blob: 3ea267c53320d49683ab39c9e0d95189e4adb56e [file] [log] [blame]
/*
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kprobes.h>
#include <linux/cache.h>
#include <linux/sort.h>
#include <linux/ioport.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/gfp.h>
#include <asm/head.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
#include <asm/tsb.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include <asm/mdesc.h>
#include <asm/cpudata.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include "init_64.h"
unsigned long kern_linear_pte_xor[4] __read_mostly;
/* A bitmap, two bits for every 256MB of physical memory. These two
* bits determine what page size we use for kernel linear
* translations. They form an index into kern_linear_pte_xor[]. The
* value in the indexed slot is XOR'd with the TLB miss virtual
* address to form the resulting TTE. The mapping is:
*
* 0 ==> 4MB
* 1 ==> 256MB
* 2 ==> 2GB
* 3 ==> 16GB
*
* All sun4v chips support 256MB pages. Only SPARC-T4 and later
* support 2GB pages, and hopefully future cpus will support the 16GB
* pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
* if these larger page sizes are not supported by the cpu.
*
* It would be nice to determine this from the machine description
* 'cpu' properties, but we need to have this table setup before the
* MDESC is initialized.
*/
#ifndef CONFIG_DEBUG_PAGEALLOC
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
* Space is allocated for this right after the trap table in
* arch/sparc64/kernel/head.S
*/
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
#endif
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
static unsigned long cpu_pgsz_mask;
#define MAX_BANKS 1024
static struct linux_prom64_registers pavail[MAX_BANKS];
static int pavail_ents;
static int cmp_p64(const void *a, const void *b)
{
const struct linux_prom64_registers *x = a, *y = b;
if (x->phys_addr > y->phys_addr)
return 1;
if (x->phys_addr < y->phys_addr)
return -1;
return 0;
}
static void __init read_obp_memory(const char *property,
struct linux_prom64_registers *regs,
int *num_ents)
{
phandle node = prom_finddevice("/memory");
int prop_size = prom_getproplen(node, property);
int ents, ret, i;
ents = prop_size / sizeof(struct linux_prom64_registers);
if (ents > MAX_BANKS) {
prom_printf("The machine has more %s property entries than "
"this kernel can support (%d).\n",
property, MAX_BANKS);
prom_halt();
}
ret = prom_getproperty(node, property, (char *) regs, prop_size);
if (ret == -1) {
prom_printf("Couldn't get %s property from /memory.\n",
property);
prom_halt();
}
/* Sanitize what we got from the firmware, by page aligning
* everything.
*/
for (i = 0; i < ents; i++) {
unsigned long base, size;
base = regs[i].phys_addr;
size = regs[i].reg_size;
size &= PAGE_MASK;
if (base & ~PAGE_MASK) {
unsigned long new_base = PAGE_ALIGN(base);
size -= new_base - base;
if ((long) size < 0L)
size = 0UL;
base = new_base;
}
if (size == 0UL) {
/* If it is empty, simply get rid of it.
* This simplifies the logic of the other
* functions that process these arrays.
*/
memmove(&regs[i], &regs[i + 1],
(ents - i - 1) * sizeof(regs[0]));
i--;
ents--;
continue;
}
regs[i].phys_addr = base;
regs[i].reg_size = size;
}
*num_ents = ents;
sort(regs, ents, sizeof(struct linux_prom64_registers),
cmp_p64, NULL);
}
/* Kernel physical address base and size in bytes. */
unsigned long kern_base __read_mostly;
unsigned long kern_size __read_mostly;
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero __read_mostly;
EXPORT_SYMBOL(mem_map_zero);
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
unsigned long sparc64_kern_pri_context __read_mostly;
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
unsigned long sparc64_kern_sec_context __read_mostly;
int num_kernel_image_mappings;
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
inline void flush_dcache_page_impl(struct page *page)
{
BUG_ON(tlb_type == hypervisor);
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define PG_dcache_cpu_shift 32UL
#define PG_dcache_cpu_mask \
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
#define dcache_dirty_cpu(page) \
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
static inline void set_dcache_dirty(struct page *page, int this_cpu)
{
unsigned long mask = this_cpu;
unsigned long non_cpu_bits;
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, %4, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop\n"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (PG_dcache_cpu_mask),
"i" (PG_dcache_cpu_shift)
: "g1", "g7");
}
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
{
unsigned long tsb_addr = (unsigned long) ent;
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
tsb_addr = __pa(tsb_addr);
__tsb_insert(tsb_addr, tag, pte);
}
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
static void flush_dcache(unsigned long pfn)
{
struct page *page;
page = pfn_to_page(pfn);
if (page) {
unsigned long pg_flags;
pg_flags = page->flags;
if (pg_flags & (1UL << PG_dcache_dirty)) {
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
PG_dcache_cpu_mask);
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
}
}
/* mm->context.lock must be held */
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
unsigned long tsb_hash_shift, unsigned long address,
unsigned long tte)
{
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
unsigned long tag;
if (unlikely(!tsb))
return;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, tte);
}
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline bool is_hugetlb_pte(pte_t pte)
{
if ((tlb_type == hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
(tlb_type != hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
return true;
return false;
}
#endif
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
struct mm_struct *mm;
unsigned long flags;
pte_t pte = *ptep;
if (tlb_type != hypervisor) {
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn))
flush_dcache(pfn);
}
mm = vma->vm_mm;
/* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
if (!pte_accessible(mm, pte))
return;
spin_lock_irqsave(&mm->context.lock, flags);
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
address, pte_val(pte));
else
#endif
__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
address, pte_val(pte));
spin_unlock_irqrestore(&mm->context.lock, flags);
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
if (tlb_type == hypervisor)
return;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping)) {
int dirty = test_bit(PG_dcache_dirty, &page->flags);
if (dirty) {
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
EXPORT_SYMBOL(flush_dcache_page);
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
{
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
/* This code only runs on Spitfire cpus so this is
* why we can assume _PAGE_PADDR_4U.
