| #ifndef __ASM_SH_IO_H |
| #define __ASM_SH_IO_H |
| |
| /* |
| * Convention: |
| * read{b,w,l}/write{b,w,l} are for PCI, |
| * while in{b,w,l}/out{b,w,l} are for ISA |
| * These may (will) be platform specific function. |
| * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p |
| * and 'string' versions: ins{b,w,l}/outs{b,w,l} |
| * For read{b,w,l} and write{b,w,l} there are also __raw versions, which |
| * do not have a memory barrier after them. |
| * |
| * In addition, we have |
| * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. |
| * which are processor specific. |
| */ |
| |
| /* |
| * We follow the Alpha convention here: |
| * __inb expands to an inline function call (which calls via the mv) |
| * _inb is a real function call (note ___raw fns are _ version of __raw) |
| * inb by default expands to _inb, but the machine specific code may |
| * define it to __inb if it chooses. |
| */ |
| #include <asm/cache.h> |
| #include <asm/system.h> |
| #include <asm/addrspace.h> |
| #include <asm/machvec.h> |
| #include <asm/pgtable.h> |
| #include <asm-generic/iomap.h> |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Depending on which platform we are running on, we need different |
| * I/O functions. |
| */ |
| #define __IO_PREFIX generic |
| #include <asm/io_generic.h> |
| #include <asm/io_trapped.h> |
| |
| #define maybebadio(port) \ |
| printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ |
| __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0)) |
| |
| /* |
| * Since boards are able to define their own set of I/O routines through |
| * their respective machine vector, we always wrap through the mv. |
| * |
| * Also, in the event that a board hasn't provided its own definition for |
| * a given routine, it will be wrapped to generic code at run-time. |
| */ |
| |
| #define __inb(p) sh_mv.mv_inb((p)) |
| #define __inw(p) sh_mv.mv_inw((p)) |
| #define __inl(p) sh_mv.mv_inl((p)) |
| #define __outb(x,p) sh_mv.mv_outb((x),(p)) |
| #define __outw(x,p) sh_mv.mv_outw((x),(p)) |
| #define __outl(x,p) sh_mv.mv_outl((x),(p)) |
| |
| #define __inb_p(p) sh_mv.mv_inb_p((p)) |
| #define __inw_p(p) sh_mv.mv_inw_p((p)) |
| #define __inl_p(p) sh_mv.mv_inl_p((p)) |
| #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p)) |
| #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p)) |
| #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p)) |
| |
| #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) |
| #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) |
| #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) |
| #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) |
| #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) |
| #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) |
| |
| #define __readb(a) sh_mv.mv_readb((a)) |
| #define __readw(a) sh_mv.mv_readw((a)) |
| #define __readl(a) sh_mv.mv_readl((a)) |
| #define __writeb(v,a) sh_mv.mv_writeb((v),(a)) |
| #define __writew(v,a) sh_mv.mv_writew((v),(a)) |
| #define __writel(v,a) sh_mv.mv_writel((v),(a)) |
| |
| #define inb __inb |
| #define inw __inw |
| #define inl __inl |
| #define outb __outb |
| #define outw __outw |
| #define outl __outl |
| |
| #define inb_p __inb_p |
| #define inw_p __inw_p |
| #define inl_p __inl_p |
| #define outb_p __outb_p |
| #define outw_p __outw_p |
| #define outl_p __outl_p |
| |
| #define insb __insb |
| #define insw __insw |
| #define insl __insl |
| #define outsb __outsb |
| #define outsw __outsw |
| #define outsl __outsl |
| |
| #define __raw_readb(a) __readb((void __iomem *)(a)) |
| #define __raw_readw(a) __readw((void __iomem *)(a)) |
| #define __raw_readl(a) __readl((void __iomem *)(a)) |
| #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a)) |
| #define __raw_writew(v, a) __writew(v, (void __iomem *)(a)) |
