| #ifndef _ASM_X86_PERCPU_H |
| #define _ASM_X86_PERCPU_H |
| |
| #ifdef CONFIG_X86_64 |
| #define __percpu_seg gs |
| #define __percpu_mov_op movq |
| #else |
| #define __percpu_seg fs |
| #define __percpu_mov_op movl |
| #endif |
| |
| #ifdef __ASSEMBLY__ |
| |
| /* |
| * PER_CPU finds an address of a per-cpu variable. |
| * |
| * Args: |
| * var - variable name |
| * reg - 32bit register |
| * |
| * The resulting address is stored in the "reg" argument. |
| * |
| * Example: |
| * PER_CPU(cpu_gdt_descr, %ebx) |
| */ |
| #ifdef CONFIG_SMP |
| #define PER_CPU(var, reg) \ |
| __percpu_mov_op %__percpu_seg:this_cpu_off, reg; \ |
| lea var(reg), reg |
| #define PER_CPU_VAR(var) %__percpu_seg:var |
| #else /* ! SMP */ |
| #define PER_CPU(var, reg) __percpu_mov_op $var, reg |
| #define PER_CPU_VAR(var) var |
| #endif /* SMP */ |
| |
| #ifdef CONFIG_X86_64_SMP |
| #define INIT_PER_CPU_VAR(var) init_per_cpu__##var |
| #else |
| #define INIT_PER_CPU_VAR(var) var |
| #endif |
| |
| #else /* ...!ASSEMBLY */ |
| |
| #include <linux/kernel.h> |
| #include <linux/stringify.h> |
| |
| #ifdef CONFIG_SMP |
| #define __percpu_prefix "%%"__stringify(__percpu_seg)":" |
| #define __my_cpu_offset this_cpu_read(this_cpu_off) |
| |
| /* |
| * Compared to the generic __my_cpu_offset version, the following |
| * saves one instruction and avoids clobbering a temp register. |
| */ |
| #define __this_cpu_ptr(ptr) \ |
| ({ \ |
| unsigned long tcp_ptr__; \ |
| __verify_pcpu_ptr(ptr); \ |
| asm volatile("add " __percpu_arg(1) ", %0" \ |
| : "=r" (tcp_ptr__) \ |
| : "m" (this_cpu_off), "0" (ptr)); \ |
| (typeof(*(ptr)) __kernel __force *)tcp_ptr__; \ |
| }) |
| #else |
| #define __percpu_prefix "" |
| #endif |
| |
| #define __percpu_arg(x) __percpu_prefix "%P" #x |
| |
| /* |
| * Initialized pointers to per-cpu variables needed for the boot |
| * processor need to use these macros to get the proper address |
| * offset from __per_cpu_load on SMP. |
| * |
| * There also must be an entry in vmlinux_64.lds.S |
| */ |
| #define DECLARE_INIT_PER_CPU(var) \ |
| extern typeof(var) init_per_cpu_var(var) |
| |
| #ifdef CONFIG_X86_64_SMP |
| #define init_per_cpu_var(var) init_per_cpu__##var |
| #else |
| #define init_per_cpu_var(var) var |
| #endif |
| |
| /* For arch-specific code, we can use direct single-insn ops (they |
| * don't give an lvalue though). */ |
| extern void __bad_percpu_size(void); |
| |
| #define percpu_to_op(op, var, val) \ |
| do { \ |
| typedef typeof(var) pto_T__; \ |
| if (0) { \ |
| pto_T__ pto_tmp__; \ |
| pto_tmp__ = (val); \ |
| (void)pto_tmp__; \ |
| } \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm(op "b %1,"__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "qi" ((pto_T__)(val))); \ |
| break; \ |
| case 2: \ |
| asm(op "w %1,"__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "ri" ((pto_T__)(val))); \ |
| break; \ |
| case 4: \ |
| asm(op "l %1,"__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "ri" ((pto_T__)(val))); \ |
| break; \ |
| case 8: \ |
| asm(op "q %1,"__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "re" ((pto_T__)(val))); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| } while (0) |
| |
| /* |
| * Generate a percpu add to memory instruction and optimize code |
| * if one is added or subtracted. |
| */ |
| #define percpu_add_op(var, val) \ |
| do { \ |
| typedef typeof(var) pao_T__; \ |
| const int pao_ID__ = (__builtin_constant_p(val) && \ |
| ((val) == 1 || (val) == -1)) ? \ |
| (int)(val) : 0; \ |
| if (0) { \ |
| pao_T__ pao_tmp__; \ |
| pao_tmp__ = (val); \ |
| (void)pao_tmp__; \ |
| } \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| if (pao_ID__ == 1) \ |
| asm("incb "__percpu_arg(0) : "+m" (var)); \ |
| else if (pao_ID__ == -1) \ |
| asm("decb "__percpu_arg(0) : "+m" (var)); \ |
| else \ |
| asm("addb %1, "__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "qi" ((pao_T__)(val))); \ |
| break; \ |