*/
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
unsigned long paddr, mask = _PAGE_PADDR_4U;
if (kaddr >= PAGE_OFFSET)
paddr = kaddr & mask;
else {
pgd_t *pgdp = pgd_offset_k(kaddr);
pud_t *pudp = pud_offset(pgdp, kaddr);
pmd_t *pmdp = pmd_offset(pudp, kaddr);
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
paddr = pte_val(*ptep) & mask;
}
__flush_icache_page(paddr);
}
}
}
EXPORT_SYMBOL(flush_icache_range);
void mmu_info(struct seq_file *m)
{
static const char *pgsz_strings[] = {
"8K", "64K", "512K", "4MB", "32MB",
"256MB", "2GB", "16GB",
};
int i, printed;
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else if (tlb_type == hypervisor)
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
else
seq_printf(m, "MMU Type\t: ???\n");
seq_printf(m, "MMU PGSZs\t: ");
printed = 0;
for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
if (cpu_pgsz_mask & (1UL << i)) {
seq_printf(m, "%s%s",
printed ? "," : "", pgsz_strings[i]);
printed++;
}
}
seq_putc(m, '\n');
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation prom_trans[512] __read_mostly;
unsigned int prom_trans_ents __read_mostly;
unsigned long kern_locked_tte_data;
/* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
* HI_OBP_ADDRESS range are handled in ktlb.S.
*/
static inline int in_obp_range(unsigned long vaddr)
{
return (vaddr >= LOW_OBP_ADDRESS &&
vaddr < HI_OBP_ADDRESS);
}
static int cmp_ptrans(const void *a, const void *b)
{
const struct linux_prom_translation *x = a, *y = b;
if (x->virt > y->virt)
return 1;
if (x->virt < y->virt)
return -1;
return 0;
}
/* Read OBP translations property into 'prom_trans[]'. */
static void __init read_obp_translations(void)
{
int n, node, ents, first, last, i;
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (unlikely(n == 0 || n == -1)) {
prom_printf("prom_mappings: Couldn't get size.\n");
prom_halt();
}
if (unlikely(n > sizeof(prom_trans))) {
prom_printf("prom_mappings: Size %d is too big.\n", n);
prom_halt();
}
if ((n = prom_getproperty(node, "translations",
(char *)&prom_trans[0],
sizeof(prom_trans))) == -1) {
prom_printf("prom_mappings: Couldn't get property.\n");
prom_halt();
}
n = n / sizeof(struct linux_prom_translation);
ents = n;
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
cmp_ptrans, NULL);
/* Now kick out all the non-OBP entries. */
for (i = 0; i < ents; i++) {
if (in_obp_range(prom_trans[i].virt))
break;
}
first = i;
for (; i < ents; i++) {
if (!in_obp_range(prom_trans[i].virt))
break;
}
last = i;
for (i = 0; i < (last - first); i++) {
struct linux_prom_translation *src = &prom_trans[i + first];
struct linux_prom_translation *dest = &prom_trans[i];
*dest = *src;
}
for (; i < ents; i++) {
struct linux_prom_translation *dest = &prom_trans[i];
dest->virt = dest->size = dest->data = 0x0UL;
}
prom_trans_ents = last - first;
if (tlb_type == spitfire) {
/* Clear diag TTE bits. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data &= ~0x0003fe0000000000UL;
}
/* Force execute bit on. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data |= (tlb_type == hypervisor ?
_PAGE_EXEC_4V : _PAGE_EXEC_4U);
}
static void __init hypervisor_tlb_lock(unsigned long vaddr,
unsigned long pte,
unsigned long mmu)
{
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
if (ret != 0) {
prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
prom_halt();
}
}
static unsigned long kern_large_tte(unsigned long paddr);
static void __init remap_kernel(void)
{
unsigned long phys_page, tte_vaddr, tte_data;
int i, tlb_ent = sparc64_highest_locked_tlbent();
tte_vaddr = (unsigned long) KERNBASE;
phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
tte_data = kern_large_tte(phys_page);
kern_locked_tte_data = tte_data;
/* Now lock us into the TLBs via Hypervisor or OBP. */
if (tlb_type == hypervisor) {
for (i = 0; i < num_kernel_image_mappings; i++) {
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
tte_vaddr += 0x400000;
tte_data += 0x400000;
}
} else {
for (i = 0; i < num_kernel_image_mappings; i++) {
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
tte_vaddr += 0x400000;
tte_data += 0x400000;
}
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
}
if (tlb_type == cheetah_plus) {
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
CTX_CHEETAH_PLUS_NUC);
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
}
}
static void __init inherit_prom_mappings(void)
{
/* Now fixup OBP's idea about where we really are mapped. */
printk("Remapping the kernel... ");
remap_kernel();
printk("done.\n");
}
void prom_world(int enter)
{
if (!enter)
set_fs(get_fs());
__asm__ __volatile__("flushw");
}
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
EXPORT_SYMBOL(__flush_dcache_range);
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*
* Always invoked with interrupts disabled.
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
int new_version;
spin_lock(&ctx_alloc_lock);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
new_version = 0;
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
new_version = 1;
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock(&ctx_alloc_lock);
if (unlikely(new_version))
smp_new_mmu_context_version();
}
static int numa_enabled = 1;
static int numa_debug;
static int __init early_numa(char *p)
{
if (!p)
return 0;
if (strstr(p, "off"))
numa_enabled = 0;
if (strstr(p, "debug"))
numa_debug = 1;
return 0;
}
early_param("numa", early_numa);
#define numadbg(f, a...) \
do { if (numa_debug) \
printk(KERN_INFO f, ## a); \
} while (0)
static void __init find_ramdisk(unsigned long phys_base)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image;
/* Older versions of the bootloader only supported a
* 32-bit physical address for the ramdisk image
* location, stored at sparc_ramdisk_image. Newer
* SILO versions set sparc_ramdisk_image to zero and
* provide a full 64-bit physical address at
* sparc_ramdisk_image64.
*/
ramdisk_image = sparc_ramdisk_image;
if (!ramdisk_image)
ramdisk_image = sparc_ramdisk_image64;
/* Another bootloader quirk. The bootloader normalizes
* the physical address to KERNBASE, so we have to
* factor that back out and add in the lowest valid
* physical page address to get the true physical address.