| #define __raw_writel(v, a) __writel(v, (void __iomem *)(a)) |
| |
| void __raw_writesl(unsigned long addr, const void *data, int longlen); |
| void __raw_readsl(unsigned long addr, void *data, int longlen); |
| |
| /* |
| * The platform header files may define some of these macros to use |
| * the inlined versions where appropriate. These macros may also be |
| * redefined by userlevel programs. |
| */ |
| #ifdef __readb |
| # define readb(a) ({ unsigned int r_ = __raw_readb(a); mb(); r_; }) |
| #endif |
| #ifdef __raw_readw |
| # define readw(a) ({ unsigned int r_ = __raw_readw(a); mb(); r_; }) |
| #endif |
| #ifdef __raw_readl |
| # define readl(a) ({ unsigned int r_ = __raw_readl(a); mb(); r_; }) |
| #endif |
| |
| #ifdef __raw_writeb |
| # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) |
| #endif |
| #ifdef __raw_writew |
| # define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) |
| #endif |
| #ifdef __raw_writel |
| # define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) |
| #endif |
| |
| #define __BUILD_MEMORY_STRING(bwlq, type) \ |
| \ |
| static inline void writes##bwlq(volatile void __iomem *mem, \ |
| const void *addr, unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| __raw_write##bwlq(*__addr, mem); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = __raw_read##bwlq(mem); \ |
| __addr++; \ |
| } \ |
| } |
| |
| __BUILD_MEMORY_STRING(b, u8) |
| __BUILD_MEMORY_STRING(w, u16) |
| #define writesl __raw_writesl |
| #define readsl __raw_readsl |
| |
| #define readb_relaxed(a) readb(a) |
| #define readw_relaxed(a) readw(a) |
| #define readl_relaxed(a) readl(a) |
| |
| /* Simple MMIO */ |
| #define ioread8(a) readb(a) |
| #define ioread16(a) readw(a) |
| #define ioread16be(a) be16_to_cpu(__raw_readw((a))) |
| #define ioread32(a) readl(a) |
| #define ioread32be(a) be32_to_cpu(__raw_readl((a))) |
| |
| #define iowrite8(v,a) writeb((v),(a)) |
| #define iowrite16(v,a) writew((v),(a)) |
| #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) |
| #define iowrite32(v,a) writel((v),(a)) |
| #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) |
| |
| #define ioread8_rep(a, d, c) readsb((a), (d), (c)) |
| #define ioread16_rep(a, d, c) readsw((a), (d), (c)) |
| #define ioread32_rep(a, d, c) readsl((a), (d), (c)) |
| |
| #define iowrite8_rep(a, s, c) writesb((a), (s), (c)) |
| #define iowrite16_rep(a, s, c) writesw((a), (s), (c)) |
| #define iowrite32_rep(a, s, c) writesl((a), (s), (c)) |
| |
| #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */ |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| /* |
| * This function provides a method for the generic case where a board-specific |
| * ioport_map simply needs to return the port + some arbitrary port base. |
| * |
| * We use this at board setup time to implicitly set the port base, and |
| * as a result, we can use the generic ioport_map. |
| */ |
| static inline void __set_io_port_base(unsigned long pbase) |
| { |
| extern unsigned long generic_io_base; |
| |
| generic_io_base = pbase; |
| } |
| |
| #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n)) |
| |
| /* We really want to try and get these to memcpy etc */ |
| extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long); |
| extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long); |
| extern void memset_io(volatile void __iomem *, int, unsigned long); |
| |
| /* SuperH on-chip I/O functions */ |
| static inline unsigned char ctrl_inb(unsigned long addr) |
| { |
| return *(volatile unsigned char*)addr; |
| } |
| |
| static inline unsigned short ctrl_inw(unsigned long addr) |
| { |
| return *(volatile unsigned short*)addr; |
| } |
| |
| static inline unsigned int ctrl_inl(unsigned long addr) |
| { |
| return *(volatile unsigned long*)addr; |
| } |
| |
| static inline unsigned long long ctrl_inq(unsigned long addr) |