| case 2: \ |
| if (pao_ID__ == 1) \ |
| asm("incw "__percpu_arg(0) : "+m" (var)); \ |
| else if (pao_ID__ == -1) \ |
| asm("decw "__percpu_arg(0) : "+m" (var)); \ |
| else \ |
| asm("addw %1, "__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "ri" ((pao_T__)(val))); \ |
| break; \ |
| case 4: \ |
| if (pao_ID__ == 1) \ |
| asm("incl "__percpu_arg(0) : "+m" (var)); \ |
| else if (pao_ID__ == -1) \ |
| asm("decl "__percpu_arg(0) : "+m" (var)); \ |
| else \ |
| asm("addl %1, "__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "ri" ((pao_T__)(val))); \ |
| break; \ |
| case 8: \ |
| if (pao_ID__ == 1) \ |
| asm("incq "__percpu_arg(0) : "+m" (var)); \ |
| else if (pao_ID__ == -1) \ |
| asm("decq "__percpu_arg(0) : "+m" (var)); \ |
| else \ |
| asm("addq %1, "__percpu_arg(0) \ |
| : "+m" (var) \ |
| : "re" ((pao_T__)(val))); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| } while (0) |
| |
| #define percpu_from_op(op, var, constraint) \ |
| ({ \ |
| typeof(var) pfo_ret__; \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm(op "b "__percpu_arg(1)",%0" \ |
| : "=q" (pfo_ret__) \ |
| : constraint); \ |
| break; \ |
| case 2: \ |
| asm(op "w "__percpu_arg(1)",%0" \ |
| : "=r" (pfo_ret__) \ |
| : constraint); \ |
| break; \ |
| case 4: \ |
| asm(op "l "__percpu_arg(1)",%0" \ |
| : "=r" (pfo_ret__) \ |
| : constraint); \ |
| break; \ |
| case 8: \ |
| asm(op "q "__percpu_arg(1)",%0" \ |
| : "=r" (pfo_ret__) \ |
| : constraint); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| pfo_ret__; \ |
| }) |
| |
| #define percpu_unary_op(op, var) \ |
| ({ \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm(op "b "__percpu_arg(0) \ |
| : "+m" (var)); \ |
| break; \ |
| case 2: \ |
| asm(op "w "__percpu_arg(0) \ |
| : "+m" (var)); \ |
| break; \ |
| case 4: \ |
| asm(op "l "__percpu_arg(0) \ |
| : "+m" (var)); \ |
| break; \ |
| case 8: \ |
| asm(op "q "__percpu_arg(0) \ |
| : "+m" (var)); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| }) |
| |
| /* |
| * Add return operation |
| */ |
| #define percpu_add_return_op(var, val) \ |
| ({ \ |
| typeof(var) paro_ret__ = val; \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm("xaddb %0, "__percpu_arg(1) \ |
| : "+q" (paro_ret__), "+m" (var) \ |
| : : "memory"); \ |
| break; \ |
| case 2: \ |
| asm("xaddw %0, "__percpu_arg(1) \ |
| : "+r" (paro_ret__), "+m" (var) \ |
| : : "memory"); \ |
| break; \ |
| case 4: \ |
| asm("xaddl %0, "__percpu_arg(1) \ |
| : "+r" (paro_ret__), "+m" (var) \ |
| : : "memory"); \ |
| break; \ |
| case 8: \ |
| asm("xaddq %0, "__percpu_arg(1) \ |
| : "+re" (paro_ret__), "+m" (var) \ |
| : : "memory"); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| paro_ret__ += val; \ |
| paro_ret__; \ |
| }) |
| |
| /* |
| * xchg is implemented using cmpxchg without a lock prefix. xchg is |
| * expensive due to the implied lock prefix. The processor cannot prefetch |
| * cachelines if xchg is used. |
| */ |
| #define percpu_xchg_op(var, nval) \ |
| ({ \ |
| typeof(var) pxo_ret__; \ |
| typeof(var) pxo_new__ = (nval); \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm("\n\tmov "__percpu_arg(1)",%%al" \ |
| "\n1:\tcmpxchgb %2, "__percpu_arg(1) \ |
| "\n\tjnz 1b" \ |
| : "=&a" (pxo_ret__), "+m" (var) \ |
| : "q" (pxo_new__) \ |
| : "memory"); \ |
| break; \ |
| case 2: \ |
| asm("\n\tmov "__percpu_arg(1)",%%ax" \ |
| "\n1:\tcmpxchgw %2, "__percpu_arg(1) \ |
| "\n\tjnz 1b" \ |
| : "=&a" (pxo_ret__), "+m" (var) \ |
| : "r" (pxo_new__) \ |
| : "memory"); \ |
| break; \ |
| case 4: \ |
| asm("\n\tmov "__percpu_arg(1)",%%eax" \ |
| "\n1:\tcmpxchgl %2, "__percpu_arg(1) \ |
| "\n\tjnz 1b" \ |
| : "=&a" (pxo_ret__), "+m" (var) \ |
| : "r" (pxo_new__) \ |
| : "memory"); \ |
| break; \ |
| case 8: \ |
| asm("\n\tmov "__percpu_arg(1)",%%rax" \ |
| "\n1:\tcmpxchgq %2, "__percpu_arg(1) \ |
| "\n\tjnz 1b" \ |
| : "=&a" (pxo_ret__), "+m" (var) \ |
| : "r" (pxo_new__) \ |
