page, vma); |
| if (addr == -EFAULT) |
| return 0; |
| else |
| end = addr + PAGE_SIZE; |
| } else { |
| addr = vma->vm_start; |
| end = vma->vm_end; |
| } |
| |
| pgd = pgd_offset(vma->vm_mm, addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| ret = unuse_pud_range(vma, pgd, addr, next, entry, page); |
| if (ret) |
| return ret; |
| } while (pgd++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static int unuse_mm(struct mm_struct *mm, |
| swp_entry_t entry, struct page *page) |
| { |
| struct vm_area_struct *vma; |
| int ret = 0; |
| |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| /* |
| * Activate page so shrink_inactive_list is unlikely to unmap |
| * its ptes while lock is dropped, so swapoff can make progress. |
| */ |
| activate_page(page); |
| unlock_page(page); |
| down_read(&mm->mmap_sem); |
| lock_page(page); |
| } |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) |
| break; |
| } |
| up_read(&mm->mmap_sem); |
| return (ret < 0)? ret: 0; |
| } |
| |
| /* |
| * Scan swap_map from current position to next entry still in use. |
| * Recycle to start on reaching the end, returning 0 when empty. |
| */ |
| static unsigned int find_next_to_unuse(struct swap_info_struct *si, |
| unsigned int prev) |
| { |
| unsigned int max = si->max; |
| unsigned int i = prev; |
| unsigned char count; |
| |
| /* |
| * No need for swap_lock here: we're just looking |
| * for whether an entry is in use, not modifying it; false |
| * hits are okay, and sys_swapoff() has already prevented new |
| * allocations from this area (while holding swap_lock). |
| */ |
| for (;;) { |
| if (++i >= max) { |
| if (!prev) { |
| i = 0; |
| break; |
| } |
| /* |
| * No entries in use at top of swap_map, |
| * loop back to start and recheck there. |
| */ |
| max = prev + 1; |
| prev = 0; |
| i = 1; |
| } |
| count = si->swap_map[i]; |
| if (count && swap_count(count) != SWAP_MAP_BAD) |
| break; |
| } |
| return i; |
| } |
| |
| /* |
| * We completely avoid races by reading each swap page in advance, |
| * and then search for the process using it. All the necessary |
| * page table adjustments can then be made atomically. |
| */ |
| static int try_to_unuse(unsigned int type) |
| { |
| struct swap_info_struct *si = swap_info[type]; |
| struct mm_struct *start_mm; |
| unsigned char *swap_map; |
| unsigned char swcount; |
| struct page *page; |
| swp_entry_t entry; |
| unsigned int i = 0; |
| int retval = 0; |
| |
| /* |
| * When searching mms for an entry, a good strategy is to |
| * start at the first mm we freed the previous entry from |
| * (though actually we don't notice whether we or coincidence |
| * freed the entry). Initialize this start_mm with a hold. |
| * |
| * A simpler strategy would be to start at the last mm we |
| * freed the previous entry from; but that would take less |
| * advantage of mmlist ordering, which clusters forked mms |
| * together, child after parent. If we race with dup_mmap(), we |
| * prefer to resolve parent before child, lest we miss entries |
| * duplicated after we scanned child: using last mm would invert |
| * that. |
| */ |
| start_mm = &init_mm; |
| atomic_inc(&init_mm.mm_users); |
| |
| /* |
| * Keep on scanning until all entries have gone. Usually, |
| * one pass through swap_map is enough, but not necessarily: |
| * there are races when an instance of an entry might be missed. |
| */ |
| while ((i = find_next_to_unuse(si, i)) != 0) { |
| if (signal_pending(current)) { |
| retval = -EINTR; |
| break; |
| } |
| |
| /* |
| * Get a page for the entry, using the existing swap |
| * cache page if there is one. Otherwise, get a clean |
| * page and read the swap into it. |
| */ |
| swap_map = &si->swap_map[i]; |
| entry = swp_entry(type, i); |
| page = read_swap_cache_async(entry, |
| GFP_HIGHUSER_MOVABLE, NULL, 0); |
| if (!page) { |
| /* |
| * Either swap_duplicate() failed because entry |
| * has been freed independently, and will not be |
| * reused since sys_swapoff() already disabled |
| * allocation from here, or alloc_page() failed. |
| */ |
| if (!*swap_map) |
| continue; |
| retval = -ENOMEM; |
| break; |
| } |
| |
| /* |
| * Don't hold on to start_mm if it looks like exiting. |
| */ |
| if (atomic_read(&start_mm->mm_users) == 1) { |
| mmput(start_mm); |
| start_mm = &init_mm; |
| atomic_inc(&init_mm.mm_users); |
| } |
| |
| /* |
| * Wait for and lock page. When do_swap_page races with |
| * try_to_unuse, do_swap_page can handle the fault much |
| * faster than try_to_unuse can locate the entry. This |
| * apparently redundant "wait_on_page_locked" lets try_to_unuse |
| * defer to do_swap_page in such a case - in some tests, |
| * do_swap_page and try_to_unuse repeatedly compete. |
| */ |
| wait_on_page_locked(page); |
| wait_on_page_writeback(page); |
| lock_page(page); |
| wait_on_page_writeback(page); |
| |
| /* |
| * Remove all references to entry. |
| */ |
| swcount = *swap_map; |
| if (swap_count(swcount) == SWAP_MAP_SHMEM) { |
| retval = shmem_unuse(entry, page); |
| /* page has already been unlocked and released */ |
| if (retval < 0) |
| break; |
| continue; |
| } |
| if (swap_count(swcount) && start_mm != &init_mm) |
| retval = unuse_mm(start_mm, entry, page); |
| |
| if (swap_count(*swap_map)) { |
| int set_start_mm = (*swap_map >= swcount); |
| struct list_head *p = &start_mm->mmlist; |
| struct mm_struct *new_start_mm = start_mm; |
| struct mm_struct *prev_mm = start_mm; |
| struct mm_struct *mm; |
| |
| atomic_inc(&new_start_mm->mm_users); |
| atomic_inc(&prev_mm->mm_users); |
| spin_lock(&mmlist_lock); |
| while (swap_count(*swap_map) && !retval && |
