| /* hfcsusb.c |
| * mISDN driver for Colognechip HFC-S USB chip |
| * |
| * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de) |
| * Copyright 2008 by Martin Bachem (info@bachem-it.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * module params |
| * debug=<n>, default=0, with n=0xHHHHGGGG |
| * H - l1 driver flags described in hfcsusb.h |
| * G - common mISDN debug flags described at mISDNhw.h |
| * |
| * poll=<n>, default 128 |
| * n : burst size of PH_DATA_IND at transparent rx data |
| * |
| * Revision: 0.3.3 (socket), 2008-11-05 |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/usb.h> |
| #include <linux/mISDNhw.h> |
| #include <linux/slab.h> |
| #include "hfcsusb.h" |
| |
| static unsigned int debug; |
| static int poll = DEFAULT_TRANSP_BURST_SZ; |
| |
| static LIST_HEAD(HFClist); |
| static DEFINE_RWLOCK(HFClock); |
| |
| |
| MODULE_AUTHOR("Martin Bachem"); |
| MODULE_LICENSE("GPL"); |
| module_param(debug, uint, S_IRUGO | S_IWUSR); |
| module_param(poll, int, 0); |
| |
| static int hfcsusb_cnt; |
| |
| /* some function prototypes */ |
| static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command); |
| static void release_hw(struct hfcsusb *hw); |
| static void reset_hfcsusb(struct hfcsusb *hw); |
| static void setPortMode(struct hfcsusb *hw); |
| static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel); |
| static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel); |
| static int hfcsusb_setup_bch(struct bchannel *bch, int protocol); |
| static void deactivate_bchannel(struct bchannel *bch); |
| static void hfcsusb_ph_info(struct hfcsusb *hw); |
| |
| /* start next background transfer for control channel */ |
| static void |
| ctrl_start_transfer(struct hfcsusb *hw) |
| { |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| if (hw->ctrl_cnt) { |
| hw->ctrl_urb->pipe = hw->ctrl_out_pipe; |
| hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write; |
| hw->ctrl_urb->transfer_buffer = NULL; |
| hw->ctrl_urb->transfer_buffer_length = 0; |
| hw->ctrl_write.wIndex = |
| cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg); |
| hw->ctrl_write.wValue = |
| cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val); |
| |
| usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC); |
| } |
| } |
| |
| /* |
| * queue a control transfer request to write HFC-S USB |
| * chip register using CTRL resuest queue |
| */ |
| static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val) |
| { |
| struct ctrl_buf *buf; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n", |
| hw->name, __func__, reg, val); |
| |
| spin_lock(&hw->ctrl_lock); |
| if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) { |
| spin_unlock(&hw->ctrl_lock); |
| return 1; |
| } |
| buf = &hw->ctrl_buff[hw->ctrl_in_idx]; |
| buf->hfcs_reg = reg; |
| buf->reg_val = val; |
| if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE) |
| hw->ctrl_in_idx = 0; |
| if (++hw->ctrl_cnt == 1) |
| ctrl_start_transfer(hw); |
| spin_unlock(&hw->ctrl_lock); |
| |
| return 0; |
| } |
| |
| /* control completion routine handling background control cmds */ |
| static void |
| ctrl_complete(struct urb *urb) |
| { |
| struct hfcsusb *hw = (struct hfcsusb *) urb->context; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| urb->dev = hw->dev; |
| if (hw->ctrl_cnt) { |
| hw->ctrl_cnt--; /* decrement actual count */ |
| if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE) |
| hw->ctrl_out_idx = 0; /* pointer wrap */ |
| |
| ctrl_start_transfer(hw); /* start next transfer */ |
| } |
| } |
| |
| /* handle LED bits */ |
| static void |
| set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on) |
| { |
| if (set_on) { |
| if (led_bits < 0) |
| hw->led_state &= ~abs(led_bits); |
| else |
| hw->led_state |= led_bits; |
| } else { |
| if (led_bits < 0) |
| hw->led_state |= abs(led_bits); |
| else |
| hw->led_state &= ~led_bits; |
| } |
| } |
| |
| /* handle LED requests */ |
| static void |
| handle_led(struct hfcsusb *hw, int event) |
| { |
| struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *) |
| hfcsusb_idtab[hw->vend_idx].driver_info; |
| __u8 tmpled; |
| |
| if (driver_info->led_scheme == LED_OFF) |
| return; |
| tmpled = hw->led_state; |
| |
| switch (event) { |
| case LED_POWER_ON: |
| set_led_bit(hw, driver_info->led_bits[0], 1); |
| set_led_bit(hw, driver_info->led_bits[1], 0); |
| set_led_bit(hw, driver_info->led_bits[2], 0); |
| set_led_bit(hw, driver_info->led_bits[3], 0); |
| break; |
| case LED_POWER_OFF: |
| set_led_bit(hw, driver_info->led_bits[0], 0); |
| set_led_bit(hw, driver_info->led_bits[1], 0); |
| set_led_bit(hw, driver_info->led_bits[2], 0); |
| set_led_bit(hw, driver_info->led_bits[3], 0); |
| break; |
| case LED_S0_ON: |
| set_led_bit(hw, driver_info->led_bits[1], 1); |
| break; |
| case LED_S0_OFF: |
| set_led_bit(hw, driver_info->led_bits[1], 0); |
| break; |
| case LED_B1_ON: |
| set_led_bit(hw, driver_info->led_bits[2], 1); |
| break; |
| case LED_B1_OFF: |
| set_led_bit(hw, driver_info->led_bits[2], 0); |
| break; |
| case LED_B2_ON: |
| set_led_bit(hw, driver_info->led_bits[3], 1); |
| break; |
| case LED_B2_OFF: |
| set_led_bit(hw, driver_info->led_bits[3], 0); |
| break; |
| } |
| |
| if (hw->led_state != tmpled) { |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n", |
| hw->name, __func__, |
| HFCUSB_P_DATA, hw->led_state); |
| |
| write_reg(hw, HFCUSB_P_DATA, hw->led_state); |
| } |
| } |
| |
| /* |
| * Layer2 -> Layer 1 Bchannel data |
| */ |
| static int |
| hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) |
| { |
| struct bchannel *bch = container_of(ch, struct bchannel, ch); |
| struct hfcsusb *hw = bch->hw; |
| int ret = -EINVAL; |
| struct mISDNhead *hh = mISDN_HEAD_P(skb); |
| u_long flags; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| switch (hh->prim) { |
| case PH_DATA_REQ: |
| spin_lock_irqsave(&hw->lock, flags); |
| ret = bchannel_senddata(bch, skb); |
| spin_unlock_irqrestore(&hw->lock, flags); |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n", |
| hw->name, __func__, ret); |
| if (ret > 0) |
| ret = 0; |
| return ret; |
| case PH_ACTIVATE_REQ: |
| if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { |
| hfcsusb_start_endpoint(hw, bch->nr - 1); |
| ret = hfcsusb_setup_bch(bch, ch->protocol); |
| } else |
| ret = 0; |
| if (!ret) |
| _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, |
| 0, NULL, GFP_KERNEL); |
| break; |
| case PH_DEACTIVATE_REQ: |
| deactivate_bchannel(bch); |
| _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, |
| 0, NULL, GFP_KERNEL); |
| ret = 0; |
| break; |
| } |
| if (!ret) |
| dev_kfree_skb(skb); |
| return ret; |
| } |
| |
| /* |
| * send full D/B channel status information |
| * as MPH_INFORMATION_IND |
| */ |
| static void |
| hfcsusb_ph_info(struct hfcsusb *hw) |
| { |
| struct ph_info *phi; |
| struct dchannel *dch = &hw->dch; |
| int i; |
| |
| phi = kzalloc(sizeof(struct ph_info) + |
| dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC); |
| phi->dch.ch.protocol = hw->protocol; |
| phi->dch.ch.Flags = dch->Flags; |
| phi->dch.state = dch->state; |
| phi->dch.num_bch = dch->dev.nrbchan; |
| for (i = 0; i < dch->dev.nrbchan; i++) { |
| phi->bch[i].protocol = hw->bch[i].ch.protocol; |