| : "memory"); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| pxo_ret__; \ |
| }) |
| |
| /* |
| * cmpxchg has no such implied lock semantics as a result it is much |
| * more efficient for cpu local operations. |
| */ |
| #define percpu_cmpxchg_op(var, oval, nval) \ |
| ({ \ |
| typeof(var) pco_ret__; \ |
| typeof(var) pco_old__ = (oval); \ |
| typeof(var) pco_new__ = (nval); \ |
| switch (sizeof(var)) { \ |
| case 1: \ |
| asm("cmpxchgb %2, "__percpu_arg(1) \ |
| : "=a" (pco_ret__), "+m" (var) \ |
| : "q" (pco_new__), "0" (pco_old__) \ |
| : "memory"); \ |
| break; \ |
| case 2: \ |
| asm("cmpxchgw %2, "__percpu_arg(1) \ |
| : "=a" (pco_ret__), "+m" (var) \ |
| : "r" (pco_new__), "0" (pco_old__) \ |
| : "memory"); \ |
| break; \ |
| case 4: \ |
| asm("cmpxchgl %2, "__percpu_arg(1) \ |
| : "=a" (pco_ret__), "+m" (var) \ |
| : "r" (pco_new__), "0" (pco_old__) \ |
| : "memory"); \ |
| break; \ |
| case 8: \ |
| asm("cmpxchgq %2, "__percpu_arg(1) \ |
| : "=a" (pco_ret__), "+m" (var) \ |
| : "r" (pco_new__), "0" (pco_old__) \ |
| : "memory"); \ |
| break; \ |
| default: __bad_percpu_size(); \ |
| } \ |
| pco_ret__; \ |
| }) |
| |
| /* |
| * this_cpu_read() makes gcc load the percpu variable every time it is |
| * accessed while this_cpu_read_stable() allows the value to be cached. |
| * this_cpu_read_stable() is more efficient and can be used if its value |
| * is guaranteed to be valid across cpus. The current users include |
| * get_current() and get_thread_info() both of which are actually |
| * per-thread variables implemented as per-cpu variables and thus |
| * stable for the duration of the respective task. |
| */ |
| #define this_cpu_read_stable(var) percpu_from_op("mov", var, "p" (&(var))) |
| |
| #define __this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define __this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define __this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| |
| #define __this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define __this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define __this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define __this_cpu_add_1(pcp, val) percpu_add_op((pcp), val) |
| #define __this_cpu_add_2(pcp, val) percpu_add_op((pcp), val) |
| #define __this_cpu_add_4(pcp, val) percpu_add_op((pcp), val) |
| #define __this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val) |
| #define __this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val) |
| #define __this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val) |
| #define __this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val) |
| #define __this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val) |
| #define __this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val) |
| #define __this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define __this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define __this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define __this_cpu_xchg_1(pcp, val) percpu_xchg_op(pcp, val) |
| #define __this_cpu_xchg_2(pcp, val) percpu_xchg_op(pcp, val) |
| #define __this_cpu_xchg_4(pcp, val) percpu_xchg_op(pcp, val) |
| |
| #define this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define this_cpu_add_1(pcp, val) percpu_add_op((pcp), val) |
| #define this_cpu_add_2(pcp, val) percpu_add_op((pcp), val) |
| #define this_cpu_add_4(pcp, val) percpu_add_op((pcp), val) |
| #define this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val) |
| #define this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val) |
| #define this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val) |
| #define this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val) |
| #define this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val) |
| #define this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val) |