*/
ramdisk_image -= KERNBASE;
ramdisk_image += phys_base;
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
ramdisk_image, sparc_ramdisk_size);
initrd_start = ramdisk_image;
initrd_end = ramdisk_image + sparc_ramdisk_size;
memblock_reserve(initrd_start, sparc_ramdisk_size);
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
}
struct node_mem_mask {
unsigned long mask;
unsigned long val;
};
static struct node_mem_mask node_masks[MAX_NUMNODES];
static int num_node_masks;
#ifdef CONFIG_NEED_MULTIPLE_NODES
int numa_cpu_lookup_table[NR_CPUS];
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
struct mdesc_mblock {
u64 base;
u64 size;
u64 offset; /* RA-to-PA */
};
static struct mdesc_mblock *mblocks;
static int num_mblocks;
static unsigned long ra_to_pa(unsigned long addr)
{
int i;
for (i = 0; i < num_mblocks; i++) {
struct mdesc_mblock *m = &mblocks[i];
if (addr >= m->base &&
addr < (m->base + m->size)) {
addr += m->offset;
break;
}
}
return addr;
}
static int find_node(unsigned long addr)
{
int i;
addr = ra_to_pa(addr);
for (i = 0; i < num_node_masks; i++) {
struct node_mem_mask *p = &node_masks[i];
if ((addr & p->mask) == p->val)
return i;
}
/* The following condition has been observed on LDOM guests.*/
WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
" rule. Some physical memory will be owned by node 0.");
return 0;
}
static u64 memblock_nid_range(u64 start, u64 end, int *nid)
{
*nid = find_node(start);
start += PAGE_SIZE;
while (start < end) {
int n = find_node(start);
if (n != *nid)
break;
start += PAGE_SIZE;
}
if (start > end)
start = end;
return start;
}
#endif
/* This must be invoked after performing all of the necessary
* memblock_set_node() calls for 'nid'. We need to be able to get
* correct data from get_pfn_range_for_nid().
*/
static void __init allocate_node_data(int nid)
{
struct pglist_data *p;
unsigned long start_pfn, end_pfn;
#ifdef CONFIG_NEED_MULTIPLE_NODES
unsigned long paddr;
paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
if (!paddr) {
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
prom_halt();
}
NODE_DATA(nid) = __va(paddr);
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
NODE_DATA(nid)->node_id = nid;
#endif
p = NODE_DATA(nid);
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
p->node_start_pfn = start_pfn;
p->node_spanned_pages = end_pfn - start_pfn;
}
static void init_node_masks_nonnuma(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int i;
#endif
numadbg("Initializing tables for non-numa.\n");
node_masks[0].mask = node_masks[0].val = 0;
num_node_masks = 1;
#ifdef CONFIG_NEED_MULTIPLE_NODES
for (i = 0; i < NR_CPUS; i++)
numa_cpu_lookup_table[i] = 0;
cpumask_setall(&numa_cpumask_lookup_table[0]);
#endif
}
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);
struct mdesc_mlgroup {
u64 node;
u64 latency;
u64 match;
u64 mask;
};
static struct mdesc_mlgroup *mlgroups;
static int num_mlgroups;
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
u32 cfg_handle)
{
u64 arc;
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const u64 *val;
val = mdesc_get_property(md, target,
"cfg-handle", NULL);
if (val && *val == cfg_handle)
return 0;
}
return -ENODEV;
}
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
u32 cfg_handle)
{
u64 arc, candidate, best_latency = ~(u64)0;
candidate = MDESC_NODE_NULL;
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
const char *name = mdesc_node_name(md, target);
const u64 *val;
if (strcmp(name, "pio-latency-group"))
continue;
val = mdesc_get_property(md, target, "latency", NULL);
if (!val)
continue;
if (*val < best_latency) {
candidate = target;
best_latency = *val;
}
}
if (candidate == MDESC_NODE_NULL)
return -ENODEV;
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
}
int of_node_to_nid(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
struct mdesc_handle *md;
u32 cfg_handle;
int count, nid;
u64 grp;
/* This is the right thing to do on currently supported
* SUN4U NUMA platforms as well, as the PCI controller does
* not sit behind any particular memory controller.
*/
if (!mlgroups)
return -1;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return -1;
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
md = mdesc_grab();
count = 0;
nid = -1;
mdesc_for_each_node_by_name(md, grp, "group") {
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
nid = count;
break;
}
count++;
}
mdesc_release(md);
return nid;
}
static void __init add_node_ranges(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
unsigned long size = reg->size;
unsigned long start, end;
start = reg->base;
end = start + size;
while (start < end) {
unsigned long this_end;
int nid;
this_end = memblock_nid_range(start, end, &nid);
numadbg("Setting memblock NUMA node nid[%d] "
"start[%lx] end[%lx]\n",
nid, start, this_end);
memblock_set_node(start, this_end - start,
&memblock.memory, nid);
start = this_end;
}
}
}
static int __init grab_mlgroups(struct mdesc_handle *md)
{
unsigned long paddr;
int count = 0;
u64 node;
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
count++;
if (!count)
return -ENOENT;
paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
SMP_CACHE_BYTES);
if (!paddr)
return -ENOMEM;
mlgroups = __va(paddr);
num_mlgroups = count;
count = 0;
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
struct mdesc_mlgroup *m = &mlgroups[count++];
const u64 *val;
m->node = node;
val = mdesc_get_property(md, node, "latency", NULL);
m->latency = *val;
val = mdesc_get_property(md, node, "address-match", NULL);
m->match = *val;
val = mdesc_get_property(md, node, "address-mask", NULL);
m->mask = *val;
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
"match[%llx] mask[%llx]\n",
count - 1, m->node, m->latency, m->match, m->mask);
}
return 0;
}
static int __init grab_mblocks(struct mdesc_handle *md)
{
unsigned long paddr;
int count = 0;
u64 node;
mdesc_for_each_node_by_name(md, node, "mblock")
count++;
if (!count)
return -ENOENT;
paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
SMP_CACHE_BYTES);
if (!paddr)
return -ENOMEM;
mblocks = __va(paddr);
num_mblocks = count;
count = 0;
mdesc_for_each_node_by_name(md, node, "mblock") {
struct mdesc_mblock *m = &mblocks[count++];
const u64 *val;
val = mdesc_get_property(md, node, "base", NULL);
m->base = *val;
val = mdesc_get_property(md, node, "size", NULL);
m->size = *val;
val = mdesc_get_property(md, node,
"address-congruence-offset", NULL);
/* The address-congruence-offset property is optional.
* Explicity zero it be identifty this.