| (p = p->next) != &start_mm->mmlist) { |
| mm = list_entry(p, struct mm_struct, mmlist); |
| if (!atomic_inc_not_zero(&mm->mm_users)) |
| continue; |
| spin_unlock(&mmlist_lock); |
| mmput(prev_mm); |
| prev_mm = mm; |
| |
| cond_resched(); |
| |
| swcount = *swap_map; |
| if (!swap_count(swcount)) /* any usage ? */ |
| ; |
| else if (mm == &init_mm) |
| set_start_mm = 1; |
| else |
| retval = unuse_mm(mm, entry, page); |
| |
| if (set_start_mm && *swap_map < swcount) { |
| mmput(new_start_mm); |
| atomic_inc(&mm->mm_users); |
| new_start_mm = mm; |
| set_start_mm = 0; |
| } |
| spin_lock(&mmlist_lock); |
| } |
| spin_unlock(&mmlist_lock); |
| mmput(prev_mm); |
| mmput(start_mm); |
| start_mm = new_start_mm; |
| } |
| if (retval) { |
| unlock_page(page); |
| page_cache_release(page); |
| break; |
| } |
| |
| /* |
| * If a reference remains (rare), we would like to leave |
| * the page in the swap cache; but try_to_unmap could |
| * then re-duplicate the entry once we drop page lock, |
| * so we might loop indefinitely; also, that page could |
| * not be swapped out to other storage meanwhile. So: |
| * delete from cache even if there's another reference, |
| * after ensuring that the data has been saved to disk - |
| * since if the reference remains (rarer), it will be |
| * read from disk into another page. Splitting into two |
| * pages would be incorrect if swap supported "shared |
| * private" pages, but they are handled by tmpfs files. |
| * |
| * Given how unuse_vma() targets one particular offset |
| * in an anon_vma, once the anon_vma has been determined, |
| * this splitting happens to be just what is needed to |
| * handle where KSM pages have been swapped out: re-reading |
| * is unnecessarily slow, but we can fix that later on. |
| */ |
| if (swap_count(*swap_map) && |
| PageDirty(page) && PageSwapCache(page)) { |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| }; |
| |
| swap_writepage(page, &wbc); |
| lock_page(page); |
| wait_on_page_writeback(page); |
| } |
| |
| /* |
| * It is conceivable that a racing task removed this page from |
| * swap cache just before we acquired the page lock at the top, |
| * or while we dropped it in unuse_mm(). The page might even |
| * be back in swap cache on another swap area: that we must not |
| * delete, since it may not have been written out to swap yet. |
| */ |
| if (PageSwapCache(page) && |
| likely(page_private(page) == entry.val)) |
| delete_from_swap_cache(page); |
| |
| /* |
| * So we could skip searching mms once swap count went |
| * to 1, we did not mark any present ptes as dirty: must |
| * mark page dirty so shrink_page_list will preserve it. |
| */ |
| SetPageDirty(page); |
| unlock_page(page); |
| page_cache_release(page); |
| |
| /* |
| * Make sure that we aren't completely killing |
| * interactive performance. |
| */ |
| cond_resched(); |
| } |
| |
| mmput(start_mm); |
| return retval; |
| } |
| |
| /* |
| * After a successful try_to_unuse, if no swap is now in use, we know |
| * we can empty the mmlist. swap_lock must be held on entry and exit. |
| * Note that mmlist_lock nests inside swap_lock, and an mm must be |
| * added to the mmlist just after page_duplicate - before would be racy. |
| */ |
| static void drain_mmlist(void) |
| { |
| struct list_head *p, *next; |
| unsigned int type; |
| |
| for (type = 0; type < nr_swapfiles; type++) |
| if (swap_info[type]->inuse_pages) |
| return; |
| spin_lock(&mmlist_lock); |
| list_for_each_safe(p, next, &init_mm.mmlist) |
| list_del_init(p); |
| spin_unlock(&mmlist_lock); |
| } |
| |
| /* |
| * Use this swapdev's extent info to locate the (PAGE_SIZE) block which |
| * corresponds to page offset for the specified swap entry. |
| * Note that the type of this function is sector_t, but it returns page offset |
| * into the bdev, not sector offset. |
| */ |
| static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) |
| { |
| struct swap_info_struct *sis; |
| struct swap_extent *start_se; |
| struct swap_extent *se; |
| pgoff_t offset; |
| |
| sis = swap_info[swp_type(entry)]; |
| *bdev = sis->bdev; |
| |
| offset = swp_offset(entry); |
| start_se = sis->curr_swap_extent; |
| se = start_se; |
| |
| for ( ; ; ) { |
| struct list_head *lh; |
| |
| if (se->start_page <= offset && |
| offset < (se->start_page + se->nr_pages)) { |
| return se->start_block + (offset - se->start_page); |
| } |
| lh = se->list.next; |
| se = list_entry(lh, struct swap_extent, list); |
| sis->curr_swap_extent = se; |
| BUG_ON(se == start_se); /* It *must* be present */ |
| } |
| } |
| |
| /* |
| * Returns the page offset into bdev for the specified page's swap entry. |
| */ |
| sector_t map_swap_page(struct page *page, struct block_device **bdev) |
| { |
| swp_entry_t entry; |
| entry.val = page_private(page); |
| return map_swap_entry(entry, bdev); |
| } |
| |
| /* |
| * Free all of a swapdev's extent information |
| */ |
| static void destroy_swap_extents(struct swap_info_struct *sis) |
| { |
| while (!list_empty(&sis->first_swap_extent.list)) { |
| struct swap_extent *se; |
| |
| se = list_entry(sis->first_swap_extent.list.next, |
| struct swap_extent, list); |
| list_del(&se->list); |
| kfree(se); |
| } |
| } |
| |
| /* |
| * Add a block range (and the corresponding page range) into this swapdev's |
| * extent list. The extent list is kept sorted in page order. |
| * |
| * This function rather assumes that it is called in ascending page order. |
| */ |
| static int |
| add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, |
| unsigned long nr_pages, sector_t start_block) |
| { |