| #define this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define this_cpu_xchg_1(pcp, nval) percpu_xchg_op(pcp, nval) |
| #define this_cpu_xchg_2(pcp, nval) percpu_xchg_op(pcp, nval) |
| #define this_cpu_xchg_4(pcp, nval) percpu_xchg_op(pcp, nval) |
| |
| #define __this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val) |
| #define __this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val) |
| #define __this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val) |
| #define __this_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| #define __this_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| #define __this_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| |
| #define this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val) |
| #define this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val) |
| #define this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val) |
| #define this_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| #define this_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| #define this_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| |
| #ifdef CONFIG_X86_CMPXCHG64 |
| #define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2) \ |
| ({ \ |
| bool __ret; \ |
| typeof(pcp1) __o1 = (o1), __n1 = (n1); \ |
| typeof(pcp2) __o2 = (o2), __n2 = (n2); \ |
| asm volatile("cmpxchg8b "__percpu_arg(1)"\n\tsetz %0\n\t" \ |
| : "=a" (__ret), "+m" (pcp1), "+m" (pcp2), "+d" (__o2) \ |
| : "b" (__n1), "c" (__n2), "a" (__o1)); \ |
| __ret; \ |
| }) |
| |
| #define __this_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double |
| #define this_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double |
| #endif /* CONFIG_X86_CMPXCHG64 */ |
| |
| /* |
| * Per cpu atomic 64 bit operations are only available under 64 bit. |
| * 32 bit must fall back to generic operations. |
| */ |
| #ifdef CONFIG_X86_64 |
| #define __this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define __this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define __this_cpu_add_8(pcp, val) percpu_add_op((pcp), val) |
| #define __this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val) |
| #define __this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val) |
| #define __this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define __this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val) |
| #define __this_cpu_xchg_8(pcp, nval) percpu_xchg_op(pcp, nval) |
| #define __this_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| |
| #define this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp)) |
| #define this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val) |
| #define this_cpu_add_8(pcp, val) percpu_add_op((pcp), val) |
| #define this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val) |
| #define this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val) |
| #define this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val) |
| #define this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val) |
| #define this_cpu_xchg_8(pcp, nval) percpu_xchg_op(pcp, nval) |
| #define this_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval) |
| |
| /* |
| * Pretty complex macro to generate cmpxchg16 instruction. The instruction |
| * is not supported on early AMD64 processors so we must be able to emulate |
| * it in software. The address used in the cmpxchg16 instruction must be |
| * aligned to a 16 byte boundary. |
| */ |
| #define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2) \ |
| ({ \ |
| bool __ret; \ |
| typeof(pcp1) __o1 = (o1), __n1 = (n1); \ |
| typeof(pcp2) __o2 = (o2), __n2 = (n2); \ |
| alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \ |
| "cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t", \ |
| X86_FEATURE_CX16, \ |
| ASM_OUTPUT2("=a" (__ret), "+m" (pcp1), \ |
| "+m" (pcp2), "+d" (__o2)), \ |
| "b" (__n1), "c" (__n2), "a" (__o1) : "rsi"); \ |
| __ret; \ |
| }) |
| |