*/
if (val)
m->offset = *val;
else
m->offset = 0UL;
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
count - 1, m->base, m->size, m->offset);
}
return 0;
}
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
u64 grp, cpumask_t *mask)
{
u64 arc;
cpumask_clear(mask);
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
u64 target = mdesc_arc_target(md, arc);
const char *name = mdesc_node_name(md, target);
const u64 *id;
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(md, target, "id", NULL);
if (*id < nr_cpu_ids)
cpumask_set_cpu(*id, mask);
}
}
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
{
int i;
for (i = 0; i < num_mlgroups; i++) {
struct mdesc_mlgroup *m = &mlgroups[i];
if (m->node == node)
return m;
}
return NULL;
}
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
int index)
{
struct mdesc_mlgroup *candidate = NULL;
u64 arc, best_latency = ~(u64)0;
struct node_mem_mask *n;
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
u64 target = mdesc_arc_target(md, arc);
struct mdesc_mlgroup *m = find_mlgroup(target);
if (!m)
continue;
if (m->latency < best_latency) {
candidate = m;
best_latency = m->latency;
}
}
if (!candidate)
return -ENOENT;
if (num_node_masks != index) {
printk(KERN_ERR "Inconsistent NUMA state, "
"index[%d] != num_node_masks[%d]\n",
index, num_node_masks);
return -EINVAL;
}
n = &node_masks[num_node_masks++];
n->mask = candidate->mask;
n->val = candidate->match;
numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
index, n->mask, n->val, candidate->latency);
return 0;
}
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
int index)
{
cpumask_t mask;
int cpu;
numa_parse_mdesc_group_cpus(md, grp, &mask);
for_each_cpu(cpu, &mask)
numa_cpu_lookup_table[cpu] = index;
cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
if (numa_debug) {
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
for_each_cpu(cpu, &mask)
printk("%d ", cpu);
printk("]\n");
}
return numa_attach_mlgroup(md, grp, index);
}
static int __init numa_parse_mdesc(void)
{
struct mdesc_handle *md = mdesc_grab();
int i, err, count;
u64 node;
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
if (node == MDESC_NODE_NULL) {
mdesc_release(md);
return -ENOENT;
}
err = grab_mblocks(md);
if (err < 0)
goto out;
err = grab_mlgroups(md);
if (err < 0)
goto out;
count = 0;
mdesc_for_each_node_by_name(md, node, "group") {
err = numa_parse_mdesc_group(md, node, count);
if (err < 0)
break;
count++;
}
add_node_ranges();
for (i = 0; i < num_node_masks; i++) {
allocate_node_data(i);
node_set_online(i);
}
err = 0;
out:
mdesc_release(md);
return err;
}
static int __init numa_parse_jbus(void)
{
unsigned long cpu, index;
/* NUMA node id is encoded in bits 36 and higher, and there is
* a 1-to-1 mapping from CPU ID to NUMA node ID.
*/
index = 0;
for_each_present_cpu(cpu) {
numa_cpu_lookup_table[cpu] = index;
cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
node_masks[index].val = cpu << 36UL;
index++;
}
num_node_masks = index;
add_node_ranges();
for (index = 0; index < num_node_masks; index++) {
allocate_node_data(index);
node_set_online(index);
}
return 0;
}
static int __init numa_parse_sun4u(void)
{
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID)
return numa_parse_jbus();
}
return -1;
}
static int __init bootmem_init_numa(void)
{
int err = -1;
numadbg("bootmem_init_numa()\n");
if (numa_enabled) {
if (tlb_type == hypervisor)
err = numa_parse_mdesc();
else
err = numa_parse_sun4u();
}
return err;
}
#else
static int bootmem_init_numa(void)
{
return -1;
}
#endif
static void __init bootmem_init_nonnuma(void)
{
unsigned long top_of_ram = memblock_end_of_DRAM();
unsigned long total_ram = memblock_phys_mem_size();
numadbg("bootmem_init_nonnuma()\n");
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
init_node_masks_nonnuma();
memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
allocate_node_data(0);
node_set_online(0);
}
static unsigned long __init bootmem_init(unsigned long phys_base)
{
unsigned long end_pfn;
end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
max_pfn = max_low_pfn = end_pfn;
min_low_pfn = (phys_base >> PAGE_SHIFT);
if (bootmem_init_numa() < 0)
bootmem_init_nonnuma();
/* Dump memblock with node info. */
memblock_dump_all();
/* XXX cpu notifier XXX */
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
return end_pfn;
}
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
static int pall_ents __initdata;
static unsigned long max_phys_bits = 40;
bool kern_addr_valid(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if ((long)addr < 0L) {
unsigned long pa = __pa(addr);
if ((addr >> max_phys_bits) != 0UL)
return false;
return pfn_valid(pa >> PAGE_SHIFT);
}
if (addr >= (unsigned long) KERNBASE &&
addr < (unsigned long)&_end)
return true;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
if (pud_large(*pud))
return pfn_valid(pud_pfn(*pud));
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
EXPORT_SYMBOL(kern_addr_valid);
static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
unsigned long vend,
pud_t *pud)
{
const unsigned long mask16gb = (1UL << 34) - 1UL;
u64 pte_val = vstart;
/* Each PUD is 8GB */
if ((vstart & mask16gb) ||
(vend - vstart <= mask16gb)) {
pte_val ^= kern_linear_pte_xor[2];
pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
return vstart + PUD_SIZE;
}
pte_val ^= kern_linear_pte_xor[3];
pte_val |= _PAGE_PUD_HUGE;
vend = vstart + mask16gb + 1UL;
while (vstart < vend) {
pud_val(*pud) = pte_val;
pte_val += PUD_SIZE;
vstart += PUD_SIZE;
pud++;
}
return vstart;
}
static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
bool guard)
{
if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
return true;
return false;
}
static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
unsigned long vend,
pmd_t *pmd)
{
const unsigned long mask256mb = (1UL << 28) - 1UL;
const unsigned long mask2gb = (1UL << 31) - 1UL;
u64 pte_val = vstart;
/* Each PMD is 8MB */
if ((vstart & mask256mb) ||
(vend - vstart <= mask256mb)) {
pte_val ^= kern_linear_pte_xor[0];
pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
return vstart + PMD_SIZE;
}
if ((vstart & mask2gb) ||
(vend - vstart <= mask2gb)) {
pte_val ^= kern_linear_pte_xor[1];
pte_val |= _PAGE_PMD_HUGE;
vend = vstart + mask256mb + 1UL;
} else {
pte_val ^= kern_linear_pte_xor[2];
pte_val |= _PAGE_PMD_HUGE;
vend = vstart + mask2gb + 1UL;
}
while (vstart < vend) {