| struct swap_extent *se; |
| struct swap_extent *new_se; |
| struct list_head *lh; |
| |
| if (start_page == 0) { |
| se = &sis->first_swap_extent; |
| sis->curr_swap_extent = se; |
| se->start_page = 0; |
| se->nr_pages = nr_pages; |
| se->start_block = start_block; |
| return 1; |
| } else { |
| lh = sis->first_swap_extent.list.prev; /* Highest extent */ |
| se = list_entry(lh, struct swap_extent, list); |
| BUG_ON(se->start_page + se->nr_pages != start_page); |
| if (se->start_block + se->nr_pages == start_block) { |
| /* Merge it */ |
| se->nr_pages += nr_pages; |
| return 0; |
| } |
| } |
| |
| /* |
| * No merge. Insert a new extent, preserving ordering. |
| */ |
| new_se = kmalloc(sizeof(*se), GFP_KERNEL); |
| if (new_se == NULL) |
| return -ENOMEM; |
| new_se->start_page = start_page; |
| new_se->nr_pages = nr_pages; |
| new_se->start_block = start_block; |
| |
| list_add_tail(&new_se->list, &sis->first_swap_extent.list); |
| return 1; |
| } |
| |
| /* |
| * A `swap extent' is a simple thing which maps a contiguous range of pages |
| * onto a contiguous range of disk blocks. An ordered list of swap extents |
| * is built at swapon time and is then used at swap_writepage/swap_readpage |
| * time for locating where on disk a page belongs. |
| * |
| * If the swapfile is an S_ISBLK block device, a single extent is installed. |
| * This is done so that the main operating code can treat S_ISBLK and S_ISREG |
| * swap files identically. |
| * |
| * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap |
| * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK |
| * swapfiles are handled *identically* after swapon time. |
| * |
| * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks |
| * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If |
| * some stray blocks are found which do not fall within the PAGE_SIZE alignment |
| * requirements, they are simply tossed out - we will never use those blocks |
| * for swapping. |
| * |
| * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This |
| * prevents root from shooting her foot off by ftruncating an in-use swapfile, |
| * which will scribble on the fs. |
| * |
| * The amount of disk space which a single swap extent represents varies. |
| * Typically it is in the 1-4 megabyte range. So we can have hundreds of |
| * extents in the list. To avoid much list walking, we cache the previous |
| * search location in `curr_swap_extent', and start new searches from there. |
| * This is extremely effective. The average number of iterations in |
| * map_swap_page() has been measured at about 0.3 per page. - akpm. |
| */ |
| static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) |
| { |
| struct inode *inode; |
| unsigned blocks_per_page; |
| unsigned long page_no; |
| unsigned blkbits; |
| sector_t probe_block; |
| sector_t last_block; |
| sector_t lowest_block = -1; |
| sector_t highest_block = 0; |
| int nr_extents = 0; |
| int ret; |
| |
| inode = sis->swap_file->f_mapping->host; |
| if (S_ISBLK(inode->i_mode)) { |
| ret = add_swap_extent(sis, 0, sis->max, 0); |
| *span = sis->pages; |
| goto out; |
| } |
| |
| blkbits = inode->i_blkbits; |
| blocks_per_page = PAGE_SIZE >> blkbits; |
| |
| /* |
| * Map all the blocks into the extent list. This code doesn't try |
| * to be very smart. |
| */ |
| probe_block = 0; |
| page_no = 0; |
| last_block = i_size_read(inode) >> blkbits; |
| while ((probe_block + blocks_per_page) <= last_block && |
| page_no < sis->max) { |
| unsigned block_in_page; |
| sector_t first_block; |
| |
| first_block = bmap(inode, probe_block); |
| if (first_block == 0) |
| goto bad_bmap; |
| |
| /* |
| * It must be PAGE_SIZE aligned on-disk |
| */ |
| if (first_block & (blocks_per_page - 1)) { |
| probe_block++; |
| goto reprobe; |
| } |
| |
| for (block_in_page = 1; block_in_page < blocks_per_page; |
| block_in_page++) { |
| sector_t block; |
| |
| block = bmap(inode, probe_block + block_in_page); |
| if (block == 0) |
| goto bad_bmap; |
| if (block != first_block + block_in_page) { |
| /* Discontiguity */ |
| probe_block++; |
| goto reprobe; |
| } |
| } |
| |
| first_block >>= (PAGE_SHIFT - blkbits); |
| if (page_no) { /* exclude the header page */ |
| if (first_block < lowest_block) |
| lowest_block = first_block; |
| if (first_block > highest_block) |
| highest_block = first_block; |
| } |
| |
| /* |
| * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
| */ |
| ret = add_swap_extent(sis, page_no, 1, first_block); |
| if (ret < 0) |
| goto out; |
| nr_extents += ret; |
| page_no++; |
| probe_block += blocks_per_page; |
| reprobe: |
| continue; |
| } |
| ret = nr_extents; |
| *span = 1 + highest_block - lowest_block; |
| if (page_no == 0) |
| page_no = 1; /* force Empty message */ |
| sis->max = page_no; |
| sis->pages = page_no - 1; |
| sis->highest_bit = page_no - 1; |
| out: |
| return ret; |
| bad_bmap: |
| printk(KERN_ERR "swapon: swapfile has holes\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| static void enable_swap_info(struct swap_info_struct *p, int prio, |
| unsigned char *swap_map) |
| { |
| int i, prev; |
| |
| spin_lock(&swap_lock); |
| if (prio >= 0) |
| p->prio = prio; |
| else |
| p->prio = --least_priority; |
| p->swap_map = swap_map; |
| p->flags |= SWP_WRITEOK; |
| nr_swap_pages += p->pages; |
| total_swap_pages += p->pages; |
| |
| /* insert swap space into swap_list: */ |
| prev = -1; |
| for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { |
| if (p->prio >= swap_info[i]->prio) |
| break; |
| prev = i; |
| } |
| p->next = i; |
| if (prev < 0) |
| swap_list.head = swap_list.next = p->type; |