| phi->bch[i].Flags = hw->bch[i].Flags; |
| } |
| _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY, |
| sizeof(struct ph_info_dch) + dch->dev.nrbchan * |
| sizeof(struct ph_info_ch), phi, GFP_ATOMIC); |
| kfree(phi); |
| } |
| |
| /* |
| * Layer2 -> Layer 1 Dchannel data |
| */ |
| static int |
| hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) |
| { |
| struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); |
| struct dchannel *dch = container_of(dev, struct dchannel, dev); |
| struct mISDNhead *hh = mISDN_HEAD_P(skb); |
| struct hfcsusb *hw = dch->hw; |
| int ret = -EINVAL; |
| u_long flags; |
| |
| switch (hh->prim) { |
| case PH_DATA_REQ: |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n", |
| hw->name, __func__); |
| |
| spin_lock_irqsave(&hw->lock, flags); |
| ret = dchannel_senddata(dch, skb); |
| spin_unlock_irqrestore(&hw->lock, flags); |
| if (ret > 0) { |
| ret = 0; |
| queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); |
| } |
| break; |
| |
| case PH_ACTIVATE_REQ: |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n", |
| hw->name, __func__, |
| (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE"); |
| |
| if (hw->protocol == ISDN_P_NT_S0) { |
| ret = 0; |
| if (test_bit(FLG_ACTIVE, &dch->Flags)) { |
| _queue_data(&dch->dev.D, |
| PH_ACTIVATE_IND, MISDN_ID_ANY, 0, |
| NULL, GFP_ATOMIC); |
| } else { |
| hfcsusb_ph_command(hw, |
| HFC_L1_ACTIVATE_NT); |
| test_and_set_bit(FLG_L2_ACTIVATED, |
| &dch->Flags); |
| } |
| } else { |
| hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); |
| ret = l1_event(dch->l1, hh->prim); |
| } |
| break; |
| |
| case PH_DEACTIVATE_REQ: |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n", |
| hw->name, __func__); |
| test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); |
| |
| if (hw->protocol == ISDN_P_NT_S0) { |
| hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); |
| spin_lock_irqsave(&hw->lock, flags); |
| skb_queue_purge(&dch->squeue); |
| if (dch->tx_skb) { |
| dev_kfree_skb(dch->tx_skb); |
| dch->tx_skb = NULL; |
| } |
| dch->tx_idx = 0; |
| if (dch->rx_skb) { |
| dev_kfree_skb(dch->rx_skb); |
| dch->rx_skb = NULL; |
| } |
| test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); |
| spin_unlock_irqrestore(&hw->lock, flags); |
| #ifdef FIXME |
| if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) |
| dchannel_sched_event(&hc->dch, D_CLEARBUSY); |
| #endif |
| ret = 0; |
| } else |
| ret = l1_event(dch->l1, hh->prim); |
| break; |
| case MPH_INFORMATION_REQ: |
| hfcsusb_ph_info(hw); |
| ret = 0; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Layer 1 callback function |
| */ |
| static int |
| hfc_l1callback(struct dchannel *dch, u_int cmd) |
| { |
| struct hfcsusb *hw = dch->hw; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s cmd 0x%x\n", |
| hw->name, __func__, cmd); |
| |
| switch (cmd) { |
| case INFO3_P8: |
| case INFO3_P10: |
| case HW_RESET_REQ: |
| case HW_POWERUP_REQ: |
| break; |
| |
| case HW_DEACT_REQ: |
| skb_queue_purge(&dch->squeue); |
| if (dch->tx_skb) { |
| dev_kfree_skb(dch->tx_skb); |
| dch->tx_skb = NULL; |
| } |
| dch->tx_idx = 0; |
| if (dch->rx_skb) { |
| dev_kfree_skb(dch->rx_skb); |
| dch->rx_skb = NULL; |
| } |
| test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); |
| break; |
| case PH_ACTIVATE_IND: |
| test_and_set_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, |
| GFP_ATOMIC); |
| break; |
| case PH_DEACTIVATE_IND: |
| test_and_clear_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, |
| GFP_ATOMIC); |
| break; |
| default: |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: unknown cmd %x\n", |
| hw->name, __func__, cmd); |
| return -1; |
| } |
| hfcsusb_ph_info(hw); |
| return 0; |
| } |
| |
| static int |
| open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch, |
| struct channel_req *rq) |
| { |
| int err = 0; |
| |
| if (debug & DEBUG_HW_OPEN) |
| printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n", |
| hw->name, __func__, hw->dch.dev.id, rq->adr.channel, |
| __builtin_return_address(0)); |
| if (rq->protocol == ISDN_P_NONE) |
| return -EINVAL; |
| |
| test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags); |
| test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags); |
| hfcsusb_start_endpoint(hw, HFC_CHAN_D); |
| |
| /* E-Channel logging */ |
| if (rq->adr.channel == 1) { |
| if (hw->fifos[HFCUSB_PCM_RX].pipe) { |
| hfcsusb_start_endpoint(hw, HFC_CHAN_E); |
| set_bit(FLG_ACTIVE, &hw->ech.Flags); |
| _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| } else |
| return -EINVAL; |
| } |
| |
| if (!hw->initdone) { |
| hw->protocol = rq->protocol; |
| if (rq->protocol == ISDN_P_TE_S0) { |
| err = create_l1(&hw->dch, hfc_l1callback); |
| if (err) |
| return err; |
| } |
| setPortMode(hw); |
| ch->protocol = rq->protocol; |
| hw->initdone = 1; |
| } else { |
| if (rq->protocol != ch->protocol) |
| return -EPROTONOSUPPORT; |
| } |
| |
| if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) || |
| ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7))) |
| _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, |
| 0, NULL, GFP_KERNEL); |
| rq->ch = ch; |
| if (!try_module_get(THIS_MODULE)) |
| printk(KERN_WARNING "%s: %s: cannot get module\n", |
| hw->name, __func__); |
| return 0; |
| } |
| |
| static int |
| open_bchannel(struct hfcsusb *hw, struct channel_req *rq) |
| { |
| struct bchannel *bch; |
| |
| if (rq->adr.channel == 0 || rq->adr.channel > 2) |
| return -EINVAL; |
| if (rq->protocol == ISDN_P_NONE) |
| return -EINVAL; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s B%i\n", |
| hw->name, __func__, rq->adr.channel); |
| |
| bch = &hw->bch[rq->adr.channel - 1]; |
| if (test_and_set_bit(FLG_OPEN, &bch->Flags)) |
| return -EBUSY; /* b-channel can be only open once */ |
| bch->ch.protocol = rq->protocol; |
| rq->ch = &bch->ch; |
| |
| if (!try_module_get(THIS_MODULE)) |
| printk(KERN_WARNING "%s: %s:cannot get module\n", |
| hw->name, __func__); |
| return 0; |
| } |
| |
| static int |
| channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq) |
| { |
| int ret = 0; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n", |
| hw->name, __func__, (cq->op), (cq->channel)); |
| |
| switch (cq->op) { |
| case MISDN_CTRL_GETOP: |
| cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | |
| MISDN_CTRL_DISCONNECT; |
| break; |
| default: |
| printk(KERN_WARNING "%s: %s: unknown Op %x\n", |
| hw->name, __func__, cq->op); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| /* |
| * device control function |
| */ |
| static int |
| hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) |
| { |
| struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); |
| struct dchannel *dch = container_of(dev, struct dchannel, dev); |
| struct hfcsusb *hw = dch->hw; |
| struct channel_req *rq; |
| int err = 0; |
| |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: cmd:%x %p\n", |
| hw->name, __func__, cmd, arg); |
| switch (cmd) { |
| case OPEN_CHANNEL: |
| rq = arg; |
| if ((rq->protocol == ISDN_P_TE_S0) || |
| (rq->protocol == ISDN_P_NT_S0)) |
| err = open_dchannel(hw, ch, rq); |
| else |
| err = open_bchannel(hw, rq); |
| if (!err) |
| hw->open++; |
| break; |
| case CLOSE_CHANNEL: |