pmd_val(*pmd) = pte_val;
pte_val += PMD_SIZE;
vstart += PMD_SIZE;
pmd++;
}
return vstart;
}
static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
bool guard)
{
if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
return true;
return false;
}
static unsigned long __ref kernel_map_range(unsigned long pstart,
unsigned long pend, pgprot_t prot,
bool use_huge)
{
unsigned long vstart = PAGE_OFFSET + pstart;
unsigned long vend = PAGE_OFFSET + pend;
unsigned long alloc_bytes = 0UL;
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
vstart, vend);
prom_halt();
}
while (vstart < vend) {
unsigned long this_end, paddr = __pa(vstart);
pgd_t *pgd = pgd_offset_k(vstart);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd)) {
pud_t *new;
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pgd_populate(&init_mm, pgd, new);
}
pud = pud_offset(pgd, vstart);
if (pud_none(*pud)) {
pmd_t *new;
if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
vstart = kernel_map_hugepud(vstart, vend, pud);
continue;
}
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pud_populate(&init_mm, pud, new);
}
pmd = pmd_offset(pud, vstart);
if (pmd_none(*pmd)) {
pte_t *new;
if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
vstart = kernel_map_hugepmd(vstart, vend, pmd);
continue;
}
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pmd_populate_kernel(&init_mm, pmd, new);
}
pte = pte_offset_kernel(pmd, vstart);
this_end = (vstart + PMD_SIZE) & PMD_MASK;
if (this_end > vend)
this_end = vend;
while (vstart < this_end) {
pte_val(*pte) = (paddr | pgprot_val(prot));
vstart += PAGE_SIZE;
paddr += PAGE_SIZE;
pte++;
}
}
return alloc_bytes;
}
static void __init flush_all_kernel_tsbs(void)
{
int i;
for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
struct tsb *ent = &swapper_tsb[i];
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
}
#ifndef CONFIG_DEBUG_PAGEALLOC
for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
struct tsb *ent = &swapper_4m_tsb[i];
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
}
#endif
}
extern unsigned int kvmap_linear_patch[1];
static void __init kernel_physical_mapping_init(void)
{
unsigned long i, mem_alloced = 0UL;
bool use_huge = true;
#ifdef CONFIG_DEBUG_PAGEALLOC
use_huge = false;
#endif
for (i = 0; i < pall_ents; i++) {
unsigned long phys_start, phys_end;
phys_start = pall[i].phys_addr;
phys_end = phys_start + pall[i].reg_size;
mem_alloced += kernel_map_range(phys_start, phys_end,
PAGE_KERNEL, use_huge);
}
printk("Allocated %ld bytes for kernel page tables.\n",
mem_alloced);
kvmap_linear_patch[0] = 0x01000000; /* nop */
flushi(&kvmap_linear_patch[0]);
flush_all_kernel_tsbs();
__flush_tlb_all();
}
#ifdef CONFIG_DEBUG_PAGEALLOC
void __kernel_map_pages(struct page *page, int numpages, int enable)
{
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
kernel_map_range(phys_start, phys_end,
(enable ? PAGE_KERNEL : __pgprot(0)), false);
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
/* we should perform an IPI and flush all tlbs,
* but that can deadlock->flush only current cpu.
*/
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
}
#endif
unsigned long __init find_ecache_flush_span(unsigned long size)
{
int i;
for (i = 0; i < pavail_ents; i++) {
if (pavail[i].reg_size >= size)
return pavail[i].phys_addr;
}
return ~0UL;
}
unsigned long PAGE_OFFSET;
EXPORT_SYMBOL(PAGE_OFFSET);
unsigned long VMALLOC_END = 0x0000010000000000UL;
EXPORT_SYMBOL(VMALLOC_END);
unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
static void __init setup_page_offset(void)
{
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
/* Cheetah/Panther support a full 64-bit virtual
* address, so we can use all that our page tables
* support.
*/
sparc64_va_hole_top = 0xfff0000000000000UL;
sparc64_va_hole_bottom = 0x0010000000000000UL;
max_phys_bits = 42;
} else if (tlb_type == hypervisor) {
switch (sun4v_chip_type) {
case SUN4V_CHIP_NIAGARA1:
case SUN4V_CHIP_NIAGARA2:
/* T1 and T2 support 48-bit virtual addresses. */
sparc64_va_hole_top = 0xffff800000000000UL;
sparc64_va_hole_bottom = 0x0000800000000000UL;
max_phys_bits = 39;
break;
case SUN4V_CHIP_NIAGARA3:
/* T3 supports 48-bit virtual addresses. */
sparc64_va_hole_top = 0xffff800000000000UL;
sparc64_va_hole_bottom = 0x0000800000000000UL;
max_phys_bits = 43;
break;
case SUN4V_CHIP_NIAGARA4:
case SUN4V_CHIP_NIAGARA5:
case SUN4V_CHIP_SPARC64X:
case SUN4V_CHIP_SPARC_M6:
/* T4 and later support 52-bit virtual addresses. */
sparc64_va_hole_top = 0xfff8000000000000UL;
sparc64_va_hole_bottom = 0x0008000000000000UL;
max_phys_bits = 47;
break;
case SUN4V_CHIP_SPARC_M7:
default:
/* M7 and later support 52-bit virtual addresses. */
sparc64_va_hole_top = 0xfff8000000000000UL;
sparc64_va_hole_bottom = 0x0008000000000000UL;
max_phys_bits = 49;
break;
}
}
if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
max_phys_bits);
prom_halt();
}
PAGE_OFFSET = sparc64_va_hole_top;
VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
(sparc64_va_hole_bottom >> 2));
pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
PAGE_OFFSET, max_phys_bits);
pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
VMALLOC_START, VMALLOC_END);
pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
VMEMMAP_BASE, VMEMMAP_BASE << 1);
}
static void __init tsb_phys_patch(void)
{
struct tsb_ldquad_phys_patch_entry *pquad;
struct tsb_phys_patch_entry *p;
pquad = &__tsb_ldquad_phys_patch;
while (pquad < &__tsb_ldquad_phys_patch_end) {
unsigned long addr = pquad->addr;
if (tlb_type == hypervisor)
*(unsigned int *) addr = pquad->sun4v_insn;
else
*(unsigned int *) addr = pquad->sun4u_insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
pquad++;
}
p = &__tsb_phys_patch;
while (p < &__tsb_phys_patch_end) {
unsigned long addr = p->addr;
*(unsigned int *) addr = p->insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
p++;
}
}
/* Don't mark as init, we give this to the Hypervisor. */
#ifndef CONFIG_DEBUG_PAGEALLOC
#define NUM_KTSB_DESCR 2
#else
#define NUM_KTSB_DESCR 1
#endif
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
/* The swapper TSBs are loaded with a base sequence of:
*
* sethi %uhi(SYMBOL), REG1
* sethi %hi(SYMBOL), REG2
* or REG1, %ulo(SYMBOL), REG1
* or REG2, %lo(SYMBOL), REG2
* sllx REG1, 32, REG1
* or REG1, REG2, REG1
*
* When we use physical addressing for the TSB accesses, we patch the
* first four instructions in the above sequence.