| #define __this_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double |
| #define this_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double |
| |
| #endif |
| |
| /* This is not atomic against other CPUs -- CPU preemption needs to be off */ |
| #define x86_test_and_clear_bit_percpu(bit, var) \ |
| ({ \ |
| int old__; \ |
| asm volatile("btr %2,"__percpu_arg(1)"\n\tsbbl %0,%0" \ |
| : "=r" (old__), "+m" (var) \ |
| : "dIr" (bit)); \ |
| old__; \ |
| }) |
| |
| static __always_inline int x86_this_cpu_constant_test_bit(unsigned int nr, |
| const unsigned long __percpu *addr) |
| { |
| unsigned long __percpu *a = (unsigned long *)addr + nr / BITS_PER_LONG; |
| |
| #ifdef CONFIG_X86_64 |
| return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_8(*a)) != 0; |
| #else |
| return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_4(*a)) != 0; |
| #endif |
| } |
| |
| static inline int x86_this_cpu_variable_test_bit(int nr, |
| const unsigned long __percpu *addr) |
| { |
| int oldbit; |
| |
| asm volatile("bt "__percpu_arg(2)",%1\n\t" |
| "sbb %0,%0" |
| : "=r" (oldbit) |
| : "m" (*(unsigned long *)addr), "Ir" (nr)); |
| |
| return oldbit; |
| } |
| |
| #define x86_this_cpu_test_bit(nr, addr) \ |
| (__builtin_constant_p((nr)) \ |
| ? x86_this_cpu_constant_test_bit((nr), (addr)) \ |
| : x86_this_cpu_variable_test_bit((nr), (addr))) |
| |
| |
| #include <asm-generic/percpu.h> |
| |
| /* We can use this directly for local CPU (faster). */ |
| DECLARE_PER_CPU(unsigned long, this_cpu_off); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * Define the "EARLY_PER_CPU" macros. These are used for some per_cpu |
| * variables that are initialized and accessed before there are per_cpu |
| * areas allocated. |
| */ |
| |
| #define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \ |
| DEFINE_PER_CPU(_type, _name) = _initvalue; \ |
| __typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \ |
| { [0 ... NR_CPUS-1] = _initvalue }; \ |
| __typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map |
| |
| #define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \ |
| DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue; \ |
| __typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \ |
| { [0 ... NR_CPUS-1] = _initvalue }; \ |
| __typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map |
| |
| #define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \ |
| EXPORT_PER_CPU_SYMBOL(_name) |
| |
| #define DECLARE_EARLY_PER_CPU(_type, _name) \ |
| DECLARE_PER_CPU(_type, _name); \ |
| extern __typeof__(_type) *_name##_early_ptr; \ |
| extern __typeof__(_type) _name##_early_map[] |
| |
| #define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \ |
| DECLARE_PER_CPU_READ_MOSTLY(_type, _name); \ |
| extern __typeof__(_type) *_name##_early_ptr; \ |
| extern __typeof__(_type) _name##_early_map[] |
| |
| #define early_per_cpu_ptr(_name) (_name##_early_ptr) |
| #define early_per_cpu_map(_name, _idx) (_name##_early_map[_idx]) |
| #define early_per_cpu(_name, _cpu) \ |
| *(early_per_cpu_ptr(_name) ? \ |
| &early_per_cpu_ptr(_name)[_cpu] : \ |
| &per_cpu(_name, _cpu)) |
| |
| #else /* !CONFIG_SMP */ |
| #define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \ |
| DEFINE_PER_CPU(_type, _name) = _initvalue |
| |
| #define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \ |
| DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue |
| |
| #define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \ |
| EXPORT_PER_CPU_SYMBOL(_name) |
| |
| #define DECLARE_EARLY_PER_CPU(_type, _name) \ |
| DECLARE_PER_CPU(_type, _name) |
| |
| #define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \ |
| DECLARE_PER_CPU_READ_MOSTLY(_type, _name) |
| |
| #define early_per_cpu(_name, _cpu) per_cpu(_name, _cpu) |
| #define early_per_cpu_ptr(_name) NULL |
| /* no early_per_cpu_map() */ |
| |
| #endif /* !CONFIG_SMP */ |
| |
| #endif /* _ASM_X86_PERCPU_H */ |