| hw->open--; |
| if (debug & DEBUG_HW_OPEN) |
| printk(KERN_DEBUG |
| "%s: %s: dev(%d) close from %p (open %d)\n", |
| hw->name, __func__, hw->dch.dev.id, |
| __builtin_return_address(0), hw->open); |
| if (!hw->open) { |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_D); |
| if (hw->fifos[HFCUSB_PCM_RX].pipe) |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_E); |
| handle_led(hw, LED_POWER_ON); |
| } |
| module_put(THIS_MODULE); |
| break; |
| case CONTROL_CHANNEL: |
| err = channel_ctrl(hw, arg); |
| break; |
| default: |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: unknown command %x\n", |
| hw->name, __func__, cmd); |
| return -EINVAL; |
| } |
| return err; |
| } |
| |
| /* |
| * S0 TE state change event handler |
| */ |
| static void |
| ph_state_te(struct dchannel *dch) |
| { |
| struct hfcsusb *hw = dch->hw; |
| |
| if (debug & DEBUG_HW) { |
| if (dch->state <= HFC_MAX_TE_LAYER1_STATE) |
| printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, |
| HFC_TE_LAYER1_STATES[dch->state]); |
| else |
| printk(KERN_DEBUG "%s: %s: TE F%d\n", |
| hw->name, __func__, dch->state); |
| } |
| |
| switch (dch->state) { |
| case 0: |
| l1_event(dch->l1, HW_RESET_IND); |
| break; |
| case 3: |
| l1_event(dch->l1, HW_DEACT_IND); |
| break; |
| case 5: |
| case 8: |
| l1_event(dch->l1, ANYSIGNAL); |
| break; |
| case 6: |
| l1_event(dch->l1, INFO2); |
| break; |
| case 7: |
| l1_event(dch->l1, INFO4_P8); |
| break; |
| } |
| if (dch->state == 7) |
| handle_led(hw, LED_S0_ON); |
| else |
| handle_led(hw, LED_S0_OFF); |
| } |
| |
| /* |
| * S0 NT state change event handler |
| */ |
| static void |
| ph_state_nt(struct dchannel *dch) |
| { |
| struct hfcsusb *hw = dch->hw; |
| |
| if (debug & DEBUG_HW) { |
| if (dch->state <= HFC_MAX_NT_LAYER1_STATE) |
| printk(KERN_DEBUG "%s: %s: %s\n", |
| hw->name, __func__, |
| HFC_NT_LAYER1_STATES[dch->state]); |
| |
| else |
| printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n", |
| hw->name, __func__, dch->state); |
| } |
| |
| switch (dch->state) { |
| case (1): |
| test_and_clear_bit(FLG_ACTIVE, &dch->Flags); |
| test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); |
| hw->nt_timer = 0; |
| hw->timers &= ~NT_ACTIVATION_TIMER; |
| handle_led(hw, LED_S0_OFF); |
| break; |
| |
| case (2): |
| if (hw->nt_timer < 0) { |
| hw->nt_timer = 0; |
| hw->timers &= ~NT_ACTIVATION_TIMER; |
| hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); |
| } else { |
| hw->timers |= NT_ACTIVATION_TIMER; |
| hw->nt_timer = NT_T1_COUNT; |
| /* allow G2 -> G3 transition */ |
| write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); |
| } |
| break; |
| case (3): |
| hw->nt_timer = 0; |
| hw->timers &= ~NT_ACTIVATION_TIMER; |
| test_and_set_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, PH_ACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| handle_led(hw, LED_S0_ON); |
| break; |
| case (4): |
| hw->nt_timer = 0; |
| hw->timers &= ~NT_ACTIVATION_TIMER; |
| break; |
| default: |
| break; |
| } |
| hfcsusb_ph_info(hw); |
| } |
| |
| static void |
| ph_state(struct dchannel *dch) |
| { |
| struct hfcsusb *hw = dch->hw; |
| |
| if (hw->protocol == ISDN_P_NT_S0) |
| ph_state_nt(dch); |
| else if (hw->protocol == ISDN_P_TE_S0) |
| ph_state_te(dch); |
| } |
| |
| /* |
| * disable/enable BChannel for desired protocoll |
| */ |
| static int |
| hfcsusb_setup_bch(struct bchannel *bch, int protocol) |
| { |
| struct hfcsusb *hw = bch->hw; |
| __u8 conhdlc, sctrl, sctrl_r; |
| |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n", |
| hw->name, __func__, bch->state, protocol, |
| bch->nr); |
| |
| /* setup val for CON_HDLC */ |
| conhdlc = 0; |
| if (protocol > ISDN_P_NONE) |
| conhdlc = 8; /* enable FIFO */ |
| |
| switch (protocol) { |
| case (-1): /* used for init */ |
| bch->state = -1; |
| /* fall through */ |
| case (ISDN_P_NONE): |
| if (bch->state == ISDN_P_NONE) |
| return 0; /* already in idle state */ |
| bch->state = ISDN_P_NONE; |
| clear_bit(FLG_HDLC, &bch->Flags); |
| clear_bit(FLG_TRANSPARENT, &bch->Flags); |
| break; |
| case (ISDN_P_B_RAW): |
| conhdlc |= 2; |
| bch->state = protocol; |
| set_bit(FLG_TRANSPARENT, &bch->Flags); |
| break; |
| case (ISDN_P_B_HDLC): |
| bch->state = protocol; |
| set_bit(FLG_HDLC, &bch->Flags); |
| break; |
| default: |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: prot not known %x\n", |
| hw->name, __func__, protocol); |
| return -ENOPROTOOPT; |
| } |
| |
| if (protocol >= ISDN_P_NONE) { |
| write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2); |
| write_reg(hw, HFCUSB_CON_HDLC, conhdlc); |
| write_reg(hw, HFCUSB_INC_RES_F, 2); |
| write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3); |
| write_reg(hw, HFCUSB_CON_HDLC, conhdlc); |
| write_reg(hw, HFCUSB_INC_RES_F, 2); |
| |
| sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04); |
| sctrl_r = 0x0; |
| if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) { |
| sctrl |= 1; |
| sctrl_r |= 1; |
| } |
| if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) { |
| sctrl |= 2; |
| sctrl_r |= 2; |
| } |
| write_reg(hw, HFCUSB_SCTRL, sctrl); |
| write_reg(hw, HFCUSB_SCTRL_R, sctrl_r); |
| |
| if (protocol > ISDN_P_NONE) |
| handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON); |
| else |
| handle_led(hw, (bch->nr == 1) ? LED_B1_OFF : |
| LED_B2_OFF); |
| } |
| hfcsusb_ph_info(hw); |
| return 0; |
| } |
| |
| static void |
| hfcsusb_ph_command(struct hfcsusb *hw, u_char command) |
| { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: %x\n", |
| hw->name, __func__, command); |
| |
| switch (command) { |
| case HFC_L1_ACTIVATE_TE: |
| /* force sending sending INFO1 */ |
| write_reg(hw, HFCUSB_STATES, 0x14); |
| /* start l1 activation */ |
| write_reg(hw, HFCUSB_STATES, 0x04); |
| break; |
| |
| case HFC_L1_FORCE_DEACTIVATE_TE: |
| write_reg(hw, HFCUSB_STATES, 0x10); |
| write_reg(hw, HFCUSB_STATES, 0x03); |
| break; |
| |
| case HFC_L1_ACTIVATE_NT: |
| if (hw->dch.state == 3) |
| _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| else |
| write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE | |
| HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); |
| break; |
| |
| case HFC_L1_DEACTIVATE_NT: |
| write_reg(hw, HFCUSB_STATES, |
| HFCUSB_DO_ACTION); |
| break; |
| } |
| } |
| |
| /* |
| * Layer 1 B-channel hardware access |
| */ |
| static int |
| channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) |
| { |
| return mISDN_ctrl_bchannel(bch, cq); |
| } |
| |
| /* collect data from incoming interrupt or isochron USB data */ |
| static void |
| hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len, |
| int finish) |
| { |
| struct hfcsusb *hw = fifo->hw; |
| struct sk_buff *rx_skb = NULL; |
| int maxlen = 0; |
| int fifon = fifo->fifonum; |
| int i; |
| int hdlc = 0; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) " |
| "dch(%p) bch(%p) ech(%p)\n", |
| hw->name, __func__, fifon, len, |
| fifo->dch, fifo->bch, fifo->ech); |
| |
| if (!len) |
| return; |
| |
| if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) { |
| printk(KERN_DEBUG "%s: %s: undefined channel\n", |
| hw->name, __func__); |
| return; |
| } |
| |
| spin_lock(&hw->lock); |
| if (fifo->dch) { |