*/
static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
{
unsigned long high_bits, low_bits;
high_bits = (pa >> 32) & 0xffffffff;
low_bits = (pa >> 0) & 0xffffffff;
while (start < end) {
unsigned int *ia = (unsigned int *)(unsigned long)*start;
ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
__asm__ __volatile__("flush %0" : : "r" (ia));
ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
__asm__ __volatile__("flush %0" : : "r" (ia + 1));
ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
__asm__ __volatile__("flush %0" : : "r" (ia + 2));
ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
__asm__ __volatile__("flush %0" : : "r" (ia + 3));
start++;
}
}
static void ktsb_phys_patch(void)
{
extern unsigned int __swapper_tsb_phys_patch;
extern unsigned int __swapper_tsb_phys_patch_end;
unsigned long ktsb_pa;
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
&__swapper_tsb_phys_patch_end, ktsb_pa);
#ifndef CONFIG_DEBUG_PAGEALLOC
{
extern unsigned int __swapper_4m_tsb_phys_patch;
extern unsigned int __swapper_4m_tsb_phys_patch_end;
ktsb_pa = (kern_base +
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
&__swapper_4m_tsb_phys_patch_end, ktsb_pa);
}
#endif
}
static void __init sun4v_ktsb_init(void)
{
unsigned long ktsb_pa;
/* First KTSB for PAGE_SIZE mappings. */
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
switch (PAGE_SIZE) {
case 8 * 1024:
default:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
break;
case 64 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
break;
case 512 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
break;
case 4 * 1024 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
break;
}
ktsb_descr[0].assoc = 1;
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
ktsb_descr[0].ctx_idx = 0;
ktsb_descr[0].tsb_base = ktsb_pa;
ktsb_descr[0].resv = 0;
#ifndef CONFIG_DEBUG_PAGEALLOC
/* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
ktsb_pa = (kern_base +
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
HV_PGSZ_MASK_256MB |
HV_PGSZ_MASK_2GB |
HV_PGSZ_MASK_16GB) &
cpu_pgsz_mask);
ktsb_descr[1].assoc = 1;
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
ktsb_descr[1].ctx_idx = 0;
ktsb_descr[1].tsb_base = ktsb_pa;
ktsb_descr[1].resv = 0;
#endif
}
void sun4v_ktsb_register(void)
{
unsigned long pa, ret;
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
if (ret != 0) {
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
"errors with %lx\n", pa, ret);
prom_halt();
}
}
static void __init sun4u_linear_pte_xor_finalize(void)
{
#ifndef CONFIG_DEBUG_PAGEALLOC
/* This is where we would add Panther support for
* 32MB and 256MB pages.
*/
#endif
}
static void __init sun4v_linear_pte_xor_finalize(void)
{
#ifndef CONFIG_DEBUG_PAGEALLOC
if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
PAGE_OFFSET;
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
} else {
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
}
if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
PAGE_OFFSET;
kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
} else {
kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
}
if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
PAGE_OFFSET;
kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
} else {
kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
}
#endif
}
/* paging_init() sets up the page tables */
static unsigned long last_valid_pfn;
static void sun4u_pgprot_init(void);
static void sun4v_pgprot_init(void);
static phys_addr_t __init available_memory(void)
{
phys_addr_t available = 0ULL;
phys_addr_t pa_start, pa_end;
u64 i;
for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
available = available + (pa_end - pa_start);
return available;
}
/* We need to exclude reserved regions. This exclusion will include
* vmlinux and initrd. To be more precise the initrd size could be used to
* compute a new lower limit because it is freed later during initialization.
*/
static void __init reduce_memory(phys_addr_t limit_ram)
{
phys_addr_t avail_ram = available_memory();
phys_addr_t pa_start, pa_end;
u64 i;
if (limit_ram >= avail_ram)
return;
for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
phys_addr_t region_size = pa_end - pa_start;
phys_addr_t clip_start = pa_start;
avail_ram = avail_ram - region_size;
/* Are we consuming too much? */
if (avail_ram < limit_ram) {
phys_addr_t give_back = limit_ram - avail_ram;
region_size = region_size - give_back;
clip_start = clip_start + give_back;
}
memblock_remove(clip_start, region_size);
if (avail_ram <= limit_ram)
break;
i = 0UL;
}
}
void __init paging_init(void)
{
unsigned long end_pfn, shift, phys_base;
unsigned long real_end, i;
int node;
setup_page_offset();
/* These build time checkes make sure that the dcache_dirty_cpu()
* page->flags usage will work.
*
* When a page gets marked as dcache-dirty, we store the
* cpu number starting at bit 32 in the page->flags. Also,
* functions like clear_dcache_dirty_cpu use the cpu mask
* in 13-bit signed-immediate instruction fields.
*/
/*
* Page flags must not reach into upper 32 bits that are used
* for the cpu number
*/
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
/*
* The bit fields placed in the high range must not reach below
* the 32 bit boundary. Otherwise we cannot place the cpu field
* at the 32 bit boundary.
*/
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
BUILD_BUG_ON(NR_CPUS > 4096);
kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
/* Invalidate both kernel TSBs. */
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
#ifndef CONFIG_DEBUG_PAGEALLOC
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
#endif
if (tlb_type == hypervisor)
sun4v_pgprot_init();
else
sun4u_pgprot_init();
if (tlb_type == cheetah_plus ||
tlb_type == hypervisor) {
tsb_phys_patch();
ktsb_phys_patch();
}
if (tlb_type == hypervisor)
sun4v_patch_tlb_handlers();
/* Find available physical memory...
*
* Read it twice in order to work around a bug in openfirmware.
* The call to grab this table itself can cause openfirmware to
* allocate memory, which in turn can take away some space from
* the list of available memory. Reading it twice makes sure
* we really do get the final value.
*/
read_obp_translations();
read_obp_memory("reg", &pall[0], &pall_ents);
read_obp_memory("available", &pavail[0], &pavail_ents);
read_obp_memory("available", &pavail[0], &pavail_ents);
phys_base = 0xffffffffffffffffUL;
for (i = 0; i < pavail_ents; i++) {
phys_base = min(phys_base, pavail[i].phys_addr);
memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
}
memblock_reserve(kern_base, kern_size);
find_ramdisk(phys_base);
if (cmdline_memory_size)
reduce_memory(cmdline_memory_size);
memblock_allow_resize();
memblock_dump_all();
set_bit(0, mmu_context_bmap);
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
real_end = (unsigned long)_end;
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
num_kernel_image_mappings);
/* Set kernel pgd to upper alias so physical page computations
* work.