| else |
| swap_info[prev]->next = p->type; |
| spin_unlock(&swap_lock); |
| } |
| |
| SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) |
| { |
| struct swap_info_struct *p = NULL; |
| unsigned char *swap_map; |
| struct file *swap_file, *victim; |
| struct address_space *mapping; |
| struct inode *inode; |
| char *pathname; |
| int oom_score_adj; |
| int i, type, prev; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| pathname = getname(specialfile); |
| err = PTR_ERR(pathname); |
| if (IS_ERR(pathname)) |
| goto out; |
| |
| victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); |
| putname(pathname); |
| err = PTR_ERR(victim); |
| if (IS_ERR(victim)) |
| goto out; |
| |
| mapping = victim->f_mapping; |
| prev = -1; |
| spin_lock(&swap_lock); |
| for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { |
| p = swap_info[type]; |
| if (p->flags & SWP_WRITEOK) { |
| if (p->swap_file->f_mapping == mapping) |
| break; |
| } |
| prev = type; |
| } |
| if (type < 0) { |
| err = -EINVAL; |
| spin_unlock(&swap_lock); |
| goto out_dput; |
| } |
| if (!security_vm_enough_memory(p->pages)) |
| vm_unacct_memory(p->pages); |
| else { |
| err = -ENOMEM; |
| spin_unlock(&swap_lock); |
| goto out_dput; |
| } |
| if (prev < 0) |
| swap_list.head = p->next; |
| else |
| swap_info[prev]->next = p->next; |
| if (type == swap_list.next) { |
| /* just pick something that's safe... */ |
| swap_list.next = swap_list.head; |
| } |
| if (p->prio < 0) { |
| for (i = p->next; i >= 0; i = swap_info[i]->next) |
| swap_info[i]->prio = p->prio--; |
| least_priority++; |
| } |
| nr_swap_pages -= p->pages; |
| total_swap_pages -= p->pages; |
| p->flags &= ~SWP_WRITEOK; |
| spin_unlock(&swap_lock); |
| |
| oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); |
| err = try_to_unuse(type); |
| compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); |
| |
| if (err) { |
| /* |
| * reading p->prio and p->swap_map outside the lock is |
| * safe here because only sys_swapon and sys_swapoff |
| * change them, and there can be no other sys_swapon or |
| * sys_swapoff for this swap_info_struct at this point. |
| */ |
| /* re-insert swap space back into swap_list */ |
| enable_swap_info(p, p->prio, p->swap_map); |
| goto out_dput; |
| } |
| |
| destroy_swap_extents(p); |
| if (p->flags & SWP_CONTINUED) |
| free_swap_count_continuations(p); |
| |
| mutex_lock(&swapon_mutex); |
| spin_lock(&swap_lock); |
| drain_mmlist(); |
| |
| /* wait for anyone still in scan_swap_map */ |
| p->highest_bit = 0; /* cuts scans short */ |
| while (p->flags >= SWP_SCANNING) { |
| spin_unlock(&swap_lock); |
| schedule_timeout_uninterruptible(1); |
| spin_lock(&swap_lock); |
| } |
| |
| swap_file = p->swap_file; |
| p->swap_file = NULL; |
| p->max = 0; |
| swap_map = p->swap_map; |
| p->swap_map = NULL; |
| p->flags = 0; |
| spin_unlock(&swap_lock); |
| mutex_unlock(&swapon_mutex); |
| vfree(swap_map); |
| /* Destroy swap account informatin */ |
| swap_cgroup_swapoff(type); |
| |
| inode = mapping->host; |
| if (S_ISBLK(inode->i_mode)) { |
| struct block_device *bdev = I_BDEV(inode); |
| set_blocksize(bdev, p->old_block_size); |
| blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| } else { |
| mutex_lock(&inode->i_mutex); |
| inode->i_flags &= ~S_SWAPFILE; |
| mutex_unlock(&inode->i_mutex); |
| } |
| filp_close(swap_file, NULL); |
| err = 0; |
| atomic_inc(&proc_poll_event); |
| wake_up_interruptible(&proc_poll_wait); |
| |
| out_dput: |
| filp_close(victim, NULL); |
| out: |
| return err; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| static unsigned swaps_poll(struct file *file, poll_table *wait) |
| { |
| struct seq_file *seq = file->private_data; |
| |
| poll_wait(file, &proc_poll_wait, wait); |
| |
| if (seq->poll_event != atomic_read(&proc_poll_event)) { |
| seq->poll_event = atomic_read(&proc_poll_event); |
| return POLLIN | POLLRDNORM | POLLERR | POLLPRI; |
| } |
| |
| return POLLIN | POLLRDNORM; |
| } |
| |
| /* iterator */ |
| static void *swap_start(struct seq_file *swap, loff_t *pos) |
| { |
| struct swap_info_struct *si; |
| int type; |
| loff_t l = *pos; |
| |
| mutex_lock(&swapon_mutex); |
| |
| if (!l) |
| return SEQ_START_TOKEN; |
| |
| for (type = 0; type < nr_swapfiles; type++) { |
| smp_rmb(); /* read nr_swapfiles before swap_info[type] */ |
| si = swap_info[type]; |
| if (!(si->flags & SWP_USED) || !si->swap_map) |
| continue; |
| if (!--l) |
| return si; |
| } |
| |
| return NULL; |
| } |
| |
| static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) |
| { |
| struct swap_info_struct *si = v; |
| int type; |
| |
| if (v == SEQ_START_TOKEN) |
| type = 0; |
| else |
| type = si->type + 1; |
| |
| for (; type < nr_swapfiles; type++) { |
| smp_rmb(); /* read nr_swapfiles before swap_info[type] */ |
| si = swap_info[type]; |
| if (!(si->flags & SWP_USED) || !si->swap_map) |
| continue; |
| ++*pos; |
| return si; |
| } |
| |
| return NULL; |
| } |
| |
| static void swap_stop(struct seq_file *swap, void *v) |
| { |
| mutex_unlock(&swapon_mutex); |
| } |
| |
| static int swap_show(struct seq_file *swap, void *v) |
| { |
| struct swap_info_struct *si = v; |
| struct file *file; |
| int len; |
| |
| if (si == SEQ_START_TOKEN) { |
| seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); |
| return 0; |
| } |
| |
| file = si->swap_file; |
| len = seq_path(swap, &file->f_path, " \t\n\\"); |
| seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", |
| len < 40 ? 40 - len : 1, " ", |
| S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? |
| "partition" : "file\t", |
| si->pages << (PAGE_SHIFT - 10), |