| rx_skb = fifo->dch->rx_skb; |
| maxlen = fifo->dch->maxlen; |
| hdlc = 1; |
| } |
| if (fifo->bch) { |
| if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) { |
| fifo->bch->dropcnt += len; |
| spin_unlock(&hw->lock); |
| return; |
| } |
| maxlen = bchannel_get_rxbuf(fifo->bch, len); |
| rx_skb = fifo->bch->rx_skb; |
| if (maxlen < 0) { |
| if (rx_skb) |
| skb_trim(rx_skb, 0); |
| pr_warning("%s.B%d: No bufferspace for %d bytes\n", |
| hw->name, fifo->bch->nr, len); |
| spin_unlock(&hw->lock); |
| return; |
| } |
| maxlen = fifo->bch->maxlen; |
| hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); |
| } |
| if (fifo->ech) { |
| rx_skb = fifo->ech->rx_skb; |
| maxlen = fifo->ech->maxlen; |
| hdlc = 1; |
| } |
| |
| if (fifo->dch || fifo->ech) { |
| if (!rx_skb) { |
| rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC); |
| if (rx_skb) { |
| if (fifo->dch) |
| fifo->dch->rx_skb = rx_skb; |
| if (fifo->ech) |
| fifo->ech->rx_skb = rx_skb; |
| skb_trim(rx_skb, 0); |
| } else { |
| printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n", |
| hw->name, __func__); |
| spin_unlock(&hw->lock); |
| return; |
| } |
| } |
| /* D/E-Channel SKB range check */ |
| if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) { |
| printk(KERN_DEBUG "%s: %s: sbk mem exceeded " |
| "for fifo(%d) HFCUSB_D_RX\n", |
| hw->name, __func__, fifon); |
| skb_trim(rx_skb, 0); |
| spin_unlock(&hw->lock); |
| return; |
| } |
| } |
| |
| memcpy(skb_put(rx_skb, len), data, len); |
| |
| if (hdlc) { |
| /* we have a complete hdlc packet */ |
| if (finish) { |
| if ((rx_skb->len > 3) && |
| (!(rx_skb->data[rx_skb->len - 1]))) { |
| if (debug & DBG_HFC_FIFO_VERBOSE) { |
| printk(KERN_DEBUG "%s: %s: fifon(%i)" |
| " new RX len(%i): ", |
| hw->name, __func__, fifon, |
| rx_skb->len); |
| i = 0; |
| while (i < rx_skb->len) |
| printk("%02x ", |
| rx_skb->data[i++]); |
| printk("\n"); |
| } |
| |
| /* remove CRC & status */ |
| skb_trim(rx_skb, rx_skb->len - 3); |
| |
| if (fifo->dch) |
| recv_Dchannel(fifo->dch); |
| if (fifo->bch) |
| recv_Bchannel(fifo->bch, MISDN_ID_ANY, |
| 0); |
| if (fifo->ech) |
| recv_Echannel(fifo->ech, |
| &hw->dch); |
| } else { |
| if (debug & DBG_HFC_FIFO_VERBOSE) { |
| printk(KERN_DEBUG |
| "%s: CRC or minlen ERROR fifon(%i) " |
| "RX len(%i): ", |
| hw->name, fifon, rx_skb->len); |
| i = 0; |
| while (i < rx_skb->len) |
| printk("%02x ", |
| rx_skb->data[i++]); |
| printk("\n"); |
| } |
| skb_trim(rx_skb, 0); |
| } |
| } |
| } else { |
| /* deliver transparent data to layer2 */ |
| recv_Bchannel(fifo->bch, MISDN_ID_ANY, false); |
| } |
| spin_unlock(&hw->lock); |
| } |
| |
| static void |
| fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, |
| void *buf, int num_packets, int packet_size, int interval, |
| usb_complete_t complete, void *context) |
| { |
| int k; |
| |
| usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets, |
| complete, context); |
| |
| urb->number_of_packets = num_packets; |
| urb->transfer_flags = URB_ISO_ASAP; |
| urb->actual_length = 0; |
| urb->interval = interval; |
| |
| for (k = 0; k < num_packets; k++) { |
| urb->iso_frame_desc[k].offset = packet_size * k; |
| urb->iso_frame_desc[k].length = packet_size; |
| urb->iso_frame_desc[k].actual_length = 0; |
| } |
| } |
| |
| /* receive completion routine for all ISO tx fifos */ |
| static void |
| rx_iso_complete(struct urb *urb) |
| { |
| struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; |
| struct usb_fifo *fifo = context_iso_urb->owner_fifo; |
| struct hfcsusb *hw = fifo->hw; |
| int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, |
| status, iso_status, i; |
| __u8 *buf; |
| static __u8 eof[8]; |
| __u8 s0_state; |
| |
| fifon = fifo->fifonum; |
| status = urb->status; |
| |
| spin_lock(&hw->lock); |
| if (fifo->stop_gracefull) { |
| fifo->stop_gracefull = 0; |
| fifo->active = 0; |
| spin_unlock(&hw->lock); |
| return; |
| } |
| spin_unlock(&hw->lock); |
| |
| /* |
| * ISO transfer only partially completed, |
| * look at individual frame status for details |
| */ |
| if (status == -EXDEV) { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: with -EXDEV " |
| "urb->status %d, fifonum %d\n", |
| hw->name, __func__, status, fifon); |
| |
| /* clear status, so go on with ISO transfers */ |
| status = 0; |
| } |
| |
| s0_state = 0; |
| if (fifo->active && !status) { |
| num_isoc_packets = iso_packets[fifon]; |
| maxlen = fifo->usb_packet_maxlen; |
| |
| for (k = 0; k < num_isoc_packets; ++k) { |
| len = urb->iso_frame_desc[k].actual_length; |
| offset = urb->iso_frame_desc[k].offset; |
| buf = context_iso_urb->buffer + offset; |
| iso_status = urb->iso_frame_desc[k].status; |
| |
| if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) { |
| printk(KERN_DEBUG "%s: %s: " |
| "ISO packet %i, status: %i\n", |
| hw->name, __func__, k, iso_status); |
| } |
| |
| /* USB data log for every D ISO in */ |
| if ((fifon == HFCUSB_D_RX) && |
| (debug & DBG_HFC_USB_VERBOSE)) { |
| printk(KERN_DEBUG |
| "%s: %s: %d (%d/%d) len(%d) ", |
| hw->name, __func__, urb->start_frame, |
| k, num_isoc_packets - 1, |
| len); |
| for (i = 0; i < len; i++) |
| printk("%x ", buf[i]); |
| printk("\n"); |
| } |
| |
| if (!iso_status) { |
| if (fifo->last_urblen != maxlen) { |
| /* |
| * save fifo fill-level threshold bits |
| * to use them later in TX ISO URB |
| * completions |
| */ |
| hw->threshold_mask = buf[1]; |
| |
| if (fifon == HFCUSB_D_RX) |
| s0_state = (buf[0] >> 4); |
| |
| eof[fifon] = buf[0] & 1; |
| if (len > 2) |
| hfcsusb_rx_frame(fifo, buf + 2, |
| len - 2, (len < maxlen) |
| ? eof[fifon] : 0); |
| } else |
| hfcsusb_rx_frame(fifo, buf, len, |
| (len < maxlen) ? |
| eof[fifon] : 0); |
| fifo->last_urblen = len; |
| } |
| } |
| |
| /* signal S0 layer1 state change */ |
| if ((s0_state) && (hw->initdone) && |
| (s0_state != hw->dch.state)) { |
| hw->dch.state = s0_state; |
| schedule_event(&hw->dch, FLG_PHCHANGE); |
| } |
| |
| fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, |
| context_iso_urb->buffer, num_isoc_packets, |
| fifo->usb_packet_maxlen, fifo->intervall, |
| (usb_complete_t)rx_iso_complete, urb->context); |
| errcode = usb_submit_urb(urb, GFP_ATOMIC); |
| if (errcode < 0) { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: error submitting " |
| "ISO URB: %d\n", |
| hw->name, __func__, errcode); |
| } |
| } else { |
| if (status && (debug & DBG_HFC_URB_INFO)) |
| printk(KERN_DEBUG "%s: %s: rx_iso_complete : " |
| "urb->status %d, fifonum %d\n", |
| hw->name, __func__, status, fifon); |
| } |
| } |
| |
| /* receive completion routine for all interrupt rx fifos */ |
| static void |
| rx_int_complete(struct urb *urb) |
| { |
| int len, status, i; |
| __u8 *buf, maxlen, fifon; |
| struct usb_fifo *fifo = (struct usb_fifo *) urb->context; |
| struct hfcsusb *hw = fifo->hw; |
| static __u8 eof[8]; |
| |
| spin_lock(&hw->lock); |
| if (fifo->stop_gracefull) { |
| fifo->stop_gracefull = 0; |
| fifo->active = 0; |
| spin_unlock(&hw->lock); |
| return; |
| } |
| spin_unlock(&hw->lock); |
| |
| fifon = fifo->fifonum; |
| if ((!fifo->active) || (urb->status)) { |
| if (debug & DBG_HFC_URB_ERROR) |
| printk(KERN_DEBUG |
| "%s: %s: RX-Fifo %i is going down (%i)\n", |
| hw->name, __func__, fifon, urb->status); |