*/
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
inherit_prom_mappings();
/* Ok, we can use our TLB miss and window trap handlers safely. */
setup_tba();
__flush_tlb_all();
prom_build_devicetree();
of_populate_present_mask();
#ifndef CONFIG_SMP
of_fill_in_cpu_data();
#endif
if (tlb_type == hypervisor) {
sun4v_mdesc_init();
mdesc_populate_present_mask(cpu_all_mask);
#ifndef CONFIG_SMP
mdesc_fill_in_cpu_data(cpu_all_mask);
#endif
mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
sun4v_linear_pte_xor_finalize();
sun4v_ktsb_init();
sun4v_ktsb_register();
} else {
unsigned long impl, ver;
cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
impl = ((ver >> 32) & 0xffff);
if (impl == PANTHER_IMPL)
cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
HV_PGSZ_MASK_256MB);
sun4u_linear_pte_xor_finalize();
}
/* Flush the TLBs and the 4M TSB so that the updated linear
* pte XOR settings are realized for all mappings.
*/
__flush_tlb_all();
#ifndef CONFIG_DEBUG_PAGEALLOC
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
#endif
__flush_tlb_all();
/* Setup bootmem... */
last_valid_pfn = end_pfn = bootmem_init(phys_base);
/* Once the OF device tree and MDESC have been setup, we know
* the list of possible cpus. Therefore we can allocate the
* IRQ stacks.
*/
for_each_possible_cpu(i) {
node = cpu_to_node(i);
softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
THREAD_SIZE,
THREAD_SIZE, 0);
hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
THREAD_SIZE,
THREAD_SIZE, 0);
}
kernel_physical_mapping_init();
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_NORMAL] = end_pfn;
free_area_init_nodes(max_zone_pfns);
}
printk("Booting Linux...\n");
}
int page_in_phys_avail(unsigned long paddr)
{
int i;
paddr &= PAGE_MASK;
for (i = 0; i < pavail_ents; i++) {
unsigned long start, end;
start = pavail[i].phys_addr;
end = start + pavail[i].reg_size;
if (paddr >= start && paddr < end)
return 1;
}
if (paddr >= kern_base && paddr < (kern_base + kern_size))
return 1;
#ifdef CONFIG_BLK_DEV_INITRD
if (paddr >= __pa(initrd_start) &&
paddr < __pa(PAGE_ALIGN(initrd_end)))
return 1;
#endif
return 0;
}
static void __init register_page_bootmem_info(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int i;
for_each_online_node(i)
if (NODE_DATA(i)->node_spanned_pages)
register_page_bootmem_info_node(NODE_DATA(i));
#endif
}
void __init mem_init(void)
{
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
register_page_bootmem_info();
free_all_bootmem();
/*
* Set up the zero page, mark it reserved, so that page count
* is not manipulated when freeing the page from user ptes.
*/
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (mem_map_zero == NULL) {
prom_printf("paging_init: Cannot alloc zero page.\n");
prom_halt();
}
mark_page_reserved(mem_map_zero);
mem_init_print_info(NULL);
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_ecache_flush_init();
}
void free_initmem(void)
{
unsigned long addr, initend;
int do_free = 1;
/* If the physical memory maps were trimmed by kernel command
* line options, don't even try freeing this initmem stuff up.
* The kernel image could have been in the trimmed out region
* and if so the freeing below will free invalid page structs.
*/
if (cmdline_memory_size)
do_free = 0;
/*
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
*/
addr = PAGE_ALIGN((unsigned long)(__init_begin));
initend = (unsigned long)(__init_end) & PAGE_MASK;
for (; addr < initend; addr += PAGE_SIZE) {
unsigned long page;
page = (addr +
((unsigned long) __va(kern_base)) -
((unsigned long) KERNBASE));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
if (do_free)
free_reserved_page(virt_to_page(page));
}
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
"initrd");
}
#endif
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
pgprot_t PAGE_KERNEL __read_mostly;
EXPORT_SYMBOL(PAGE_KERNEL);
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
pgprot_t PAGE_COPY __read_mostly;
pgprot_t PAGE_SHARED __read_mostly;
EXPORT_SYMBOL(PAGE_SHARED);
unsigned long pg_iobits __read_mostly;
unsigned long _PAGE_IE __read_mostly;
EXPORT_SYMBOL(_PAGE_IE);
unsigned long _PAGE_E __read_mostly;
EXPORT_SYMBOL(_PAGE_E);
unsigned long _PAGE_CACHE __read_mostly;
EXPORT_SYMBOL(_PAGE_CACHE);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
int node)
{
unsigned long pte_base;
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
_PAGE_CP_4U | _PAGE_CV_4U |
_PAGE_P_4U | _PAGE_W_4U);
if (tlb_type == hypervisor)
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
pte_base |= _PAGE_PMD_HUGE;
vstart = vstart & PMD_MASK;
vend = ALIGN(vend, PMD_SIZE);
for (; vstart < vend; vstart += PMD_SIZE) {
pgd_t *pgd = pgd_offset_k(vstart);
unsigned long pte;
pud_t *pud;
pmd_t *pmd;
if (pgd_none(*pgd)) {
pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
if (!new)
return -ENOMEM;
pgd_populate(&init_mm, pgd, new);
}
pud = pud_offset(pgd, vstart);
if (pud_none(*pud)) {
pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
if (!new)
return -ENOMEM;
pud_populate(&init_mm, pud, new);
}
pmd = pmd_offset(pud, vstart);
pte = pmd_val(*pmd);
if (!(pte & _PAGE_VALID)) {
void *block = vmemmap_alloc_block(PMD_SIZE, node);
if (!block)
return -ENOMEM;
pmd_val(*pmd) = pte_base | __pa(block);
}
}
return 0;
}
void vmemmap_free(unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static void prot_init_common(unsigned long page_none,
unsigned long page_shared,
unsigned long page_copy,
unsigned long page_readonly,
unsigned long page_exec_bit)
{
PAGE_COPY = __pgprot(page_copy);
PAGE_SHARED = __pgprot(page_shared);
protection_map[0x0] = __pgprot(page_none);
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x4] = __pgprot(page_readonly);
protection_map[0x5] = __pgprot(page_readonly);
protection_map[0x6] = __pgprot(page_copy);
protection_map[0x7] = __pgprot(page_copy);
protection_map[0x8] = __pgprot(page_none);
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xc] = __pgprot(page_readonly);
protection_map[0xd] = __pgprot(page_readonly);
protection_map[0xe] = __pgprot(page_shared);
protection_map[0xf] = __pgprot(page_shared);
}
static void __init sun4u_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
int i;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U);
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U | _PAGE_L_4U);
_PAGE_IE = _PAGE_IE_4U;
_PAGE_E = _PAGE_E_4U;
_PAGE_CACHE = _PAGE_CACHE_4U;
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
__ACCESS_BITS_4U | _PAGE_E_4U);
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
PAGE_OFFSET;
#endif
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