| { |
| return *(volatile unsigned long long*)addr; |
| } |
| |
| static inline void ctrl_outb(unsigned char b, unsigned long addr) |
| { |
| *(volatile unsigned char*)addr = b; |
| } |
| |
| static inline void ctrl_outw(unsigned short b, unsigned long addr) |
| { |
| *(volatile unsigned short*)addr = b; |
| } |
| |
| static inline void ctrl_outl(unsigned int b, unsigned long addr) |
| { |
| *(volatile unsigned long*)addr = b; |
| } |
| |
| static inline void ctrl_outq(unsigned long long b, unsigned long addr) |
| { |
| *(volatile unsigned long long*)addr = b; |
| } |
| |
| static inline void ctrl_delay(void) |
| { |
| #ifdef P2SEG |
| ctrl_inw(P2SEG); |
| #endif |
| } |
| |
| /* Quad-word real-mode I/O, don't ask.. */ |
| unsigned long long peek_real_address_q(unsigned long long addr); |
| unsigned long long poke_real_address_q(unsigned long long addr, |
| unsigned long long val); |
| |
| /* arch/sh/mm/ioremap_64.c */ |
| unsigned long onchip_remap(unsigned long addr, unsigned long size, |
| const char *name); |
| extern void onchip_unmap(unsigned long vaddr); |
| |
| #if !defined(CONFIG_MMU) |
| #define virt_to_phys(address) ((unsigned long)(address)) |
| #define phys_to_virt(address) ((void *)(address)) |
| #else |
| #define virt_to_phys(address) (__pa(address)) |
| #define phys_to_virt(address) (__va(address)) |
| #endif |
| |
| /* |
| * On 32-bit SH, we traditionally have the whole physical address space |
| * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do |
| * not need to do anything but place the address in the proper segment. |
| * This is true for P1 and P2 addresses, as well as some P3 ones. |
| * However, most of the P3 addresses and newer cores using extended |
| * addressing need to map through page tables, so the ioremap() |
| * implementation becomes a bit more complicated. |
| * |
| * See arch/sh/mm/ioremap.c for additional notes on this. |
| * |
| * We cheat a bit and always return uncachable areas until we've fixed |
| * the drivers to handle caching properly. |
| * |
| * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply |
| * doesn't exist, so everything must go through page tables. |
| */ |
| #ifdef CONFIG_MMU |
| void __iomem *__ioremap(unsigned long offset, unsigned long size, |
| unsigned long flags); |
| void __iounmap(void __iomem *addr); |
| #else |
| #define __ioremap(offset, size, flags) ((void __iomem *)(offset)) |
| #define __iounmap(addr) do { } while (0) |
| #endif /* CONFIG_MMU */ |
| |
| static inline void __iomem * |
| __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) |
| { |
| #ifdef CONFIG_SUPERH32 |
| unsigned long last_addr = offset + size - 1; |
| #endif |
| void __iomem *ret; |
| |
| ret = __ioremap_trapped(offset, size); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_SUPERH32 |
| /* |
| * For P1 and P2 space this is trivial, as everything is already |
| * mapped. Uncached access for P1 addresses are done through P2. |
| * In the P3 case or for addresses outside of the 29-bit space, |
| * mapping must be done by the PMB or by using page tables. |
| */ |
| if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { |
| if (unlikely(flags & _PAGE_CACHABLE)) |
| return (void __iomem *)P1SEGADDR(offset); |
| |
| return (void __iomem *)P2SEGADDR(offset); |
| } |
| #endif |
| |
| return __ioremap(offset, size, flags); |
| } |
| |
| #define ioremap(offset, size) \ |
| __ioremap_mode((offset), (size), 0) |
| #define ioremap_nocache(offset, size) \ |
| __ioremap_mode((offset), (size), 0) |
| #define ioremap_cache(offset, size) \ |
| __ioremap_mode((offset), (size), _PAGE_CACHABLE) |
| #define p3_ioremap(offset, size, flags) \ |
| __ioremap((offset), (size), (flags)) |
| #define iounmap(addr) \ |
| __iounmap((addr)) |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASM_SH_IO_H */ |