| |
| fifo->urb->interval = 0; /* cancel automatic rescheduling */ |
| return; |
| } |
| len = urb->actual_length; |
| buf = fifo->buffer; |
| maxlen = fifo->usb_packet_maxlen; |
| |
| /* USB data log for every D INT in */ |
| if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { |
| printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ", |
| hw->name, __func__, len); |
| for (i = 0; i < len; i++) |
| printk("%02x ", buf[i]); |
| printk("\n"); |
| } |
| |
| if (fifo->last_urblen != fifo->usb_packet_maxlen) { |
| /* the threshold mask is in the 2nd status byte */ |
| hw->threshold_mask = buf[1]; |
| |
| /* signal S0 layer1 state change */ |
| if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) { |
| hw->dch.state = (buf[0] >> 4); |
| schedule_event(&hw->dch, FLG_PHCHANGE); |
| } |
| |
| eof[fifon] = buf[0] & 1; |
| /* if we have more than the 2 status bytes -> collect data */ |
| if (len > 2) |
| hfcsusb_rx_frame(fifo, buf + 2, |
| urb->actual_length - 2, |
| (len < maxlen) ? eof[fifon] : 0); |
| } else { |
| hfcsusb_rx_frame(fifo, buf, urb->actual_length, |
| (len < maxlen) ? eof[fifon] : 0); |
| } |
| fifo->last_urblen = urb->actual_length; |
| |
| status = usb_submit_urb(urb, GFP_ATOMIC); |
| if (status) { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: error resubmitting USB\n", |
| hw->name, __func__); |
| } |
| } |
| |
| /* transmit completion routine for all ISO tx fifos */ |
| static void |
| tx_iso_complete(struct urb *urb) |
| { |
| struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; |
| struct usb_fifo *fifo = context_iso_urb->owner_fifo; |
| struct hfcsusb *hw = fifo->hw; |
| struct sk_buff *tx_skb; |
| int k, tx_offset, num_isoc_packets, sink, remain, current_len, |
| errcode, hdlc, i; |
| int *tx_idx; |
| int frame_complete, fifon, status, fillempty = 0; |
| __u8 threshbit, *p; |
| |
| spin_lock(&hw->lock); |
| if (fifo->stop_gracefull) { |
| fifo->stop_gracefull = 0; |
| fifo->active = 0; |
| spin_unlock(&hw->lock); |
| return; |
| } |
| |
| if (fifo->dch) { |
| tx_skb = fifo->dch->tx_skb; |
| tx_idx = &fifo->dch->tx_idx; |
| hdlc = 1; |
| } else if (fifo->bch) { |
| tx_skb = fifo->bch->tx_skb; |
| tx_idx = &fifo->bch->tx_idx; |
| hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); |
| if (!tx_skb && !hdlc && |
| test_bit(FLG_FILLEMPTY, &fifo->bch->Flags)) |
| fillempty = 1; |
| } else { |
| printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n", |
| hw->name, __func__); |
| spin_unlock(&hw->lock); |
| return; |
| } |
| |
| fifon = fifo->fifonum; |
| status = urb->status; |
| |
| tx_offset = 0; |
| |
| /* |
| * ISO transfer only partially completed, |
| * look at individual frame status for details |
| */ |
| if (status == -EXDEV) { |
| if (debug & DBG_HFC_URB_ERROR) |
| printk(KERN_DEBUG "%s: %s: " |
| "-EXDEV (%i) fifon (%d)\n", |
| hw->name, __func__, status, fifon); |
| |
| /* clear status, so go on with ISO transfers */ |
| status = 0; |
| } |
| |
| if (fifo->active && !status) { |
| /* is FifoFull-threshold set for our channel? */ |
| threshbit = (hw->threshold_mask & (1 << fifon)); |
| num_isoc_packets = iso_packets[fifon]; |
| |
| /* predict dataflow to avoid fifo overflow */ |
| if (fifon >= HFCUSB_D_TX) |
| sink = (threshbit) ? SINK_DMIN : SINK_DMAX; |
| else |
| sink = (threshbit) ? SINK_MIN : SINK_MAX; |
| fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, |
| context_iso_urb->buffer, num_isoc_packets, |
| fifo->usb_packet_maxlen, fifo->intervall, |
| (usb_complete_t)tx_iso_complete, urb->context); |
| memset(context_iso_urb->buffer, 0, |
| sizeof(context_iso_urb->buffer)); |
| frame_complete = 0; |
| |
| for (k = 0; k < num_isoc_packets; ++k) { |
| /* analyze tx success of previous ISO packets */ |
| if (debug & DBG_HFC_URB_ERROR) { |
| errcode = urb->iso_frame_desc[k].status; |
| if (errcode) { |
| printk(KERN_DEBUG "%s: %s: " |
| "ISO packet %i, status: %i\n", |
| hw->name, __func__, k, errcode); |
| } |
| } |
| |
| /* Generate next ISO Packets */ |
| if (tx_skb) |
| remain = tx_skb->len - *tx_idx; |
| else if (fillempty) |
| remain = 15; /* > not complete */ |
| else |
| remain = 0; |
| |
| if (remain > 0) { |
| fifo->bit_line -= sink; |
| current_len = (0 - fifo->bit_line) / 8; |
| if (current_len > 14) |
| current_len = 14; |
| if (current_len < 0) |
| current_len = 0; |
| if (remain < current_len) |
| current_len = remain; |
| |
| /* how much bit do we put on the line? */ |
| fifo->bit_line += current_len * 8; |
| |
| context_iso_urb->buffer[tx_offset] = 0; |
| if (current_len == remain) { |
| if (hdlc) { |
| /* signal frame completion */ |
| context_iso_urb-> |
| buffer[tx_offset] = 1; |
| /* add 2 byte flags and 16bit |
| * CRC at end of ISDN frame */ |
| fifo->bit_line += 32; |
| } |
| frame_complete = 1; |
| } |
| |
| /* copy tx data to iso-urb buffer */ |
| p = context_iso_urb->buffer + tx_offset + 1; |
| if (fillempty) { |
| memset(p, fifo->bch->fill[0], |
| current_len); |
| } else { |
| memcpy(p, (tx_skb->data + *tx_idx), |
| current_len); |
| *tx_idx += current_len; |
| } |
| urb->iso_frame_desc[k].offset = tx_offset; |
| urb->iso_frame_desc[k].length = current_len + 1; |
| |
| /* USB data log for every D ISO out */ |
| if ((fifon == HFCUSB_D_RX) && !fillempty && |
| (debug & DBG_HFC_USB_VERBOSE)) { |
| printk(KERN_DEBUG |
| "%s: %s (%d/%d) offs(%d) len(%d) ", |
| hw->name, __func__, |
| k, num_isoc_packets - 1, |
| urb->iso_frame_desc[k].offset, |
| urb->iso_frame_desc[k].length); |
| |
| for (i = urb->iso_frame_desc[k].offset; |
| i < (urb->iso_frame_desc[k].offset |
| + urb->iso_frame_desc[k].length); |
| i++) |
| printk("%x ", |
| context_iso_urb->buffer[i]); |
| |
| printk(" skb->len(%i) tx-idx(%d)\n", |
| tx_skb->len, *tx_idx); |
| } |
| |
| tx_offset += (current_len + 1); |
| } else { |
| urb->iso_frame_desc[k].offset = tx_offset++; |
| urb->iso_frame_desc[k].length = 1; |
| /* we lower data margin every msec */ |
| fifo->bit_line -= sink; |
| if (fifo->bit_line < BITLINE_INF) |
| fifo->bit_line = BITLINE_INF; |
| } |
| |
| if (frame_complete) { |
| frame_complete = 0; |
| |
| if (debug & DBG_HFC_FIFO_VERBOSE) { |
| printk(KERN_DEBUG "%s: %s: " |
| "fifon(%i) new TX len(%i): ", |
| hw->name, __func__, |
| fifon, tx_skb->len); |
| i = 0; |
| while (i < tx_skb->len) |
| printk("%02x ", |
| tx_skb->data[i++]); |
| printk("\n"); |
| } |
| |
| dev_kfree_skb(tx_skb); |
| tx_skb = NULL; |
| if (fifo->dch && get_next_dframe(fifo->dch)) |
| tx_skb = fifo->dch->tx_skb; |
| else if (fifo->bch && |
| get_next_bframe(fifo->bch)) |
| tx_skb = fifo->bch->tx_skb; |
| } |
| } |
| errcode = usb_submit_urb(urb, GFP_ATOMIC); |
| if (errcode < 0) { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG |
| "%s: %s: error submitting ISO URB: %d \n", |
| hw->name, __func__, errcode); |
| } |
| |
| /* |
| * abuse DChannel tx iso completion to trigger NT mode state |
| * changes tx_iso_complete is assumed to be called every |
| * fifo->intervall (ms) |
| */ |
| if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0) |
| && (hw->timers & NT_ACTIVATION_TIMER)) { |
| if ((--hw->nt_timer) < 0) |
| schedule_event(&hw->dch, FLG_PHCHANGE); |
| } |
| |
| } else { |
| if (status && (debug & DBG_HFC_URB_ERROR)) |
| printk(KERN_DEBUG "%s: %s: urb->status %s (%i)" |