_PAGE_P_4U | _PAGE_W_4U);
for (i = 1; i < 4; i++)
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_exec_bit = _PAGE_EXEC_4U;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
static void __init sun4v_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
int i;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
_PAGE_CACHE_4V | _PAGE_P_4V |
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
_PAGE_EXEC_4V);
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
_PAGE_IE = _PAGE_IE_4V;
_PAGE_E = _PAGE_E_4V;
_PAGE_CACHE = _PAGE_CACHE_4V;
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
PAGE_OFFSET;
#endif
kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
for (i = 1; i < 4; i++)
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
__ACCESS_BITS_4V | _PAGE_E_4V);
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_exec_bit = _PAGE_EXEC_4V;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
unsigned long pte_sz_bits(unsigned long sz)
{
if (tlb_type == hypervisor) {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4V;
case 64 * 1024:
return _PAGE_SZ64K_4V;
case 512 * 1024:
return _PAGE_SZ512K_4V;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4V;
}
} else {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4U;
case 64 * 1024:
return _PAGE_SZ64K_4U;
case 512 * 1024:
return _PAGE_SZ512K_4U;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4U;
}
}
}
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
{
pte_t pte;
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
pte_val(pte) |= (((unsigned long)space) << 32);
pte_val(pte) |= pte_sz_bits(page_size);
return pte;
}
static unsigned long kern_large_tte(unsigned long paddr)
{
unsigned long val;
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
if (tlb_type == hypervisor)
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
_PAGE_EXEC_4V | _PAGE_W_4V);
return val | paddr;
}
/* If not locked, zap it. */
void __flush_tlb_all(void)
{
unsigned long pstate;
int i;
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (tlb_type == hypervisor) {
sun4v_mmu_demap_all();
} else if (tlb_type == spitfire) {
for (i = 0; i < 64; i++) {
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
cheetah_flush_dtlb_all();
cheetah_flush_itlb_all();
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
__GFP_REPEAT | __GFP_ZERO);
pte_t *pte = NULL;
if (page)
pte = (pte_t *) page_address(page);
return pte;
}
pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
__GFP_REPEAT | __GFP_ZERO);
if (!page)
return NULL;
if (!pgtable_page_ctor(page)) {
free_hot_cold_page(page, 0);
return NULL;
}
return (pte_t *) page_address(page);
}
void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
free_page((unsigned long)pte);
}
static void __pte_free(pgtable_t pte)
{
struct page *page = virt_to_page(pte);
pgtable_page_dtor(page);
__free_page(page);
}
void pte_free(struct mm_struct *mm, pgtable_t pte)
{
__pte_free(pte);
}
void pgtable_free(void *table, bool is_page)
{
if (is_page)
__pte_free(table);
else
kmem_cache_free(pgtable_cache, table);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd)
{
unsigned long pte, flags;
struct mm_struct *mm;
pmd_t entry = *pmd;
if (!pmd_large(entry) || !pmd_young(entry))
return;
pte = pmd_val(entry);
/* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
if (!(pte & _PAGE_VALID))
return;
/* We are fabricating 8MB pages using 4MB real hw pages. */
pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
mm = vma->vm_mm;
spin_lock_irqsave(&mm->context.lock, flags);
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
addr, pte);
spin_unlock_irqrestore(&mm->context.lock, flags);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
static void context_reload(void *__data)
{
struct mm_struct *mm = __data;
if (mm == current->mm)
load_secondary_context(mm);
}
void hugetlb_setup(struct pt_regs *regs)
{
struct mm_struct *mm = current->mm;
struct tsb_config *tp;
if (in_atomic() || !mm) {
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return;
}
pr_alert("Unexpected HugeTLB setup in atomic context.\n");
die_if_kernel("HugeTSB in atomic", regs);
}
tp = &mm->context.tsb_block[MM_TSB_HUGE];
if (likely(tp->tsb == NULL))
tsb_grow(mm, MM_TSB_HUGE, 0);
tsb_context_switch(mm);
smp_tsb_sync(mm);
/* On UltraSPARC-III+ and later, configure the second half of
* the Data-TLB for huge pages.
*/
if (tlb_type == cheetah_plus) {
unsigned long ctx;
spin_lock(&ctx_alloc_lock);
ctx = mm->context.sparc64_ctx_val;
ctx &= ~CTX_PGSZ_MASK;
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
if (ctx != mm->context.sparc64_ctx_val) {
/* When changing the page size fields, we
* must perform a context flush so that no
* stale entries match. This flush must
* occur with the original context register
* settings.
*/
do_flush_tlb_mm(mm);
/* Reload the context register of all processors
* also executing in this address space.
*/
mm->context.sparc64_ctx_val = ctx;
on_each_cpu(context_reload, mm, 0);
}
spin_unlock(&ctx_alloc_lock);
}
}
#endif
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static inline resource_size_t compute_kern_paddr(void *addr)
{
return (resource_size_t) (addr - KERNBASE + kern_base);
}
static void __init kernel_lds_init(void)
{
code_resource.start = compute_kern_paddr(_text);
code_resource.end = compute_kern_paddr(_etext - 1);
data_resource.start = compute_kern_paddr(_etext);
data_resource.end = compute_kern_paddr(_edata - 1);
bss_resource.start = compute_kern_paddr(__bss_start);
bss_resource.end = compute_kern_paddr(_end - 1);
}
static int __init report_memory(void)
{
int i;
struct resource *res;
kernel_lds_init();
for (i = 0; i < pavail_ents; i++) {
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (!res) {
pr_warn("Failed to allocate source.\n");
break;
}
res->name = "System RAM";
res->start = pavail[i].phys_addr;
res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
if (insert_resource(&iomem_resource, res) < 0) {
pr_warn("Resource insertion failed.\n");
break;
}
insert_resource(res, &code_resource);
insert_resource(res, &data_resource);
insert_resource(res, &bss_resource);
}
return 0;
}
device_initcall(report_memory);
#ifdef CONFIG_SMP
#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
#else
#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
#endif
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
if (start < LOW_OBP_ADDRESS) {
flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
}
if (end > HI_OBP_ADDRESS) {
flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
}
} else {
flush_tsb_kernel_range(start, end);
do_flush_tlb_kernel_range(start, end);
}
}