| si->inuse_pages << (PAGE_SHIFT - 10), |
| si->prio); |
| return 0; |
| } |
| |
| static const struct seq_operations swaps_op = { |
| .start = swap_start, |
| .next = swap_next, |
| .stop = swap_stop, |
| .show = swap_show |
| }; |
| |
| static int swaps_open(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq; |
| int ret; |
| |
| ret = seq_open(file, &swaps_op); |
| if (ret) |
| return ret; |
| |
| seq = file->private_data; |
| seq->poll_event = atomic_read(&proc_poll_event); |
| return 0; |
| } |
| |
| static const struct file_operations proc_swaps_operations = { |
| .open = swaps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| .poll = swaps_poll, |
| }; |
| |
| static int __init procswaps_init(void) |
| { |
| proc_create("swaps", 0, NULL, &proc_swaps_operations); |
| return 0; |
| } |
| __initcall(procswaps_init); |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef MAX_SWAPFILES_CHECK |
| static int __init max_swapfiles_check(void) |
| { |
| MAX_SWAPFILES_CHECK(); |
| return 0; |
| } |
| late_initcall(max_swapfiles_check); |
| #endif |
| |
| static struct swap_info_struct *alloc_swap_info(void) |
| { |
| struct swap_info_struct *p; |
| unsigned int type; |
| |
| p = kzalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock(&swap_lock); |
| for (type = 0; type < nr_swapfiles; type++) { |
| if (!(swap_info[type]->flags & SWP_USED)) |
| break; |
| } |
| if (type >= MAX_SWAPFILES) { |
| spin_unlock(&swap_lock); |
| kfree(p); |
| return ERR_PTR(-EPERM); |
| } |
| if (type >= nr_swapfiles) { |
| p->type = type; |
| swap_info[type] = p; |
| /* |
| * Write swap_info[type] before nr_swapfiles, in case a |
| * racing procfs swap_start() or swap_next() is reading them. |
| * (We never shrink nr_swapfiles, we never free this entry.) |
| */ |
| smp_wmb(); |
| nr_swapfiles++; |
| } else { |
| kfree(p); |
| p = swap_info[type]; |
| /* |
| * Do not memset this entry: a racing procfs swap_next() |
| * would be relying on p->type to remain valid. |
| */ |
| } |
| INIT_LIST_HEAD(&p->first_swap_extent.list); |
| p->flags = SWP_USED; |
| p->next = -1; |
| spin_unlock(&swap_lock); |
| |
| return p; |
| } |
| |
| static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) |
| { |
| int error; |
| |
| if (S_ISBLK(inode->i_mode)) { |
| p->bdev = bdgrab(I_BDEV(inode)); |
| error = blkdev_get(p->bdev, |
| FMODE_READ | FMODE_WRITE | FMODE_EXCL, |
| sys_swapon); |
| if (error < 0) { |
| p->bdev = NULL; |
| return -EINVAL; |
| } |
| p->old_block_size = block_size(p->bdev); |
| error = set_blocksize(p->bdev, PAGE_SIZE); |
| if (error < 0) |
| return error; |
| p->flags |= SWP_BLKDEV; |
| } else if (S_ISREG(inode->i_mode)) { |
| p->bdev = inode->i_sb->s_bdev; |
| mutex_lock(&inode->i_mutex); |
| if (IS_SWAPFILE(inode)) |
| return -EBUSY; |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static unsigned long read_swap_header(struct swap_info_struct *p, |
| union swap_header *swap_header, |
| struct inode *inode) |
| { |
| int i; |
| unsigned long maxpages; |
| unsigned long swapfilepages; |
| |
| if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { |
| printk(KERN_ERR "Unable to find swap-space signature\n"); |
| return 0; |
| } |
| |
| /* swap partition endianess hack... */ |
| if (swab32(swap_header->info.version) == 1) { |
| swab32s(&swap_header->info.version); |
| swab32s(&swap_header->info.last_page); |
| swab32s(&swap_header->info.nr_badpages); |
| for (i = 0; i < swap_header->info.nr_badpages; i++) |
| swab32s(&swap_header->info.badpages[i]); |
| } |
| /* Check the swap header's sub-version */ |
| if (swap_header->info.version != 1) { |
| printk(KERN_WARNING |
| "Unable to handle swap header version %d\n", |
| swap_header->info.version); |
| return 0; |
| } |
| |
| p->lowest_bit = 1; |
| p->cluster_next = 1; |
| p->cluster_nr = 0; |
| |
| /* |
| * Find out how many pages are allowed for a single swap |
| * device. There are three limiting factors: 1) the number |
| * of bits for the swap offset in the swp_entry_t type, and |
| * 2) the number of bits in the swap pte as defined by the |
| * the different architectures, and 3) the number of free bits |
| * in an exceptional radix_tree entry. In order to find the |
| * largest possible bit mask, a swap entry with swap type 0 |
| * and swap offset ~0UL is created, encoded to a swap pte, |
| * decoded to a swp_entry_t again, and finally the swap |
| * offset is extracted. This will mask all the bits from |
| * the initial ~0UL mask that can't be encoded in either |
| * the swp_entry_t or the architecture definition of a |
| * swap pte. Then the same is done for a radix_tree entry. |
| */ |
| maxpages = swp_offset(pte_to_swp_entry( |
| swp_entry_to_pte(swp_entry(0, ~0UL)))); |
| maxpages = swp_offset(radix_to_swp_entry( |
| swp_to_radix_entry(swp_entry(0, maxpages)))) + 1; |
| |
| if (maxpages > swap_header->info.last_page) { |
| maxpages = swap_header->info.last_page + 1; |
| /* p->max is an unsigned int: don't overflow it */ |
| if ((unsigned int)maxpages == 0) |
| maxpages = UINT_MAX; |
| } |
| p->highest_bit = maxpages - 1; |
| |
| if (!maxpages) |
| return 0; |
| swapfilepages = i_size_read(inode) >> PAGE_SHIFT; |
| if (swapfilepages && maxpages > swapfilepages) { |
| printk(KERN_WARNING |
| "Swap area shorter than signature indicates\n"); |
| return 0; |
| } |
| if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) |
| return 0; |
| if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) |
| return 0; |
| |
| return maxpages; |
| } |
| |
| static int setup_swap_map_and_extents(struct swap_info_struct *p, |
| union swap_header *swap_header, |