| "fifonum=%d\n", |
| hw->name, __func__, |
| symbolic(urb_errlist, status), status, fifon); |
| } |
| spin_unlock(&hw->lock); |
| } |
| |
| /* |
| * allocs urbs and start isoc transfer with two pending urbs to avoid |
| * gaps in the transfer chain |
| */ |
| static int |
| start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb, |
| usb_complete_t complete, int packet_size) |
| { |
| struct hfcsusb *hw = fifo->hw; |
| int i, k, errcode; |
| |
| if (debug) |
| printk(KERN_DEBUG "%s: %s: fifo %i\n", |
| hw->name, __func__, fifo->fifonum); |
| |
| /* allocate Memory for Iso out Urbs */ |
| for (i = 0; i < 2; i++) { |
| if (!(fifo->iso[i].urb)) { |
| fifo->iso[i].urb = |
| usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); |
| if (!(fifo->iso[i].urb)) { |
| printk(KERN_DEBUG |
| "%s: %s: alloc urb for fifo %i failed", |
| hw->name, __func__, fifo->fifonum); |
| continue; |
| } |
| fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; |
| fifo->iso[i].indx = i; |
| |
| /* Init the first iso */ |
| if (ISO_BUFFER_SIZE >= |
| (fifo->usb_packet_maxlen * |
| num_packets_per_urb)) { |
| fill_isoc_urb(fifo->iso[i].urb, |
| fifo->hw->dev, fifo->pipe, |
| fifo->iso[i].buffer, |
| num_packets_per_urb, |
| fifo->usb_packet_maxlen, |
| fifo->intervall, complete, |
| &fifo->iso[i]); |
| memset(fifo->iso[i].buffer, 0, |
| sizeof(fifo->iso[i].buffer)); |
| |
| for (k = 0; k < num_packets_per_urb; k++) { |
| fifo->iso[i].urb-> |
| iso_frame_desc[k].offset = |
| k * packet_size; |
| fifo->iso[i].urb-> |
| iso_frame_desc[k].length = |
| packet_size; |
| } |
| } else { |
| printk(KERN_DEBUG |
| "%s: %s: ISO Buffer size to small!\n", |
| hw->name, __func__); |
| } |
| } |
| fifo->bit_line = BITLINE_INF; |
| |
| errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL); |
| fifo->active = (errcode >= 0) ? 1 : 0; |
| fifo->stop_gracefull = 0; |
| if (errcode < 0) { |
| printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n", |
| hw->name, __func__, |
| symbolic(urb_errlist, errcode), i); |
| } |
| } |
| return fifo->active; |
| } |
| |
| static void |
| stop_iso_gracefull(struct usb_fifo *fifo) |
| { |
| struct hfcsusb *hw = fifo->hw; |
| int i, timeout; |
| u_long flags; |
| |
| for (i = 0; i < 2; i++) { |
| spin_lock_irqsave(&hw->lock, flags); |
| if (debug) |
| printk(KERN_DEBUG "%s: %s for fifo %i.%i\n", |
| hw->name, __func__, fifo->fifonum, i); |
| fifo->stop_gracefull = 1; |
| spin_unlock_irqrestore(&hw->lock, flags); |
| } |
| |
| for (i = 0; i < 2; i++) { |
| timeout = 3; |
| while (fifo->stop_gracefull && timeout--) |
| schedule_timeout_interruptible((HZ / 1000) * 16); |
| if (debug && fifo->stop_gracefull) |
| printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n", |
| hw->name, __func__, fifo->fifonum, i); |
| } |
| } |
| |
| static void |
| stop_int_gracefull(struct usb_fifo *fifo) |
| { |
| struct hfcsusb *hw = fifo->hw; |
| int timeout; |
| u_long flags; |
| |
| spin_lock_irqsave(&hw->lock, flags); |
| if (debug) |
| printk(KERN_DEBUG "%s: %s for fifo %i\n", |
| hw->name, __func__, fifo->fifonum); |
| fifo->stop_gracefull = 1; |
| spin_unlock_irqrestore(&hw->lock, flags); |
| |
| timeout = 3; |
| while (fifo->stop_gracefull && timeout--) |
| schedule_timeout_interruptible((HZ / 1000) * 3); |
| if (debug && fifo->stop_gracefull) |
| printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n", |
| hw->name, __func__, fifo->fifonum); |
| } |
| |
| /* start the interrupt transfer for the given fifo */ |
| static void |
| start_int_fifo(struct usb_fifo *fifo) |
| { |
| struct hfcsusb *hw = fifo->hw; |
| int errcode; |
| |
| if (debug) |
| printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n", |
| hw->name, __func__, fifo->fifonum); |
| |
| if (!fifo->urb) { |
| fifo->urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (!fifo->urb) |
| return; |
| } |
| usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe, |
| fifo->buffer, fifo->usb_packet_maxlen, |
| (usb_complete_t)rx_int_complete, fifo, fifo->intervall); |
| fifo->active = 1; |
| fifo->stop_gracefull = 0; |
| errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); |
| if (errcode) { |
| printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n", |
| hw->name, __func__, errcode); |
| fifo->active = 0; |
| } |
| } |
| |
| static void |
| setPortMode(struct hfcsusb *hw) |
| { |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__, |
| (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT"); |
| |
| if (hw->protocol == ISDN_P_TE_S0) { |
| write_reg(hw, HFCUSB_SCTRL, 0x40); |
| write_reg(hw, HFCUSB_SCTRL_E, 0x00); |
| write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE); |
| write_reg(hw, HFCUSB_STATES, 3 | 0x10); |
| write_reg(hw, HFCUSB_STATES, 3); |
| } else { |
| write_reg(hw, HFCUSB_SCTRL, 0x44); |
| write_reg(hw, HFCUSB_SCTRL_E, 0x09); |
| write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT); |
| write_reg(hw, HFCUSB_STATES, 1 | 0x10); |
| write_reg(hw, HFCUSB_STATES, 1); |
| } |
| } |
| |
| static void |
| reset_hfcsusb(struct hfcsusb *hw) |
| { |
| struct usb_fifo *fifo; |
| int i; |
| |
| if (debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| /* do Chip reset */ |
| write_reg(hw, HFCUSB_CIRM, 8); |
| |
| /* aux = output, reset off */ |
| write_reg(hw, HFCUSB_CIRM, 0x10); |
| |
| /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */ |
| write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) | |
| ((hw->packet_size / 8) << 4)); |
| |
| /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */ |
| write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size); |
| |
| /* enable PCM/GCI master mode */ |
| write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */ |
| write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */ |
| |
| /* init the fifos */ |
| write_reg(hw, HFCUSB_F_THRES, |
| (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); |
| |
| fifo = hw->fifos; |
| for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { |
| write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */ |
| fifo[i].max_size = |
| (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; |
| fifo[i].last_urblen = 0; |
| |
| /* set 2 bit for D- & E-channel */ |
| write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); |
| |
| /* enable all fifos */ |
| if (i == HFCUSB_D_TX) |
| write_reg(hw, HFCUSB_CON_HDLC, |
| (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09); |
| else |
| write_reg(hw, HFCUSB_CON_HDLC, 0x08); |
| write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */ |
| } |
| |
| write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ |
| handle_led(hw, LED_POWER_ON); |
| } |
| |
| /* start USB data pipes dependand on device's endpoint configuration */ |
| static void |
| hfcsusb_start_endpoint(struct hfcsusb *hw, int channel) |
| { |
| /* quick check if endpoint already running */ |
| if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active)) |
| return; |
| |
| /* start rx endpoints using USB INT IN method */ |
| if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) |
| start_int_fifo(hw->fifos + channel * 2 + 1); |
| |
| /* start rx endpoints using USB ISO IN method */ |
| if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) { |