| unsigned char *swap_map, |
| unsigned long maxpages, |
| sector_t *span) |
| { |
| int i; |
| unsigned int nr_good_pages; |
| int nr_extents; |
| |
| nr_good_pages = maxpages - 1; /* omit header page */ |
| |
| for (i = 0; i < swap_header->info.nr_badpages; i++) { |
| unsigned int page_nr = swap_header->info.badpages[i]; |
| if (page_nr == 0 || page_nr > swap_header->info.last_page) |
| return -EINVAL; |
| if (page_nr < maxpages) { |
| swap_map[page_nr] = SWAP_MAP_BAD; |
| nr_good_pages--; |
| } |
| } |
| |
| if (nr_good_pages) { |
| swap_map[0] = SWAP_MAP_BAD; |
| p->max = maxpages; |
| p->pages = nr_good_pages; |
| nr_extents = setup_swap_extents(p, span); |
| if (nr_extents < 0) |
| return nr_extents; |
| nr_good_pages = p->pages; |
| } |
| if (!nr_good_pages) { |
| printk(KERN_WARNING "Empty swap-file\n"); |
| return -EINVAL; |
| } |
| |
| return nr_extents; |
| } |
| |
| SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) |
| { |
| struct swap_info_struct *p; |
| char *name; |
| struct file *swap_file = NULL; |
| struct address_space *mapping; |
| int i; |
| int prio; |
| int error; |
| union swap_header *swap_header; |
| int nr_extents; |
| sector_t span; |
| unsigned long maxpages; |
| unsigned char *swap_map = NULL; |
| struct page *page = NULL; |
| struct inode *inode = NULL; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| p = alloc_swap_info(); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| name = getname(specialfile); |
| if (IS_ERR(name)) { |
| error = PTR_ERR(name); |
| name = NULL; |
| goto bad_swap; |
| } |
| swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); |
| if (IS_ERR(swap_file)) { |
| error = PTR_ERR(swap_file); |
| swap_file = NULL; |
| goto bad_swap; |
| } |
| |
| p->swap_file = swap_file; |
| mapping = swap_file->f_mapping; |
| |
| for (i = 0; i < nr_swapfiles; i++) { |
| struct swap_info_struct *q = swap_info[i]; |
| |
| if (q == p || !q->swap_file) |
| continue; |
| if (mapping == q->swap_file->f_mapping) { |
| error = -EBUSY; |
| goto bad_swap; |
| } |
| } |
| |
| inode = mapping->host; |
| /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ |
| error = claim_swapfile(p, inode); |
| if (unlikely(error)) |
| goto bad_swap; |
| |
| /* |
| * Read the swap header. |
| */ |
| if (!mapping->a_ops->readpage) { |
| error = -EINVAL; |
| goto bad_swap; |
| } |
| page = read_mapping_page(mapping, 0, swap_file); |
| if (IS_ERR(page)) { |
| error = PTR_ERR(page); |
| goto bad_swap; |
| } |
| swap_header = kmap(page); |
| |
| maxpages = read_swap_header(p, swap_header, inode); |
| if (unlikely(!maxpages)) { |
| error = -EINVAL; |
| goto bad_swap; |
| } |
| |
| /* OK, set up the swap map and apply the bad block list */ |
| swap_map = vzalloc(maxpages); |
| if (!swap_map) { |
| error = -ENOMEM; |
| goto bad_swap; |
| } |
| |
| error = swap_cgroup_swapon(p->type, maxpages); |
| if (error) |
| goto bad_swap; |
| |
| nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, |
| maxpages, &span); |
| if (unlikely(nr_extents < 0)) { |
| error = nr_extents; |
| goto bad_swap; |
| } |
| |
| if (p->bdev) { |
| if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { |
| p->flags |= SWP_SOLIDSTATE; |
| p->cluster_next = 1 + (random32() % p->highest_bit); |
| } |
| if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD)) |
| p->flags |= SWP_DISCARDABLE; |
| } |
| |
| mutex_lock(&swapon_mutex); |
| prio = -1; |
| if (swap_flags & SWAP_FLAG_PREFER) |
| prio = |
| (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; |
| enable_swap_info(p, prio, swap_map); |
| |
| printk(KERN_INFO "Adding %uk swap on %s. " |
| "Priority:%d extents:%d across:%lluk %s%s\n", |
| p->pages<<(PAGE_SHIFT-10), name, p->prio, |
| nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), |
| (p->flags & SWP_SOLIDSTATE) ? "SS" : "", |
| (p->flags & SWP_DISCARDABLE) ? "D" : ""); |
| |
| mutex_unlock(&swapon_mutex); |
| atomic_inc(&proc_poll_event); |
| wake_up_interruptible(&proc_poll_wait); |
| |
| if (S_ISREG(inode->i_mode)) |
| inode->i_flags |= S_SWAPFILE; |
| error = 0; |
| goto out; |
| bad_swap: |
| if (inode && S_ISBLK(inode->i_mode) && p->bdev) { |
| set_blocksize(p->bdev, p->old_block_size); |
| blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| } |
| destroy_swap_extents(p); |
| swap_cgroup_swapoff(p->type); |
| spin_lock(&swap_lock); |
| p->swap_file = NULL; |
| p->flags = 0; |
| spin_unlock(&swap_lock); |
| vfree(swap_map); |
| if (swap_file) { |
| if (inode && S_ISREG(inode->i_mode)) { |
| mutex_unlock(&inode->i_mutex); |
| inode = NULL; |
| } |
| filp_close(swap_file, NULL); |
| } |
| out: |
| if (page && !IS_ERR(page)) { |
| kunmap(page); |
| page_cache_release(page); |
| } |
| if (name) |
| putname(name); |
| if (inode && S_ISREG(inode->i_mode)) |
| mutex_unlock(&inode->i_mutex); |
| return error; |
| } |
| |
| void si_swapinfo(struct sysinfo *val) |
| { |
| unsigned int type; |
| unsigned long nr_to_be_unused = 0; |
| |
| spin_lock(&swap_lock); |
| for (type = 0; type < nr_swapfiles; type++) { |
| struct swap_info_struct *si = swap_info[type]; |
| |
| if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) |
| nr_to_be_unused += si->inuse_pages; |
| } |
| val->freeswap = nr_swap_pages + nr_to_be_unused; |
| val->totalswap = total_swap_pages + nr_to_be_unused; |
| spin_unlock(&swap_lock); |
| } |
| |
| /* |
| * Verify that a swap entry is valid and increment its swap map count. |
| * |
| * Returns error code in following case. |
| * - success -> 0 |
| * - swp_entry is invalid -> EINVAL |
| * - swp_entry is migration entry -> EINVAL |
| * - swap-cache reference is requested but there is already one. -> EEXIST |