| switch (channel) { |
| case HFC_CHAN_D: |
| start_isoc_chain(hw->fifos + HFCUSB_D_RX, |
| ISOC_PACKETS_D, |
| (usb_complete_t)rx_iso_complete, |
| 16); |
| break; |
| case HFC_CHAN_E: |
| start_isoc_chain(hw->fifos + HFCUSB_PCM_RX, |
| ISOC_PACKETS_D, |
| (usb_complete_t)rx_iso_complete, |
| 16); |
| break; |
| case HFC_CHAN_B1: |
| start_isoc_chain(hw->fifos + HFCUSB_B1_RX, |
| ISOC_PACKETS_B, |
| (usb_complete_t)rx_iso_complete, |
| 16); |
| break; |
| case HFC_CHAN_B2: |
| start_isoc_chain(hw->fifos + HFCUSB_B2_RX, |
| ISOC_PACKETS_B, |
| (usb_complete_t)rx_iso_complete, |
| 16); |
| break; |
| } |
| } |
| |
| /* start tx endpoints using USB ISO OUT method */ |
| switch (channel) { |
| case HFC_CHAN_D: |
| start_isoc_chain(hw->fifos + HFCUSB_D_TX, |
| ISOC_PACKETS_B, |
| (usb_complete_t)tx_iso_complete, 1); |
| break; |
| case HFC_CHAN_B1: |
| start_isoc_chain(hw->fifos + HFCUSB_B1_TX, |
| ISOC_PACKETS_D, |
| (usb_complete_t)tx_iso_complete, 1); |
| break; |
| case HFC_CHAN_B2: |
| start_isoc_chain(hw->fifos + HFCUSB_B2_TX, |
| ISOC_PACKETS_B, |
| (usb_complete_t)tx_iso_complete, 1); |
| break; |
| } |
| } |
| |
| /* stop USB data pipes dependand on device's endpoint configuration */ |
| static void |
| hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel) |
| { |
| /* quick check if endpoint currently running */ |
| if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active)) |
| return; |
| if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active)) |
| return; |
| |
| /* rx endpoints using USB INT IN method */ |
| if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) |
| stop_int_gracefull(hw->fifos + channel * 2 + 1); |
| |
| /* rx endpoints using USB ISO IN method */ |
| if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) |
| stop_iso_gracefull(hw->fifos + channel * 2 + 1); |
| |
| /* tx endpoints using USB ISO OUT method */ |
| if (channel != HFC_CHAN_E) |
| stop_iso_gracefull(hw->fifos + channel * 2); |
| } |
| |
| |
| /* Hardware Initialization */ |
| static int |
| setup_hfcsusb(struct hfcsusb *hw) |
| { |
| void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL); |
| u_char b; |
| int ret; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| if (!dmabuf) |
| return -ENOMEM; |
| |
| ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf); |
| |
| memcpy(&b, dmabuf, sizeof(u_char)); |
| kfree(dmabuf); |
| |
| /* check the chip id */ |
| if (ret != 1) { |
| printk(KERN_DEBUG "%s: %s: cannot read chip id\n", |
| hw->name, __func__); |
| return 1; |
| } |
| if (b != HFCUSB_CHIPID) { |
| printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n", |
| hw->name, __func__, b); |
| return 1; |
| } |
| |
| /* first set the needed config, interface and alternate */ |
| (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used); |
| |
| hw->led_state = 0; |
| |
| /* init the background machinery for control requests */ |
| hw->ctrl_read.bRequestType = 0xc0; |
| hw->ctrl_read.bRequest = 1; |
| hw->ctrl_read.wLength = cpu_to_le16(1); |
| hw->ctrl_write.bRequestType = 0x40; |
| hw->ctrl_write.bRequest = 0; |
| hw->ctrl_write.wLength = 0; |
| usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe, |
| (u_char *)&hw->ctrl_write, NULL, 0, |
| (usb_complete_t)ctrl_complete, hw); |
| |
| reset_hfcsusb(hw); |
| return 0; |
| } |
| |
| static void |
| release_hw(struct hfcsusb *hw) |
| { |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| /* |
| * stop all endpoints gracefully |
| * TODO: mISDN_core should generate CLOSE_CHANNEL |
| * signals after calling mISDN_unregister_device() |
| */ |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_D); |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_B1); |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_B2); |
| if (hw->fifos[HFCUSB_PCM_RX].pipe) |
| hfcsusb_stop_endpoint(hw, HFC_CHAN_E); |
| if (hw->protocol == ISDN_P_TE_S0) |
| l1_event(hw->dch.l1, CLOSE_CHANNEL); |
| |
| mISDN_unregister_device(&hw->dch.dev); |
| mISDN_freebchannel(&hw->bch[1]); |
| mISDN_freebchannel(&hw->bch[0]); |
| mISDN_freedchannel(&hw->dch); |
| |
| if (hw->ctrl_urb) { |
| usb_kill_urb(hw->ctrl_urb); |
| usb_free_urb(hw->ctrl_urb); |
| hw->ctrl_urb = NULL; |
| } |
| |
| if (hw->intf) |
| usb_set_intfdata(hw->intf, NULL); |
| list_del(&hw->list); |
| kfree(hw); |
| hw = NULL; |
| } |
| |
| static void |
| deactivate_bchannel(struct bchannel *bch) |
| { |
| struct hfcsusb *hw = bch->hw; |
| u_long flags; |
| |
| if (bch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n", |
| hw->name, __func__, bch->nr); |
| |
| spin_lock_irqsave(&hw->lock, flags); |
| mISDN_clear_bchannel(bch); |
| spin_unlock_irqrestore(&hw->lock, flags); |
| hfcsusb_setup_bch(bch, ISDN_P_NONE); |
| hfcsusb_stop_endpoint(hw, bch->nr - 1); |
| } |
| |
| /* |
| * Layer 1 B-channel hardware access |
| */ |
| static int |
| hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) |
| { |
| struct bchannel *bch = container_of(ch, struct bchannel, ch); |
| int ret = -EINVAL; |
| |
| if (bch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); |
| |
| switch (cmd) { |
| case HW_TESTRX_RAW: |
| case HW_TESTRX_HDLC: |
| case HW_TESTRX_OFF: |
| ret = -EINVAL; |
| break; |
| |
| case CLOSE_CHANNEL: |
| test_and_clear_bit(FLG_OPEN, &bch->Flags); |
| deactivate_bchannel(bch); |
| ch->protocol = ISDN_P_NONE; |
| ch->peer = NULL; |
| module_put(THIS_MODULE); |
| ret = 0; |
| break; |
| case CONTROL_CHANNEL: |
| ret = channel_bctrl(bch, arg); |
| break; |
| default: |
| printk(KERN_WARNING "%s: unknown prim(%x)\n", |
| __func__, cmd); |
| } |
| return ret; |
| } |
| |
| static int |
| setup_instance(struct hfcsusb *hw, struct device *parent) |
| { |
| u_long flags; |
| int err, i; |
| |
| if (debug & DBG_HFC_CALL_TRACE) |
| printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); |
| |
| spin_lock_init(&hw->ctrl_lock); |
| spin_lock_init(&hw->lock); |
| |
| mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state); |
| hw->dch.debug = debug & 0xFFFF; |
| hw->dch.hw = hw; |
| hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); |
| hw->dch.dev.D.send = hfcusb_l2l1D; |
| hw->dch.dev.D.ctrl = hfc_dctrl; |
| |
| /* enable E-Channel logging */ |
| if (hw->fifos[HFCUSB_PCM_RX].pipe) |
| mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL); |
| |
| hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | |
| (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); |
| hw->dch.dev.nrbchan = 2; |
| for (i = 0; i < 2; i++) { |
| hw->bch[i].nr = i + 1; |
| set_channelmap(i + 1, hw->dch.dev.channelmap); |
| hw->bch[i].debug = debug; |
| mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1); |
| hw->bch[i].hw = hw; |
| hw->bch[i].ch.send = hfcusb_l2l1B; |
| hw->bch[i].ch.ctrl = hfc_bctrl; |
| hw->bch[i].ch.nr = i + 1; |
| list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels); |
| } |
| |
| hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0]; |
| hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0]; |
| hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1]; |
| hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1]; |
| hw->fifos[HFCUSB_D_TX].dch = &hw->dch; |
| hw->fifos[HFCUSB_D_RX].dch = &hw->dch; |
| hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech; |
| hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech; |
| |
| err = setup_hfcsusb(hw); |
| if (err) |
| goto out; |
| |
| snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME, |
| hfcsusb_cnt + 1); |
| printk(KERN_INFO "%s: registered as '%s'\n", |
| DRIVER_NAME, hw->name); |
| |
| err = mISDN_register_device(&hw->dch.dev, parent, hw->name); |
| if (err) |
| goto out; |
| |
| hfcsusb_cnt++; |
| write_lock_irqsave(&HFClock, flags); |
| list_add_tail(&hw->list, &HFClist); |
| write_unlock_irqrestore(&HFClock, flags); |
| return 0; |
| |
| out: |
| mISDN_freebchannel(&hw->bch[1]); |
| mISDN_freebchannel(&hw->bch[0]); |
| mISDN_freedchannel(&hw->dch); |
| kfree(hw); |
| return err; |
| } |
| |
| static int |
| hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id) |
| { |
| struct hfcsusb *hw; |
| struct usb_device *dev = interface_to_usbdev(intf); |
| struct usb_host_interface *iface = intf->cur_altsetting; |
| struct usb_host_interface *iface_used = NULL; |
| struct usb_host_endpoint *ep; |
| struct hfcsusb_vdata *driver_info; |
| int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx, |
| probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, |
| ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size, |
| alt_used = 0; |
| |
| vend_idx = 0xffff; |
| for (i = 0; hfcsusb_idtab[i].idVendor; i++) { |
| if ((le16_to_cpu(dev->descriptor.idVendor) |
| == hfcsusb_idtab[i].idVendor) && |
| (le16_to_cpu(dev->descriptor.idProduct) |
| == hfcsusb_idtab[i].idProduct)) { |
| vend_idx = i; |
| continue; |
| } |
| } |
| |
| printk(KERN_DEBUG |
| "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n", |
| __func__, ifnum, iface->desc.bAlternateSetting, |
| intf->minor, vend_idx); |
| |
| if (vend_idx == 0xffff) { |
| printk(KERN_WARNING |
| "%s: no valid vendor found in USB descriptor\n", |
| __func__); |
| return -EIO; |
| } |
| /* if vendor and product ID is OK, start probing alternate settings */ |
| alt_idx = 0; |
| small_match = -1; |
| |
| /* default settings */ |
| iso_packet_size = 16; |
| packet_size = 64; |
| |
| while (alt_idx < intf->num_altsetting) { |
| iface = intf->altsetting + alt_idx; |
| probe_alt_setting = iface->desc.bAlternateSetting; |
| cfg_used = 0; |
| |
| while (validconf[cfg_used][0]) { |
| cfg_found = 1; |
| vcf = validconf[cfg_used]; |
| ep = iface->endpoint; |
| memcpy(cmptbl, vcf, 16 * sizeof(int)); |
| |
| /* check for all endpoints in this alternate setting */ |
| for (i = 0; i < iface->desc.bNumEndpoints; i++) { |
| ep_addr = ep->desc.bEndpointAddress; |
| |
| /* get endpoint base */ |
| idx = ((ep_addr & 0x7f) - 1) * 2; |
| if (idx > 15) |
| return -EIO; |
| |
| if (ep_addr & 0x80) |
| idx++; |
| attr = ep->desc.bmAttributes; |
| |
| if (cmptbl[idx] != EP_NOP) { |
| if (cmptbl[idx] == EP_NUL) |
| cfg_found = 0; |
| if (attr == USB_ENDPOINT_XFER_INT |
| && cmptbl[idx] == EP_INT) |
| cmptbl[idx] = EP_NUL; |
| if (attr == USB_ENDPOINT_XFER_BULK |
| && cmptbl[idx] == EP_BLK) |
| cmptbl[idx] = EP_NUL; |
| if (attr == USB_ENDPOINT_XFER_ISOC |
| && cmptbl[idx] == EP_ISO) |
| cmptbl[idx] = EP_NUL; |
| |
| if (attr == USB_ENDPOINT_XFER_INT && |
| ep->desc.bInterval < vcf[17]) { |
| cfg_found = 0; |
| } |
| } |
| ep++; |
| } |
| |
| for (i = 0; i < 16; i++) |
| if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) |
| cfg_found = 0; |
| |
| if (cfg_found) { |
| if (small_match < cfg_used) { |
| small_match = cfg_used; |
| alt_used = probe_alt_setting; |
| iface_used = iface; |
| } |
| } |
| cfg_used++; |
| } |
| alt_idx++; |
| } /* (alt_idx < intf->num_altsetting) */ |
| |
| /* not found a valid USB Ta Endpoint config */ |
| if (small_match == -1) |
| return -EIO; |
| |
| iface = iface_used; |
| hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL); |
| if (!hw) |
| return -ENOMEM; /* got no mem */ |
| snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME); |
| |
| ep = iface->endpoint; |
| vcf = validconf[small_match]; |
| |
| for (i = 0; i < iface->desc.bNumEndpoints; i++) { |
| struct usb_fifo *f; |
| |
| ep_addr = ep->desc.bEndpointAddress; |
| /* get endpoint base */ |
| idx = ((ep_addr & 0x7f) - 1) * 2; |
| if (ep_addr & 0x80) |
| idx++; |
| f = &hw->fifos[idx & 7]; |
| |
| /* init Endpoints */ |
| if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) { |
| ep++; |
| continue; |
| } |
| switch (ep->desc.bmAttributes) { |
| case USB_ENDPOINT_XFER_INT: |
| f->pipe = usb_rcvintpipe(dev, |
| ep->desc.bEndpointAddress); |
| f->usb_transfer_mode = USB_INT; |
| packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| if (ep_addr & 0x80) |
| f->pipe = usb_rcvbulkpipe(dev, |
| ep->desc.bEndpointAddress); |
| else |
| f->pipe = usb_sndbulkpipe(dev, |
| ep->desc.bEndpointAddress); |
| f->usb_transfer_mode = USB_BULK; |
| packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| if (ep_addr & 0x80) |
| f->pipe = usb_rcvisocpipe(dev, |
| ep->desc.bEndpointAddress); |
| else |
| f->pipe = usb_sndisocpipe(dev, |
| ep->desc.bEndpointAddress); |
| f->usb_transfer_mode = USB_ISOC; |
| iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); |
| break; |
| default: |
| f->pipe = 0; |
| } |
| |
| if (f->pipe) { |
| f->fifonum = idx & 7; |
| f->hw = hw; |
| f->usb_packet_maxlen = |
| le16_to_cpu(ep->desc.wMaxPacketSize); |
| f->intervall = ep->desc.bInterval; |
| } |
| ep++; |
| } |
| hw->dev = dev; /* save device */ |
| hw->if_used = ifnum; /* save used interface */ |
| hw->alt_used = alt_used; /* and alternate config */ |
| hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ |
| hw->cfg_used = vcf[16]; /* store used config */ |
| hw->vend_idx = vend_idx; /* store found vendor */ |
| hw->packet_size = packet_size; |
| hw->iso_packet_size = iso_packet_size; |
| |
| /* create the control pipes needed for register access */ |
| hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0); |
| hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0); |
| |
| driver_info = (struct hfcsusb_vdata *) |
| hfcsusb_idtab[vend_idx].driver_info; |
| |
| hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (!hw->ctrl_urb) { |
| pr_warn("%s: No memory for control urb\n", |
| driver_info->vend_name); |
| kfree(hw); |
| return -ENOMEM; |
| } |
| |
| pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n", |
| hw->name, __func__, driver_info->vend_name, |
| conf_str[small_match], ifnum, alt_used); |
| |
| if (setup_instance(hw, dev->dev.parent)) |
| return -EIO; |
| |
| hw->intf = intf; |
| usb_set_intfdata(hw->intf, hw); |
| return 0; |
| } |
| |
| /* function called when an active device is removed */ |
| static void |
| hfcsusb_disconnect(struct usb_interface *intf) |
| { |
| struct hfcsusb *hw = usb_get_intfdata(intf); |
| struct hfcsusb *next; |
| int cnt = 0; |
| |
| printk(KERN_INFO "%s: device disconnected\n", hw->name); |
| |
| handle_led(hw, LED_POWER_OFF); |
| release_hw(hw); |
| |
| list_for_each_entry_safe(hw, next, &HFClist, list) |
| cnt++; |
| if (!cnt) |
| hfcsusb_cnt = 0; |
| |
| usb_set_intfdata(intf, NULL); |
| } |
| |
| static struct usb_driver hfcsusb_drv = { |
| .name = DRIVER_NAME, |
| .id_table = hfcsusb_idtab, |
| .probe = hfcsusb_probe, |
| .disconnect = hfcsusb_disconnect, |
| .disable_hub_initiated_lpm = 1, |
| }; |
| |
| module_usb_driver(hfcsusb_drv); |