| * - swap-cache reference is requested but the entry is not used. -> ENOENT |
| * - swap-mapped reference requested but needs continued swap count. -> ENOMEM |
| */ |
| static int __swap_duplicate(swp_entry_t entry, unsigned char usage) |
| { |
| struct swap_info_struct *p; |
| unsigned long offset, type; |
| unsigned char count; |
| unsigned char has_cache; |
| int err = -EINVAL; |
| |
| if (non_swap_entry(entry)) |
| goto out; |
| |
| type = swp_type(entry); |
| if (type >= nr_swapfiles) |
| goto bad_file; |
| p = swap_info[type]; |
| offset = swp_offset(entry); |
| |
| spin_lock(&swap_lock); |
| if (unlikely(offset >= p->max)) |
| goto unlock_out; |
| |
| count = p->swap_map[offset]; |
| has_cache = count & SWAP_HAS_CACHE; |
| count &= ~SWAP_HAS_CACHE; |
| err = 0; |
| |
| if (usage == SWAP_HAS_CACHE) { |
| |
| /* set SWAP_HAS_CACHE if there is no cache and entry is used */ |
| if (!has_cache && count) |
| has_cache = SWAP_HAS_CACHE; |
| else if (has_cache) /* someone else added cache */ |
| err = -EEXIST; |
| else /* no users remaining */ |
| err = -ENOENT; |
| |
| } else if (count || has_cache) { |
| |
| if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) |
| count += usage; |
| else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) |
| err = -EINVAL; |
| else if (swap_count_continued(p, offset, count)) |
| count = COUNT_CONTINUED; |
| else |
| err = -ENOMEM; |
| } else |
| err = -ENOENT; /* unused swap entry */ |
| |
| p->swap_map[offset] = count | has_cache; |
| |
| unlock_out: |
| spin_unlock(&swap_lock); |
| out: |
| return err; |
| |
| bad_file: |
| printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); |
| goto out; |
| } |
| |
| /* |
| * Help swapoff by noting that swap entry belongs to shmem/tmpfs |
| * (in which case its reference count is never incremented). |
| */ |
| void swap_shmem_alloc(swp_entry_t entry) |
| { |
| __swap_duplicate(entry, SWAP_MAP_SHMEM); |
| } |
| |
| /* |
| * Increase reference count of swap entry by 1. |
| * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required |
| * but could not be atomically allocated. Returns 0, just as if it succeeded, |
| * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which |
| * might occur if a page table entry has got corrupted. |
| */ |
| int swap_duplicate(swp_entry_t entry) |
| { |
| int err = 0; |
| |
| while (!err && __swap_duplicate(entry, 1) == -ENOMEM) |
| err = add_swap_count_continuation(entry, GFP_ATOMIC); |
| return err; |
| } |
| |
| /* |
| * @entry: swap entry for which we allocate swap cache. |
| * |
| * Called when allocating swap cache for existing swap entry, |
| * This can return error codes. Returns 0 at success. |
| * -EBUSY means there is a swap cache. |
| * Note: return code is different from swap_duplicate(). |
| */ |
| int swapcache_prepare(swp_entry_t entry) |
| { |
| return __swap_duplicate(entry, SWAP_HAS_CACHE); |
| } |
| |
| /* |
| * swap_lock prevents swap_map being freed. Don't grab an extra |
| * reference on the swaphandle, it doesn't matter if it becomes unused. |
| */ |
| int valid_swaphandles(swp_entry_t entry, unsigned long *offset) |
| { |
| struct swap_info_struct *si; |
| int our_page_cluster = page_cluster; |
| pgoff_t target, toff; |
| pgoff_t base, end; |
| int nr_pages = 0; |
| |
| if (!our_page_cluster) /* no readahead */ |
| return 0; |
| |
| si = swap_info[swp_type(entry)]; |
| target = swp_offset(entry); |
| base = (target >> our_page_cluster) << our_page_cluster; |
| end = base + (1 << our_page_cluster); |
| if (!base) /* first page is swap header */ |
| base++; |
| |
| spin_lock(&swap_lock); |
| if (end > si->max) /* don't go beyond end of map */ |
| end = si->max; |
| |
| /* Count contiguous allocated slots above our target */ |
| for (toff = target; ++toff < end; nr_pages++) { |
| /* Don't read in free or bad pages */ |
| if (!si->swap_map[toff]) |
| break; |
| if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) |
| break; |
| } |
| /* Count contiguous allocated slots below our target */ |
| for (toff = target; --toff >= base; nr_pages++) { |
| /* Don't read in free or bad pages */ |
| if (!si->swap_map[toff]) |
| break; |
| if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) |
| break; |
| } |
| spin_unlock(&swap_lock); |
| |
| /* |
| * Indicate starting offset, and return number of pages to get: |
| * if only 1, say 0, since there's then no readahead to be done. |
| */ |
| *offset = ++toff; |
| return nr_pages? ++nr_pages: 0; |
| } |
| |
| /* |
| * add_swap_count_continuation - called when a swap count is duplicated |
| * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's |
| * page of the original vmalloc'ed swap_map, to hold the continuation count |
| * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called |
| * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. |
| * |
| * These continuation pages are seldom referenced: the common paths all work |
| * on the original swap_map, only referring to a continuation page when the |
| * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. |
| * |
| * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding |
| * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) |
| * can be called after dropping locks. |
| */ |
| int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) |
| { |
| struct swap_info_struct *si; |
| struct page *head; |
| struct page *page; |
| struct page *list_page; |
| pgoff_t offset; |
| unsigned char count; |
| |
| /* |
| * When debugging, it's easier to use __GFP_ZERO here; but it's better |
| * for latency not to zero a page while GFP_ATOMIC and holding locks. |
| */ |
| page = alloc_page(gfp_mask | __GFP_HIGHMEM); |
| |
| si = swap_info_get(entry); |
| if (!si) { |
| /* |
| * An acceptable race has occurred since the failing |
| * __swap_duplicate(): the swap entry has been freed, |
| * perhaps even the whole swap_map cleared for swapoff. |
| */ |
| goto outer; |
| } |
| |
| offset = swp_offset(entry); |
| count = si->swap_map[offset] & ~SWAP_HAS_CACHE; |
| |
| if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { |
| /* |
| * The higher the swap count, the more likely it is that tasks |
| * will race to add swap count continuation: we need to avoid |
| * over-provisioning. |
| */ |
| goto out; |
| } |
| |
| if (!page) { |
| spin_unlock(&swap_lock); |
| return -ENOMEM; |
| } |
| |
| /* |
| * We are fortunate that although vmalloc_to_page uses pte_offset_map, |
| * no architecture is using highmem pages for kernel pagetables: so it |
| * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. |
| */ |
| head = vmalloc_to_page(si->swap_map + offset); |
| offset &= ~PAGE_MASK; |
| |
| /* |
| * Page allocation does not initialize the page's lru field, |
| * but it does always reset its private field. |
| */ |
| if (!page_private(head)) { |
| BUG_ON(count & COUNT_CONTINUED); |
| INIT_LIST_HEAD(&head->lru); |
| set_page_private(head, SWP_CONTINUED); |
| si->flags |= SWP_CONTINUED; |
| } |
| |
| list_for_each_entry(list_page, &head->lru, lru) { |
| unsigned char *map; |
| |
| /* |
| * If the previous map said no continuation, but we've found |
| * a continuation page, free our allocation and use this one. |
| */ |
| if (!(count & COUNT_CONTINUED)) |
| goto out; |
| |
| map = kmap_atomic(list_page, KM_USER0) + offset; |
| count = *map; |
| kunmap_atomic(map, KM_USER0); |
| |
| /* |
| * If this continuation count now has some space in it, |
| * free our allocation and use this one. |
| */ |
| if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) |
| goto out; |
| } |
| |
| list_add_tail(&page->lru, &head->lru); |
| page = NULL; /* now it's attached, don't free it */ |
| out: |
| spin_unlock(&swap_lock); |
| outer: |
| if (page) |
| __free_page(page); |
| return 0; |
| } |
| |
| /* |
| * swap_count_continued - when the original swap_map count is incremented |
| * from SWAP_MAP_MAX, check if there is already a continuation page to carry |
| * into, carry if so, or else fail until a new continuation page is allocated; |
| * when the original swap_map count is decremented from 0 with continuation, |
| * borrow from the continuation and report whether it still holds more. |
| * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. |
| */ |
| static bool swap_count_continued(struct swap_info_struct *si, |
| pgoff_t offset, unsigned char count) |
| { |
| struct page *head; |
| struct page *page; |
| unsigned char *map; |
| |
| head = vmalloc_to_page(si->swap_map + offset); |
| if (page_private(head) != SWP_CONTINUED) { |
| BUG_ON(count & COUNT_CONTINUED); |
| return false; /* need to add count continuation */ |
| } |
| |
| offset &= ~PAGE_MASK; |
| page = list_entry(head->lru.next, struct page, lru); |
| map = kmap_atomic(page, KM_USER0) + offset; |
| |
| if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ |
| goto init_map; /* jump over SWAP_CONT_MAX checks */ |
| |
| if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ |
| /* |
| * Think of how you add 1 to 999 |
| */ |
| while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.next, struct page, lru); |
| BUG_ON(page == head); |
| map = kmap_atomic(page, KM_USER0) + offset; |
| } |
| if (*map == SWAP_CONT_MAX) { |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.next, struct page, lru); |
| if (page == head) |
| return false; /* add count continuation */ |
| map = kmap_atomic(page, KM_USER0) + offset; |
| init_map: *map = 0; /* we didn't zero the page */ |
| } |
| *map += 1; |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.prev, struct page, lru); |
| while (page != head) { |
| map = kmap_atomic(page, KM_USER0) + offset; |
| *map = COUNT_CONTINUED; |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.prev, struct page, lru); |
| } |
| return true; /* incremented */ |
| |
| } else { /* decrementing */ |
| /* |
| * Think of how you subtract 1 from 1000 |
| */ |
| BUG_ON(count != COUNT_CONTINUED); |
| while (*map == COUNT_CONTINUED) { |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.next, struct page, lru); |
| BUG_ON(page == head); |
| map = kmap_atomic(page, KM_USER0) + offset; |
| } |
| BUG_ON(*map == 0); |
| *map -= 1; |
| if (*map == 0) |
| count = 0; |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.prev, struct page, lru); |
| while (page != head) { |
| map = kmap_atomic(page, KM_USER0) + offset; |
| *map = SWAP_CONT_MAX | count; |
| count = COUNT_CONTINUED; |
| kunmap_atomic(map, KM_USER0); |
| page = list_entry(page->lru.prev, struct page, lru); |
| } |
| return count == COUNT_CONTINUED; |
| } |
| } |
| |
| /* |
| * free_swap_count_continuations - swapoff free all the continuation pages |
| * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. |
| */ |
| static void free_swap_count_continuations(struct swap_info_struct *si) |
| { |
| pgoff_t offset; |
| |
| for (offset = 0; offset < si->max; offset += PAGE_SIZE) { |
| struct page *head; |
| head = vmalloc_to_page(si->swap_map + offset); |
| if (page_private(head)) { |
| struct list_head *this, *next; |
| list_for_each_safe(this, next, &head->lru) { |
| struct page *page; |
| page = list_entry(this, struct page, lru); |
| list_del(this); |
| __free_page(page); |
| } |
| } |
| } |
| } |